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The dynamics of thick domain walls are studied in the context of the classical field theory for a
real scalar field. We treat, by numerically solving the equation of motion for the scalar field, the
collision of two plane-symmetric walls as well as the collapse of walls that have spherical and cylin-
drical symmetry. Walls in both sine-Cxordon and P theories are considered. We illustrate the strik-
ing and at times surprising differences between thin and thick walls. We also discuss the formation
of black holes during spherical collapse.

I. INTRODUCTION

Recently, Hill, Schramm, and Fry' (HSF) suggested
that very light or "soft" domain walls might be the seed
energy-density Auctuations necessary to initiate the for-
mation of large-scale structure. In addition, Stebbins and
Turner proposed that a single domain wall stretching
across our Hubble volume might be responsible for the
large-scale bulk motion observed in our local neighbor-
hood. In the HSF scenario, domain walls form during a
late-time phase transition that occurs after matter and ra-
diation have decoupled. The walls lead to large energy-
density fiuctuations (5p/p —1) that immediately grow
nonlinearly. Structures could, therefore, form by redshift
z ~ 3 as is required to explain the existence of quasars ob-
served at these redshifts. Furthermore, HSF argue that
the distortions in the microwave background induced by
the walls are small and can be well within observational
limits.

This renewed interest in domain walls prompted us to
consider their dynamics in some detail. Most of the pre-
vious work on domain walls has made use of the thin-wall
approximation. A wall of negligible thickness is most
easily treated as a (2+1)-dimensional hypersurface. The
equations of motion for the wall are determined by
minimizing the area of this hypersurface (see, for exam-
ple, Ref. 4) much as the Nambu-Goto equations of
motion for a string are determined by minimizing the
area of the (1+1)-dimensional world surface swept out by
the string. In the thin-wall approximation, a number of
problems can be treated analytically.

Presently, we study the dynamics of "realistic" (i.e. ,

thick) domain walls. Though motivated by the recent
work of HSF, our analysis is completely general and
therefore applicable to domain walls occurring at any
stage in the history of the Universe. As we shall see,
there are some rather surprising differences between thick
and thin walls.

Cosmic domain walls form when a discrete symmetry
is spontaneously broken. Simply put, walls form the
boundaries between regions of the Universe that have set-
tled into distinct vacuum states. In the simplest models,

symmetry breaking is accomplished by a real scalar field
@, where N acquires different vacuum expectation values
(VEV's) in difFerent regions of the Universe. Walls occur
where 4 changes from one VEV to another; that is,
where N is in a false-vacuum state. The thickness of the
wall is determined by balancing gradient and potential
energies, i.e., by solving the equations of motion for N.
Likewise, the dynamics of the wall are determined by
solving these equations. In this respect, the wall is noth-
ing more than a special configuration of the 4 field. (A
similar approach is taken by Press, Ryden, and Spergel
in their simulations of cosmic domain-wall networks. )

Before discussing the present work, let us review what
is known about cosmological domain walls. At the time
of formation, there are both infinite and closed surface
walls. ' The evolution of the system once the domain
walls have formed is complicated and very model depen-
dent and a complete understanding of cosmological
domain walls is out of reach. It is, nevertheless, useful to
list the forces that come into play. The stress energy of a
wall is composed of a surface energy density and surface
tension equal in magnitude to the surface energy. Be-
cause of the tension, closed walls collapse and regions in
infinite walls with small-scale irregularities oscillate. On
the other hand, large-scale features (i.e. , features with
curvature scales greater than the Hubble length) are con-
formally stretched by the cosmological expansion. In ad-
dition, there are processes which damp the motion of the
walls. For example, particles that are reQected by the
wall exert a frictional force which damps motion of the
walls relative to the cosmic rest frame. More important
perhaps are the energy-loss mechanisms such as gravita-
tional and particle radiation which damp out small-scale
irregularities in infinite walls and cause closed surface
walls to eventually disappear. As a final note, we men-
tion the possibility that a closed surface wall can collapse
to form a black hole.

In the present work, we consider the dynamics of some
very simple wall configurations focusing on the scalar
field N and neglecting the coupling of @ to gravity and to
other fields. Our analysis is, therefore, sensitive only to
the effects of surface tension and 4-particle radiation. As
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II. GENERAL PROPKRTIKS OF DOMAIN WALLS

Consider the theory of a real scalar field cI&—:m p with a
scalar potential V(C&)=A,m U(P), where P, A, , and U are
all dimensionless and m has dimensions of mass. (Here
and throughout, we use units where A=kz=c=1 and
m p~

= 1.2 X 10' GeV =6N,'„~„„ is the Planck mass. )

Stable domain walls occur when U(P) has at least two
degenerate minima. We consider two such potentials,
sine-Gordon (SG) and P:

1 —cosO, SG,
1 (y2 1)2 y4U(P)=

Note that while the SG potential has an infinite series of
minima (P;„=2rrn, where n =integer) and is bounded
[0(U(P)(2 for all P], the P theory has only two mini-
ma (P;„=+I) and is unbounded [U(P)~ ~ for
/y/~m].

Given the Lagrange density,

discussed above, we do not solve for the motion of the
walls per se but rather for the evolution of the 4 field.
This is done using a one-dimensional partial difFerential
equation code and we are, therefore, limited to spherical,
cylindrical, and plane-symmetric walls. The advantage of
a one-dimensional code is, of course, that we can use an
extremely fine grid and therefore obtain very accurate
simulations. Furthermore, the three problems accessible
to our code roughly correspond to spherical, cigar-
shaped, and pancake-shaped walls, the three shapes one
generally expects for closed surface walls in a domain-
wall network.

Though our analysis is somewhat limited, the results,
we believe, will be important in understanding the evolu-
tion of a system of domain walls and the role walls may
play in structure formation. For example, we discuss in
some detail, the loss of energy due to 4-particle radiation
during spherical and cylindrical collapse. If closed walls
are to act as seeds for structure formation then it is essen-
tial that they live for a long time, i.e., that the energy loss
due to particle radiation be small. As we shall see, the
fraction of energy lost to radiation depends on the details
of the N-fields potential and on T/Ro, where T is the
thickness of the wall and Ro is the maximum radius of
the wall (i.e., R =Ro for dR/dt =0). A second issue of
cosmological importance addressed is the collapse of a
spherical wall into a black hole. Though gravity has been
neglected, it is still possible to make some qualitative pre-
dictions about black-hole formation. Our results indicate
that black holes can form even for the soft walls con-
sidered by HSF.

An outline of the paper is as follows. In Sec. II we

briefly review the properties of domain walls relevant to
the present work. (For a more complete review of the
basic properties of domain walls, see Ref. 4.) In Sec. III
we discuss the numerical simulations, paying particular
attention to a host of tests conducted to verify the validi-
ty of the code. In Sec. IV we discuss the results in more
detail and in Sec. V we give a surnrnary of our work and
discuss implications for cosmological domain-wall
scenarios.

2

c)„Qc)"P—Am U(P), (2.2)

we can easily derive the equation of motion for @:

P —V (t+Am =0 .
a

(2.3)

Here and throughout an overdot will denote a derivative
with respect to time. For a static, plane-symmetric
domain wall oriented in the x-y plane, Eq. (2.3) simplifies
to

d P ~ pc)U
dz~ c)P

Integrating, we find

1 dP =Am U(P) .
2 dz

(2.4)

(2.5)

T„=m c)„Qc) P —rt„+
takes the simple form

T„=2Am "U(P)diag( —1, 1, 1,0) .

(2.6)

(2.7)

The closed-form solutions for P in both SG and P
theories are well known and we list them here for future
reference:

m A. y(z —Zo —Ut)
4 arctan(e ' ), SG,
tanh[A, '~ m (z —Zo —ut)],

(2.8)

Here U is the velocity of the wall in the z direction and

y
—= I /V 1 —u is the usual Lorentz factor. Using these

results we find that cr = 8A,
' m for SG walls and

cr =4k, ' m /3 for/ walls.
Before discussing thick spherical and cylindrical walls

let us consider these configurations in the thin-wall ap-
proximation. As noted above, a wall of negligible thick-
ness is most easily described as a (2+ 1)-dimensional hy-
persurface. The motion of the wall is determined by the
equations x"=x~(P), where P (ct =0, 1,2) are the hyper-
surface coordinates and x" are the usual spacetime coor-
dinates. The equations of motion for the wall are

6L
c)P 5x",

5J
6x"

(2.9)

where x",—:c)x "/c)P, L = —cr( —detg' ')' is the La-
grangian of the wall, and g,'b'=g„x",x b is the metric
on the hypersurface. For a spherically symmetric wall,
we choose x"=(t,r, 8, $) with

(2.10)

A static, plane-symmetric wall is a solution of this equa-
tion with the boundary condition that P approaches
difFerent minima for z —++~. Evidently, the energy den-
sity inside the wall is 0 (A, m ), the thickness of the wall is
0(T), where T= I/A, ' m, and the mass per unit area cr

is 0(A, '~ m ). From Eq. (2.5) it follows that the stress
tensor
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From this, and Eq. (2.9), it is straightforward to show
that

~ ~ 1 —R 2
R= —2

R

Integrating this equation gives
4

~
2 R

1 —R
Ro

(2.1 1)

(2.12)

t=g', P=I'(g'), e=g', z=g'.
Again, making use of Eq. (2.9) we find

~ 1 —Pp ——
P

and

(2.13)

(2.14)

1 —P = P
Po

(2.15)

Here PO=N/2vro is the maximum radius of the cylinder
and X is the mass per unit length of the shell.

For thick walls, we begin by writing Eq. (2.3) in spheri-
cal and cylindrical coordinates:

~ d P 2 dP+& 2BU
dr 2 r dr BP

dP 1 dg ~ 2BU
dp p dp BP

(2.16a)

(2.16b)

Numerical solutions of these equations will be discussed
in Sec. III. Here we discuss the validity of the thin-wall
approximation. The naive expectation is that the thin-
wall approximation is valid so long as the radius of the
sphere is much greater than the wa11's thickness. This,
however, is not the case. Consider a spherical wall that is
initially at rest with a characteristic radius Ro ( ))T). In
the early stages of collapse, we expect, and indeed find in
the numerical simulations, that the wall collapses with a
speed determined by the relation y ~R [Eq. (2.12)].
Furthermore, the radial profile of the wall is approxi-
mately that of a planar wall that is Lorentz boosted with
the appropriate y factor [see Eq. (2.8)]. These properties
hold so long as the third term on the left-hand side of Eq.
(2.16a) is small as compared to the other terms in the
problem. Comparing this term with, for example, the
last term on the left-hand side, we see that

Ro
(2.17)

R
(2/r)d P/dr
Xm'aU/ay

T
Ro

y
RA, ' I

We, therefore, expect the thin-wall approximation to
break down at a radius R „where

]. /3

Ro Ro
(2.18)

where Ro =(M/4vro )'/ is the maximum size of the wall
and M is the mass of the shell. [Equations (2.11) and
(2.12) have also been derived" for thick walls, where R is
replaced by an appropriately defined average radius. ]

For cylindrical walls, we take x"= ( t, p, P, z) with

Evidently R, can be much larger than T. A similar
analysis shows that, in the case of cylindrical symmetry,
the thin-wall approximation breaks down when the ra-
dius of the cylinder is P„where

' 1/2

(2.19)
0

P

Po

As will be discussed below, Eqs. (2.18) and (2.19) are in
good agreement with the numerical results.

III. NUMERICAL SIMULATIONS

j n +1/2 j n —1/2+ gr V2yn g 2 BV

ay,"
(3.1b)

For plane-symmetric configurations

(V'P); = 0;+1+0;-1-20

(hx)

In the case of spherical symmetry

(3.2a)

(4 +1 4 )("+1+") (4 0 1)(r +r —1)—
(V P);=

(2r, hx)

(3.2b)

where r,. =ibex. Finally, for problems with cylindrical
symmetry

(V P);=
(4 +1 1) )(P +1+P ) (0 0 —1)(P +P —1)

2P;(b,x)

(3.2c)

The differencing scheme is second-order accurate in both
space and time.

We begin by discussing the interaction of plane-
symmetric walls. This case corresponds to the interac-
tions of (1+1)-dimensional kink solitons and has been
studied elsewhere. ' ' Here we briefly review the results.
Our initial configuration is that of two widely separated
walls (separation ))thickness) approaching each other
with some velocity U. For the SG walls (Fig. 1), we find,
as is well known, that the walls pass through one another
without loss of coherence, continuing on with the same
velocity as they started with. On the other hand, P soli-
tons interact during a collision. The interaction is attrac-
tive so that the velocity after the collision is less than the
initial velocity. If the relative velocity is sma11 enough,
then the walls will become bound and eventually annihi-

The dynamics of thick domain walls are studied by
solving the equation of motion for 4 choosing initial
configurations appropriate to the problems we wish to
consider. The equations are integrated numerically using
a standard leapfrog finite-differencing scheme (see, for ex-
ample, Ref. 12). I.et P,

" denote the value of the field at
the ith position and nth time step and P,

"+'/ denote the
first time derivative of the field again at the ith position
but a half time step later. The difference equations are

(3.la)
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FIG. 3. Collapse of a spherically symmetric SG wall. r is the radial coordinate. The left-hand figure shows P as a function of r at

equally spaced intervals in time. On the right-hand side, we give the energy density e for the corresponding time slices. (e includes a

factor of r' so that j dr e is the total energy. )

' 0.46

= 1.08
PoPo

L

in good agreement with Eqs. (2.18) and (2.19).

check these predictions numerically. Define R and y
by the relation y, R ~ =0.9R 0, i.e., R, is the radius of the
sphere at the point where yR has dropped by 10%.
Similarly, define P, by the relation y+P+ =0.9Po. In
Fig. 6 we plot R, and I', as functions of T/Ro and
derive the empirical relations

R
' 031

= 1.40
Ro Ro

IV. RESULTS

A. Energy loss due to particle
radiation

Qne of the most striking phenomena discussed in Sec.
III is the bounce of spherical walls. The bounce is most
dramatically illustrated in Fig. 7. Here we plot the frac-
tion of the total energy (—:P) that is contained within a
volume which encompasses the original wall. This is
done for both SG and P walls where data are taken from
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FIG. 4. Same as Fig. 3 but for a II'I wall.
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TABLE I. Values of C and x for different values of p in the
power-law relation (4.1}.
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FIG. 5. Collapse of a SG wall that has cylindrical symmetry.

p is the radial coordinate in the (t,p, P, z) cylindrical coordinate
system.

the same runs used in Figs. 3 and 4, respectively. The
difference between the curves in Fig. 7 and the value 1 is
a measure of the fraction of energy that has escaped in
the form of outgoing spherical waves. %"e see that for the
SG wall, roughly 40% of the energy is radiated away dur-
ing each of the four or so bounces resolved in the plot.
On the other hand, the P wall radiates all of its energy in
the first bounce.

In Fig. 8 we plot V as a function of T/Ro. V is the
fraction of the total energy in the wall that remains after
the first bounce. We see that P reaches a maximum value
of 0.7 (i.e., the collision is most elastic) at T/Ro =0.08.
The gross features of Fig. 8 have a fairly simple explana-
tion. For T/Ro )0.08, the initial configuration begins to
look like a dissipative blob of P field rather than a spheri-

}
& 1 &

}
' & '

}
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—.8

—1.4
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2 I I I I I I I I ) I
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FIT&. 6. Plot of ln(R ~ /Ro) [ln(P~ /Po)] as a function of ln( T/Ro) for spherical [cylindrical] walls. R ~ is the radius at which the
thin-wall approximation first breaks down. (The exact definition of R„ is given in the text. ) The straight line fit to the data [Eqs.
(3.4a) and (3.4b)] is also shown.
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FIG 9 ln( Rp /R 0 ) as a function of ln( T/R 0 ) for p =0.75 and p =0.99. R~ is the minimum radius in which a fraction p of the to-
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cal domain wall. Conversely, for T/Ro much less than
this, the radius at which the wall profile becomes in-
coherent as compared to the thickness R, /T increases
[see Eqs. (2.18) and (2.19)] indicating that the wall is un-
dergoing larger oscillations by the time it reaches its final
stages of collapse.

B. Black-hole formation

or

T 4'
Ro C f72 p]

R 4mpo Ro

Ro mp,

-2- ]/(x+&i

(4.2a)

(4.2b)

R =C
Ro Ro

(4 1)

where C and x are given for different values of p in Table
I.

Black holes form when a given amount of energy falls
within its Schwarzschild radius, R, . For a spherical wall
R, =4mo R o/m ~]. To form a black hole, we then require

As in any problem involving spherical collapse, one
should consider the possibility of black-hole formation.
Since we have neglected gravity, an exact treatment of
the gravitational collapse to a black hole is not possible.
We can, however, make some (hopefully) sensible predic-
tions about black-hole formation.

Define R to be the minimum radius that contains,
during the course of the collapse, a fraction p of the total
energy. We determine R~/Ro as a function of T/Ro and
display the results (for p =0.75 and p =0.99) in Fig. 9.
The results are reasonably well approximated by the
power-law relation

It is interesting to note that the condition for black-
hole formation, Eq. (4.2b), depends on. the ratio T/Ro
and m and not on A,. Even for the very light domain
walls envisioned by HSF, m is a high-energy ( —10'
GeV) scale. [The walls are light because A,', being the
ratio of a low-energy scale ( —1 —10 eV) to m, is ex-
tremely small. ] For m =10' GeV black holes are likely
to form for T /R o

—10

V. CONCLUSIONS

Phase transitions that involve spontaneous breaking of
a discrete symmetry give rise to topological domain walls.
Walls that are absolutely stable and heavy (o ~ 10 MeV)
induce unacceptably large distortions in the microwave
background and theories that predict such objects must
either be altered in some way (for example, by requiring
inflation to occur after wall formation) or discarded.
However, domain walls that are unstable or light are
cosmologically safe and may even be cosmologically in-
teresting. In order to determine just how safe and in-
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teresting domain walls are one must understand the
dynamical evolution of a domain-wall network. Here we
study the details of spherical and cylindrical collapse as
well as the collision of two plane-symmetric walls. Our
simulations are extremely accurate (i.e., using a finer grid
does not change the results) and reveal a number of in-
teresting properties. For example, spherical SG walls can
bounce after collapse, retaining a fair fraction of their en-
ergy in wall energy, losing the balance of the energy to P
radiation. This indicates that the lifetime of the walls is
(a few)X(light travel time across the wall). Subhorizon-
sized walls can, therefore, live for a time ~ Hubble time
making them acceptable (but just barely) as seeds for
structure formation. (There is, however, the possibility
that the lifetime of the wall can be enhanced if the wall
has anisotropies or angular momentum, though the re-
sults of Press, Ryden, and Spergel indicate that such
walls are not very common. )

One very interesting, albeit preliminary, result is that
black holes may form during spherical collapse. This
could occur for domain walls that are heavy but unstable
(as in the case where the discrete symmetry is only ap-
proximate). In such a scenario, a population of black
holes could form before the walls have disappeared. This
possibility will be the subject of a future investigation.
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