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The Einstein-Rosen cylindrical gravitational waves are quantized by the canonical methods
due to Dirac (the constraint formalism) and to Arnowitt, Deser, and Misner (the ADM depara-
metrized formalism). The general reduction of geometrodynamical phase space to a mini-
phase-space by intransitive groups of motion with spacelike Killing vectors is presented. The
ADM classical canonical formalism restricted to the infinite~-dimensional mini-phase-space
generated by the cylindrical group of motions is built up. Six invariantly defined functions of
one coordinate label are introduced as new canonical variables by a canonical transformation
in mini-phase-space. Two canonical coordinates are identified with the Einstein-Rosen time
and cylindrical radius. Canonically conjugate to them are C-energy density and C-energy
flux, The third pair of canonical variables carries the «! dynamical degrees of freedom of
the cylindrical wave., The canonical transformation mixes superspace with momentum space,
the Einstein-Rosen time being constructed from the extrinsic curvature of the spacelike hy-
persurface rather than from its intrinsic geometry. The ADM classical canonical formalism
for cylindrical gravitational waves is proved to be identical with the parametrized formalism
for the cylindrical massless scalar waves propagating in Minkowskian spacetime. The identi-
ty of the quantum formalisms follows. The extrinsic time representation, with the Einstein-
Rosen time and cylindrical radius as two of the three basic variables, is used instead of the
metric representation. The Dirac contraints are imposed on the state functional. If the hy-
persurfaces are labeled by the Einstein-Rosen cylindrical radius, the constraints are re-
duced to a functional differential equation of the Schrddinger type. This equation is further
reduced to a single partial differential equation by integrability conditions which ensure that
the evolution of the state functional between two hypersurfaces is path-independent. The in-
ner product of two state functionals conserved by the deformation of the hypersurface is de-
fined. Under the coordinate conditions restricting the allowable hypersurfaces to those of a
constant Einstein-Rosen time, the Dirac formalism is deparametrized into the ADM quantum
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formalism.

I. INTRODUCTION

The gravitational field has been quantized by
many different methods. All of them have at least
one feature in common: It is difficult to apply
them to a concrete problem. In a sense, the aim
of this paper is complementary to that of inventing
a new method of quantization. It presents a simple
problem on which different methods of quantization
can be tried out and compared with each other. We
argue that the cylindrical gravitational waves are
ideal for this purpose. In this paper, two versions
of canonical quantization are applied to them.
Through the analysis, we gain insight into super-
space, the nature of geometrodynamical time, and
the ways in which the many-fingered time formal-
ism works. It is believed that the other methods of
quantization of the gravitational field (such as the
Feynman integration over all paths,! or the Mandel-
stam method?) can also be better understood when
illustrated on this simple model.

The canonical quantization of the gravitational
field has been studied and improved by a number of
persons. The reader interested in the historical
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details may find them in the paper by DeWitt.> The
classical canonical formalism, which was original-
ly quite cumbersome, attained its present elegant
status through the work* of Arnowitt, Deser, and
Misner. Starting from the ADM action principle,
the canonical theory can be developed by two differ-
ent lines of reasoning, the first one due to ADM
themselves, and the second one initiated by Dirac.®
Let us explain their basic differences.

The canonical formalism necessarily destroys
the spacetime covariance of the theory by cutting
spacetime into slices and investigating their geo-
metrical properties. In the Dirac approach, all
spacelike slices are equally admissible, as well
as all systems of coordinates on them. The intrin-
sic geometry and the extrinsic curvature of the
slices enter the formalism as canonical coordinates
and momenta. The canonical variables cannot be
freely specified, but are subject to (1+3)~® con-
straints: the super-Hamiltonian constraint and the
supermomentum constraints. In quantum theory,
the state functional is defined on an arbitrary slice
and in an arbitrary system of coordinates. The
constraints are imposed on the. state functional and
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assume the form of functional differential equations.
They govern the changes of the state functional un-
der a deformation of the slice and under a displace-
ment of the spatial system of coordinates.

In the ADM approach, a definite slicing of space-
time and a definite coordinatization.of the slices
are picked out by coordinate conditions. Four ca-
nonical coordinates and four canonical momenta
are eliminated by the coordinate conditions and by
a subsequent “deparametrization” of the canonical
formalism. The true nonvanishing Hamiltonian
depending on two unconstrained canonical pairs of
variables emerges in the process of deparametri-
zation. The state functional is defined only on a
one-parameter family of slices and in a fixed sys-
tem of coordinates on them. The quantization then
proceeds as in standard field theory.

As already mentioned, the main purpose of this
paper is to understand the canonical quantization
and some of its consequences by applying it to a
particularly simple problem. The basic method is
to freeze all but a few of the infinitely many degrees
of freedom of the gravitational field by putting a
number of canonical coordinates and their conju-
gate momenta identically equal to zero. Such a
trick is justified in the classical theory, but vio-
lates the uncertainty principle in the quantum theo-
ry. In spite of this, it is believed that at least
some relevant features of the full quantum theory
are preserved and that, by studying the simplified
models with only a few degrees of freedom left,
we can learn a lot about general quantum geometro-
dynamics.

The pioneer of this approach is DeWitt, who first
applied the Dirac method of quantization to the
Friedmann universe?® In appearance, this is the
simplest of all possible models, because all gravi-
tational degrees of freedom are frozen except one:
the radius of the universe. In reality, the model
becomes quite complicated by the very fact that it
is too simple. The difficulty is that the Dirac ap-
proach needs at least one degree of freedom to de-
scribe the geometrodynamical time. The radius of
the universe can do that —it is a gigantic hand of a
clock telling the epoch of the universe. But what
about the state functional? If it depended only on
the gravitational degrees of freedom, we would run
into a difficulty of interpretation. The state func-
tional is the probability amplitude that the dynam-
ical variables of the system have definite values at
a given time — but where are the dynamical vari-
ables? The paradox is easily resolved. The clas-
sical Friedmann universe cannot exist without mat-
ter, and matter provides the additional variables
for the state functional. However, the presence of
matter variables is regarded as a Schonheitsfehler
by the true believers in pure geometrodynamics,

who hold that geometry needs no matter for its in-
terpretation, though matter can be interpreted in
terms of quantized geometry.

The pollution of geometrodynamics by matter is
absent in the second model treated so far by the
method of frozen variables —in Misner’s “mixmas-
ter” universe.® The mixmaster universe is an
empty homogeneous universe the geometry of which
is characterized by three variables: its volume V,
and two anisotropy parameters 3,. Misner quan-
tizes the mixmaster universe by the ADM method,
the volume of the universe serving as a geometro-
dynamical time, and the anisotropy parameters as
the dynamical degrees of freedom. However, nei-
ther the Friedmann universe nor the mixmaster
universe gives us the opportunity to exhibit the full
scope of the Dirac method of quantization. Because
of the high symmetry of these models, a privileged
slicing of the spacetime exists, such that the intrin
sic geometry of the slices is homogeneous. The
symmetry thus provides a unique one-parameter
family of spacelike hypersurfaces on which the fur-
ther formalism is based. This goes against the
spirit of the Dirac method, which permits an arbi-
trary slicing, and, in a sense, also against the usu-
al procedures of the ADM method, which picks out
a one-parameter family of slices by coordinate con-
ditions rather than by symmetry considerations.

As a result, when we apply the Dirac method of
quantization to such degenerate models, it becomes
almost indistinguishable from the ADM method.

The homogeneity of the models is also responsible
for the drastic reduction in the number of gravita-
tional degrees of freedom. E.g., from the infinitely
many degrees of freedom of the gravitational field,
only three are left in the mixmaster universe, one
of them representing the geometrodynamical time
of the privileged family of slices. In a typical
field theory, we expect to find several degrees of
freedom at each point of space, and we can study
the interaction between the degrees of freedom at
neighboring points, resulting in the propagation of
a wave. The requirement of homogeneity ties the
corresponding degrees of freedom in different
points rigidly together, forcing a typical degree of
freedom in one point to imitate the behavior of the
corresponding degree of freedom at any other point,
so that they finally dance together like the well-
disciplined Rockettes. The field aspect of gravity
has thus almost completely disappeared from the
model. .

The same situation can also be described in a
slightly different language. The mixmaster uni-
verse can be interpreted as the lowest gravitational
mode fitting into a closed universe, the universe
being closed by the effective energy of the mode.
The lack of wave propagation is then not surprising.
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It is not possible to form a wave packet from one
mode of the field, and observe how this packet trav-
els from one point to another. The quantization of
the model amounts to quantizing only the lowest
mode of the field, keeping all higher modes artifi-
cially frozen.

At this point, a natural question arises. Why not
take a full-fledged gravitational wave with an infin-
ity of higher modes present, and quantize it instead
of quantizing the closed universe? After all, it was
not a universe that was first quantized in quantum
field theory, but the electromagnetic wave. There
are exact wave solutions known in Einstein’s theory
of gravitation — namely, the cylindrical waves” and
the plane waves.® So let us take, for example, the
cylindrical gravitational waves, freeze all extra-
cylindrical degrees of freedom, and gquantize the
cylindrical degrees of freedom by the Dirac and
the ADM canonical methods. This is exactly what
is done in this paper.

The cylindrical gravitational wave (by which we
mean the wave symmetric with respect to reflec-
tions in the planes containing the axis of symmetry
and perpendicular to the axis of symmetry, as well
as with respect to translations along the axis and
rotations around it) has only one polarization, the
other one being eliminated by the reflection sym-
metry. On the other hand, there are «! degrees
of freedom contained in this polarization, one de-
gree of freedom for each cylindrical surface drawn
around the axis of symmetry. The degrees of free-
dom on one cylindrical surface still dance in unison,
but those on another surface may lag behind them,
giving rise to the radial propagation of a wave. An
infinite number of higher modes are present in the
wave. Furthermore, the slicing of the spacetime
is not completely fixed by the symmetry. All slices
with rotational symmetry around the axis of sym-
metry are allowed. Such slices are too numerous
to be fitted into a one-parameter family. In this
way, both objections against the cosmological mod-
els are met by the cylindrical waves. The field
aspect of the gravitational theory is truly repre-
sented and the Dirac formalism has a chance to
show its specific features, distinguishing it from
the ADM method.

The choice of the free canonical variables and
the freezing process are done almost intuitively in
the models we have discussed. However, observing
how the formalism works in these cases, we can
abstract an underlying algorithm. The reduction of
the canonical formalism is accomplished by a group
of motions which imposes supplementary conditions
on the intrinsic geometry and the extrinsic curva-
ture of the slices which are invariant varieties of
the group. These conditions reduce the superspace
(the space of all three-dimensional geometries) to

a mini-superspace, and the corresponding geomet-
rodynamical phase space to a mini-phase-space.
The procedure is quite general, and we hope to
study the systematics of models arising from the
various group structures in a subsequent paper.

Perhaps the most interesting aspect of the cylin-
drical gravitational waves is the light they shed on
the nature of geometrodynamical time. In the Dirac
formalism, one degree of freedom at each point
of space represents a Tomonaga-Schwinger time
variable. This was already noted in a more special -
ized situation in which the privileged slicing imply-
ing homogeneity reduced the Tomonaga-Schwinger
time function to one real parameter labeling the
slices. The problem is how to disentangle the time
variable from the truly dynamical degrees of free-
dom. Let us place this problem in a broader set-
ting.

The general theory of relativity is a culmination
of long efforts to understand the nature of space
and time. “What then is time?” asks Saint Augus-
tine in Book XI of his Confessions, and replies:

“If no one asks me, I know; if I wish to explain it to
one that asketh, I know not: yet I say boldly, thatI
know, that if nothing passed away, time past were
not; and if nothing were coming, a time to come
were not; and if nothing were, time present were
not.”® “For if eternity and time are rightly distin-
guished, in that time exists not without a varying
changeableness, whereas in eternity is no change,
who seeth not that times could have been, had no
creature come into existence, which should vary
something by some change ?”'° “The course of time
began with the motions of creation, wherefore it is
idle to ask about time before creation, which were
to ask for time before time.... Time, therefore,
rather hath its commencement from the creation,
than creation from time, but both from God.”*!

This is perhaps the first exposition of the idea that
time is a measure of change of the existing things,
and that in the absence of changing things there
would be no time.

There is another stream of ideas flowing across
the territory of the general theory of relativity. We
can summarize its basic tenet by saying that all ex-
isting things are made out of geometry. Plato’s
vision that the world consists of four perfect solids,!?
Clifford’s picture of particles as wave packets of
geometry,’® Einstein’s whole life quest for a unified
field theory,!* and Wheeler’s conception of elemen-
tary particles as geometrodynamical excitons,®
follow this stream down from antiquity to the pres-
ent time. Now, if we bring together Saint Augus-
tine’s philosophy of time with the Plato-Clifford-
Einstein-Wheeler tradition, we conclude almost by
a syllogism that time is a measure of change of
geomeltry.
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This is well known from the classical general
theory of relativity, though in a less pretentious
wording. The proper time 7 along a timelike curve
x*=x"(t) is defined by the integral

t2 dx" dx"\'/?
- 4
T“ j;l (‘ ngzt— 7) dt )
and therefore constructed out of geometry. Inci-
dentally, this formula is usually interpreted the
other way around: The proper time is measured
independently by a standard clock moving along the
worldline x'= x*(¢), and its connection with geome-
try is used to define operationally what geometry
means. Geometry is thus explained in terms of
“material objects,” like standard clocks, rather
than material objects being explained in terms of
geometry.

However, this is not exactly the point we would
like to stress. Our primary concern is the modifi-
cation in the concept of time necessitated by the
quantum principle. Unfortunately, the proper time
has no proper place in quantum geometrodynamics.
Quantum geometrodynamics speaks about the in-
trinsic and extrinsic geometries of spatial hyper-
surfaces, rather than about the spacetime geome-
try along timelike curves. The intrinsic and extrin-
sic geometries stand to each other as the canonical
coordinate to its conjugate momentum, and we can-
not know them simultaneously in quantum geometro-
dynamics. The proper time becomes an operator
which has in general no sharp value. If time is to
be constructed out of geometry, one question still
remains to be answered: Out of what geometry,
the intrinsic geometry or the extrinsic geometry ?

Wheeler and DeWitt gave their preference to the
intrinsic geometry. In classical geometrodynam-
ics, Wheeler formulated the sandwich conjecture,
according to which the intrinsic geometry freely
specified on two closed spacelike hypersurfaces
uniquely determines the spacetime geometry be-
tween them and therefore carries information
about the proper time.!® In quantum geometrody-
namics, DeWitt opted for the metric representa-
tion, in which the components of the intrinsic met-
ric tensor are chosen as diagonal operators. He
showed that the pure dilation of the intrinsic metric
tensor has the character of a timelike displace-
ment, if a ndtural metric is imposed on super-
space.® Misner also identified a combination of
the components of the intrinsic metric tensor (the
logarithm of the volume of the universe) with the
geometrodynamical time, when quantizing the mix-
master universe.®

The rival candidate for time is the extrinsic geo-
metry. Now, in spite of the ingenious arguments
by Wheeler and DeWitt, we are firmly convinced
that time should be identified rather with an extrin-

sic curvature variable than with an intrinsic geo-
metry variable. Such an identification was first at-
tempted by ADM,* used by Peres,'” and discussed
by the present author.!® However, the formalism
looks natural only for the linearized theory, and
becomes implicit and involved for the full non-
linear theory. At this point, the cylindrical waves
have something to say. As far as we know, they
are the first model in which it is possible to define
an extrinsic time explicitly and elegantly even for
strong gravitational fields, and to show the great
advantages of the extrinsic time representation.
One of these advantages looks so important that

. it should guide the choice of the time variable.

Namely, the canonical variable conjugate to a good
extrinsic time enters the super-Hamiltonian line-
arly. It follows that the main Dirac constraint has
the form of a Schrddinger equation. This is in
sharp contrast to the metric representation, in
which the Dirac constraint is an equation of the
Klein-Gordon type. It is usual to interpret this
Klein-Gordon-type constraint as a time evolution
equation for the state functional. It seems to us
that this interpretation is misleading and that a
much better analogy to the Klein-Gordon-type con-
straint is given by the time-independent Schréding -
er equation for stationary states. It would be inter-
esting to study the extrinsic time variables in other
simple models and see if they can bring the Dirac
constraint into the Schrédinger form.

After all these remarks concerning motivation
and the general significance of the quantization of
the cylindrical gravitational waves, let us indicate
the main results. The most important conclusion
reached is that the Dirac quantization of the cylin-
drical gravitational waves is completely isomor-
phic to the quantization of a single cylindrical mass-
less scalar field on a Minkowskian spacetime back-
ground, if this field is quantized in curvilinear co-
ordinates by the constraint method. It is shown that
only two Dirac constraints remain in the cylindri-
cal case, and these can be reduced further to one
main constraint of the Schrédinger type. The form-
al solution of this remaining constraint is written
down. The ADM quantization of the cylindrical
gravitational waves is proved to be equivalent to the
standard quantization of the cylindrical massless
scalar field on a Minkowskian spacetime background.

We start the presentation by summarizing the tra-
ditional treatment of the Einstein-Rosen waves. In
Sec, II, the general form of the cylindrically sym-
metric line element is written down, and an invari-
ant meaning of the standard coordinates and the
standard metric coefficients is emphasized. This
line element is a starting point of the ADM formal -
ism, and the notation is adapted to it. In Sec. IN,
the Einstein vacuum equations are used to cast the
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line element to the Einstein-Rosen form. The
physical meaning of the remaining Einstein equa-
tions is discussed. The transformation from the
Einstein-Rosen coordinates to the general cylindri-
cal coordinates is given, and the coefficients of the
general cylindrically symmetric line element are
connected with the coefficients of the Einstein-Ros-
en line element and the Einstein-Rosen coordinates.
The boundary conditions at spatial infinity, at the
axis of symmetry, and in the remote past and fu-
ture are formulated. In Sec. IV, the ADM canonical
formalism is reviewed and the Dirac and the ADM
methods of quantization are recapitulated. Section
V deals with the general reduction of the ADM can-
onical formalism by the spatial groups of motions.
The concepts of mini-superspace and mini-phase-
space are introduced. It is shown that the geometro-
dynamical trajectory stays in the mini-phase-space,
if its initial point lies there. The general formal-
ism of Sec. V is applied to the Einstein-Rosen
waves in Sec. VI. The super-Hamiltonian and the
supermomentum of the Einstein-Rosen waves are
written down. In Sec. VII, it is shown that the Ein-
stein-Rosen time can be constructed from the can-
onical momenta, and has therefore the character

of an extrinsic time. By a canonical transforma-
tion, the Einstein-Rosen time is introduced as a '
canonical coordinate. Canonically conjugate to it

is the energy density of the wave. The second pair
of canonical variables is the Einstein-Rosen cylin-
drical radius and the energy flux. It is only the
third pair of canonical variables which carries the
«! dynamical degrees of freedom of the cylindrical
wave. The super-Hamiltonian and the supermomen-
tum are significantly simplified, if the Einstein-
Rosen time is used as a new canonical coordinate.
Even greater simplification is achieved by the intro-
duction of the Einstein-Rosen advanced and retard-
ed times as two of the canonical coordinates in

Sec. VIII. To prove that the formalism built for the
gravitational waves is isomorphic to a formalism
for the cylindrical massless scalar field in a Min-
kowskian spacetime, we interrupt the investigation
of the Einstein-Rosen waves and insert Sec. IX
dealing with the cylindrical scalar waves. Cylin-
drical-type curvilinear coordinates in Minkowskian
spacetime are introduced as supplementary canoni-
cal variables and the resulting “parametrized
formalism” is shown to be identical with the formal-
ism for the Einstein-Rosen waves. Fixing the sys-
tem of coordinates on the slices, but leaving the
slices themselves arbitrary, we reduce the para-
metrized formalism of Sec. IX to the half-para-
metrized formalism of Sec. X, In Sec. XI, cylin-
drical waves are quantized by the Dirac method.
The Dirac constraints are imposed on the state
functional. The supermomentum constraint im-

plies the invariance of the state functional under
the relabeling of the hypersurface. In Sec. XII,

the hypersurface is labeled by the Einstein-Rosen
cylindrical radius. In this half-parametrized
formalism of Sec. X, the super-Hamiltonian con-
straint turns out to be a functional differential
Schrédinger equation. If we know its solution, we
construct the solution of the super-Hamiltonian

and supermomentum constraints of the fully para-
metrized theory. However, the functional differ-
ential Schrddinger equation still represents an in-
finite set of equations, one equation for each value
of the radial coordinate. In Sec. XIII, we show that
these equations are mutually dependent, satisfying
an infinite number of integrability conditions., The
integrability conditions ensure that the evolution of
the state functional is path-independent and they
reduce the functional differential Schrddinger equa-
tion to a partial differential Schrédinger equation.
The formal solution of this single equation is writ-
ten down, expressing the state functional on an arbi-
trary slice by means of its initial value on an initial
slice. In Sec. XIV, the state functional is inter-
preted as the probability amplitude. The Schré-
dinger equation implies that the probability satis-
fies an equation of continuity. The inner product

of two state functionals that is left unchanged by
the deformation of the hypersurface is defined. In
Sec, XV, the realization of the extrinsic time rep-
resentation is discussed from the point of view of
the quantum theory of measurement. In Sec. XVI,
the coordinate conditions are imposed. They per-
mit only the slices of a constant Einstein-Rosen
time, labeled by the Einstein-Rosen cylindrical
radius. The Dirac formalism is then replaced by
the much simpler formalism of ADM. In Sec. XVII,
Table I shows the main steps followed in quantiz-
ing cylindrical gravitational waves.

Let us explain our notation. Greek indices run
through the values 0, 1, 2, 3, Latin indices through
the values 1, 2, 3. The spacetime metric has the
signature —, +, +, +. The spacetime quantities
bear the superscript 4, which distinguishes them
from the corresponding spatial quantities. E.g.,
4g'* denotes the spatial part of the contravariant
spacetime metric tensor, whereas g** denotes the
contravariant spatial metric tensor. The deter-
minant of g, is denoted by g, the Levi-Civita
pseudotensor by €,,,. Partial differentiation is de-
noted by a comma, covariant differentiation with
respect to the spatial metric by a stroke. The Rie-
mann tensor, the Ricci tensor, and the scalar cur-
vature are constructed from the affine connection
I',, according to the conventions

i i i n i n i
Rklm_rkm,l_rkl.m+r kmrnt"r ktrnm)

Rik=R’ilk’ R=R§ .
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The symbol £ is used for the Lie derivative.
Square brackets emphasize the dependence of func-
tionals on function variables. E.g., ¥[T(R), y(R)]
is a functional of two function arguments T(R) and
$(R), but 3(T(R)) is a function of T'(R) (a composite
function of R). We put 2/27=c=167G =1 (& is the
Planck constant, c is the velocity of light, and G

is the Newton gravitational constant).

II. LINE ELEMENTS WITH CYLINDRICAL
SYMMETRY

Cylindrical gravitational fields are characterized
by the existence of a two-parameter Abelian group
of motions *G, with two mutually orthogonal, hyper-
surface-orthogonal, spacelike Killing vectors 4§<‘¢)
and *£(,). It is assumed that the group of finite mo-
tions generated by 45(‘@ (“the translations along the
axis of symmetry”’) acts freely on space-time,
whereas the group of finite motions generated by
4, (“the rotations around the axis of symmetry”)
does not act freely.®
" There are still three classes of such fields pos-
sible, according to whether R ,, where

R=(4gf¢)4§(¢)g4§z(z) 4&(3);()1/2? (1)

is a spacelike, lightlike, or timelike vector.?® We
shall limit our discussion to the first class of cy-
lindrical waves, for which R , is a spacelike vector
everywhere. It is this class of cylindrical waves
that was originally investigated by Einstein and
Rosen.

It is well known that spacetime is cylindrically
symmetric if and only if there exists a coordinate
system t,7,¢,2, tE€ (~w,+w), ¥ €[0,»), ¢ €[0, 27),
2 € (=o0, +), in which the line element assumes the
form

ds®= —(N? - ¢’ "YN?)di? + 2N dtdr
+e? Y dr®+ R2eVdg? + &' dz?, (2)

where vy, R=0, ¢, and N,, N are functions of { and
7. The particular dependence of the five nonvanish-
ing coefficients g,;, &,,, £33, and g,;, &y, On these
five functions was tailored to suit the ADM canon-
ical formalism. Specifically, N is the lapse func-
tion, and N, is the radial shift function. We shall
rederive the line element (2) in Sec. VI, when re-
ducing the canonical formalism by the cylindrical
group of motions.

In the ¢, 7, ¢,z system of coordinates, the Killing
vectors have the components

4§(L<p) = (01 0’ l, 0) ’ 45%2) = (0, 07 05 1) .

The group *G, is therefore intransitive, its mini-
mal invariant varieties being two-dimensional cy-
lindrical surfaces t=const, »=const. Any hyper-
surface containing these two-dimensional cylindri-

cal surfaces is also an invariant variety. The re-
duction of the canonical formalism in Sec. VI is
based on using only such invariant hypersurfaces
t=t(r) as the allowed slices.

The coordinates ¢ and z in the line element (2)
are adapted to the cylindrical symmetry. We can
define them invariantly by means of the Killing
vectors. Indeed, in the {,7, ¢, z system of coordi-
nates it is easily checked that

@ =€) /€0 )i
Z,L=4§(Z)L/4EFZ) 4§(z)x .

Equations (3) provide the desired invariant charac-
terization of the two scalars ¢ and z. Two coeffi-
cients of the line element (2), namely R and ¥,
also have an invariant meaning, R being given by
Eq. (1), and ¥ by the formula

¢=ln(4§éz) 45(2)1.)- (4)

Equation (1) has a simple intuitive interpretation.
If we draw a two-dimensional cylindrical surface
t=const, 7 =const around the axis of symmetry,
and take its part between the “planes” z =z,
z=2,+1, the proper surface area of this part is
27R, i.e., the same as the proper surface area of
a cylindrical surface of radius R in a Euclidean
space.

The coordinates ¢ and z are fixed up to the trivial
transformation ¢ - +¢ +¢,, z- az +z,. On the other
hand, the coordinates f and 7 can be subject to an
arbitrary transformation

t~T=t(t,7), r=7=7(t7) (5)

®3)

without changing the general form of the line ele-
ment (2). This is precisely the minimum flexibil -
ity we desire for a model to which the Dirac quan-
tization is to be applied in a nontrivial way.

The transformations (5) are frequently used to
simplify further the general form (2) of the line
element.;. Because the metric coefficients depend
only on ¢ and 7, we can cast the ¢, » part of the
line element into a conformally flat form,

dst=eV "V (~dF2+d7?) +R2e™Vd p?+ e’ d2? . (6)

We have written here R and ¥ instead of R and ¥,
because we already know from Eqs. (1) and (4) that
R and ¥ behave as scalars. Let us also note that
the spacetime metric is simplified, the shift func-
tion N, being transformed away and the lapse func-
tion N being correlated with the spatial metric. On
the other hand, the general form of the spatial
metric is left unaffected.

The new coordinates 7,7 have an invariant mean-
ing which is best described in geometrical terms.
Because g,, = —g,, for the line element (6), the light
signal emitted perpendicularly to the axis of sym-
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metry travels with the unit velocity. Let us there-
fore write an eikonal equation for the light front &
in an arbitrary system of coordinates

8%, =0, M

and assume that the light front has the cylindrical
symmetry,

()@, =%(®,=0. (8)

Equations (7) and (8) have two independent solutions,
&V and &?. If we choose these two solutions as
the advanced and the retarded time variables,

)

the coordinates 7 and 7 bring the line element (2) to
the form (6). Equations (7)-(9) therefore give an
invariant definition of 7 and 7.

This system of coordinates is, of course, still
not unique, because the solutions ' and &® of
Eqgs. (7) and (8) are not unique; if ® is a solution of
Eqgs. (7) and (8), an arbitrary function G(®) is also
a solution of Egs. (7) and (8). Let us therefore
pick out two arbitrary functions G'*)(F +7) and
G (T -7), and take them as the new advanced and
retarded coordinates, i.e., let us put either

T+7=GOF+7) (10)
or

t37=GA({T+7). (11)

The system of coordinates ,7, in which the line
element assumes the form (6), is arbitrary exactly

up to the transformations (10) and (11). We can
easily check that by virtue of Eq. (10),

1;=P;, =7z, (12)
and by virtue of Eq. (11),

Li=Fz, Ls=-7;, (13)

so that in both cases 7 and # are harmonic functions
of ¢ and 7,

=0, (14)
=0. (15)

Having a function 7 that satisfies Eq. (14), we can
always choose it for a new radial coordinate, pro-
vided 7 , is a spacelike vector. By solving Egs. (12)
or (13), we find the time coordinate ¢ correspond-
ing to 7. Equation (14) ensures that this is always
possible because it is the integrability condition of
the system of Eqs. (12) or (13).
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II. THE EINSTEIN-ROSEN WAVES

In this section, we want to recall the familiar
properties of the Einstein-Rosen waves, before

rederiving them from the canonical formalism.
Until now, no use was made of the Einstein vacuum
field equations. If they are written for the line ele-
ment (6), one of their immediate consequences is
that R must be a harmonic function, Ri;-R;7=0.
Assuming R , is a spacelike vector, we can choose
R as the new radial coordinate and, integrating
Egs. (12) or (13), find the time coordinate T corre-
sponding to R. By picking out the Einstein-Rosen
coordinates T and R, we have removed the last
ambiguity remaining in the choice of the “isother-
mal” coordinate system Z,7. The Einstein-Rosen
coordinates can be uniquely defined by invariant
prescriptions. Moreover, the remaining Einstein
vacuum equations assume a very convenient form
in the Einstein-Rosen coordinate system. Writing
the line element (6) in these coordinates as

ds?=e" ™Y(-dT? + dR?) + R?e~"dp? + ¢¥ dz? (16)

the Einstein vacuum equations reduce to a set of
three equations

d),TT—w,RR"R-lzp,R:os )
F.R=§R(¢,T2+¢,Rz), (18)
T =Ry ¢ (19)

for two functions y(7,R) and I'(T,R). This set of
equations has a very remarkable structure. Equa-
tion (17) looks exactly like the ordinary wave equa-
tion for the cylindrically symmetric massless sca-
lar field ¢ propagating on a Minkowskian spacetime
background. Moreover, if we determine the energy
density of this field in the cylindrical coordinates,
we get the expression on the right-hand side of
Eq. (18), and if we determine the radial energy
current density (or the radial momentum density),
we get the expression on the right-hand side of
Eq. (19). These densities are generated by differ-
entiating a single function I" with respect to the
space and time coordinates, respectively. The
law of conservation of energy is the integrability
condition of the system of equations (18), (19),
this integrability condition being satisfied by virtue
of Eq. (17). The function I is therefore an energy
superpotential. Because of this analogy with the
scalar field in the Minkowskian spacetime, we
shall call expression (18) the energy density and
expression (19) the energy current density of the
gravitational wave. These densities are identical
with the C-energy densities introduced by Thorne.”
We shall deal in the following with a pure radia-
tion field without sources on the axis of symmetry.
The spatial geometry must be therefore locally
Euclidean on the axis, i.e., the proper circumfer-
ence of a small circle R=const, T =const, z=const
must be the 27 multiple of its proper radius. This
leads to the condition
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I(T,0)=0. (20)

Differentiating Eq. (20) with respect to 7, we see
that no energy can be absorbed or emitted on the
axis and the energy current must vanish as R—0,

RY ¢ =0 as R-0.

We also assume that ¢ , and ¥ g fall off sufficiently
rapidly at infinity,

zP,T=0(R-1) , V.= o(R™),

in order that
(T, =)= [ dRRW, 1 +9, )
0

remains finite. We can interpret 27I(T, «) as the
total energy of the field contained between two par-
allel “planes” z=2, and 2=2z,+1. Because

RY ¥, g=0(R™"), this energy remains constant:

2nL(T, ©) =27T,, =const.

If we keep T fixed and let R approach infinity, ¥
approaches a constant value. The space-time is
therefore locally Euclidean at spatial infinity. By
rescaling z, we can even arrange to have -0, so
that the proper distances along the z lines coincide
with the differences of z at spatial infinity. How-
ever, the spacetime is not globally Euclidean.

The rate with which the proper circumference of
the circle R=const, T =const, z=const increases
with its proper radius is not equal to 27, but to
27exp(-3T.). The constant I',, thus characterizes
the conicality of space at spatial infinity.

The Einstein-Rosen form (16) of the line element
is the best one for solving the Einstein field equa-
tions. On the other hand, the canonical formalism
is naturally started from the general form (2). It
is easy to return from (16) to (2), if we reintroduce
the arbitrary coordinates £, 7 instead of the privi-
leged Einstein-Rosen coordinates T, R,

t=t(T,R), T=T(,r),
r=7(T,R), R=R(t,R).

1)

However, there are certain restrictions on the
transformation (21). At first, we want ¢ to be a
timelike and 7 a spacelike coordinate. For this it
is necessary that

R2>T'2, T2 >R?, (22)

Here, and in the following, a prime denotes differ-
entiation with respect to a general radial coordinate
7, and a dot denotes differentiation with respect to
a general time coordinate {. Further, we want »

to increase monotonically as we go away from the
axis of symmetry towards infinity and the Einstein-
Rosen time to increase monotonically as we pro-
ceed along a ¢ line:

R'>0, T>0. (23)

We also require that a hypersurface of constant
¢t time have no conical singularity on the axis of
symmetry. This means that no cusp can appear in
the parametric equations (21) of this hypersurface
on the line 7=0:

T'-~0 for r-0. (24) -

We already know that under our conditions on ¥

- the spacetime geometry becomes asymptotically

flat (though conical) far away from the axis. There-
fore, whatever our system of coordinates is in the
interior region, it is natural to require that it go
over to an “asymptotically cylindrical” system of
coordinates as »—- o, i.e.,

t-=T, =R for 7=, (25)

The hypersurface of constant { is therefore labeled
by the value that T has on it at infinity. If we ap-
proach the axis, the spacetime becomes again lo-
cally Minkowskian. We already saw that the hyper-
surface of constant { must touch there the “plane”

T =const, in order to eliminate the conical singu-
larity in the spatial geometry [(condition (24)]. Now
we require in addition that the radial coordinate 7»
coincide with the Euclidean coordinate R also near
the axis,

r=R for r-0. (26)

Finally, we introduce the condition that our system
of coordinates straighten itself into the Einstein-
Rosen system of coordinates in the remote past
and the remote future,

t-T, =R for t—+w. 27)

Our boundary conditions are conveniently sum-
marized in a schematic picture (Fig. 1). The rea-
sons why we impose them will become clearer in
Secs. VII and IX. Briefly, they justify the dropping
of various boundary terms appearing in a canonical
transformation from the intrinsic metric represen-
tation to the extrinsic time representation.

We are now in a position to write down the trans-
formation equations from the Einstein-Rosen line
element (16) to the general line element (2). We
saw that R and ¥ behave under this transformation
as scalars. On the other hand,

T-y=T+InR?-T"2), (28)
and the lapse and shift functions are given by
N=.e§(F-W)(7'~R/ _TIk)(RIZ_TIZ)-I/Z’ (29)

N,=e™(R'R -T'T). (30)

Let us note that y is real because of the condi-
tions (22). Moreover,
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FIG. 1. The allowed slices and systems of coordinates
for the Einstein~Rosen waves. The Einstein-Rosen co-
ordinates are treated as Minkowskian coordinates. The
slices ¢ =const pass over to the T planes near the axis
of symmetry, at spatial infinity, in the remote past and
in the remote future. The radial label  coincides with
R in these regions. The hypersurfacest =const are
spacelike and the lines » =const are timelike. The mono-
tonic increase =0, R’ =0 is assumed. The boundary
conditions work in the marginal regions, the coordinate
system is arbitrary in the central region. Note that the
“plane” character of the slices ¢ =const in the remote
past, remote future, and at spatial infinity in our diagram
does not imply that there are no gravitational waves there.
The ¥ function may still cause ripples in the intrinsic
geometries of these ‘planes.”

r=R=const. |\/f=T=const.

N\
AN AN
R

y(t,0)=0, (31)
by virtue of Egs. (20), (24), and (26). At infinity,
y(t,©)=T, =const (32)

because of the condition (25). The lower case vy is
therefore subject to the same boundary conditions
as the capital I'. Of course, i is subject to the
same boundary conditions in the general coordinates
as inthe Einstein-Rosen coordinates,

.

=0, yY=o(r™),
7y’ =0 for r=0. (33)

Y =0(r-1) for r—eo,

The lapse and shift functions also behave as expect-
ed. The lapse function (29) is real and positive,
because Eqgs. (22) and (23) imply TR’ >T'R. The
shift function (30) vanishes on the axis of symmetry
and at infinity, by virtue of Eqs. (24), (26), and
(25).
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IV. THE CANONICAL FORMALISM

ADM found an elegant way to cast the Einstein
field equations into canonical form.* Their proce-
dure starts by splitting the metric tensor ‘g, into
the spatial metric tensor g;,, the lapse function
N, and the shift functions N; according to the sche-
ma

4g k=

’

-N%2+g'™N,N,,, N, ‘
M y  &inl

(34)
N=(-%g*)"2  N;=gy.

If certain divergences are discarded in the gravi-
tational Lagrangian density ‘R(~%g)/2, the action
functional S can be brought into the form

s=f dtfd3xNg‘/2(K,~kK"‘—K2+R). (35)
Here, K, is the extrinsic curvature 'of the space-
like hypersurface ¢ =const,

Ki=2N "H=gu o+ Ny +Ny) . (36)

By varying (35) with respect to gy, ,, the canonical
momenta 7** conjugate to g;, are obtained,

,n.ik=_g1/2(Kik _Kgik). (37)
The action functional is then converted to the
Hamiltonian form

S=fdtfdax (1" 1a o = NI = N;3C) (38)

with the super-Hamiltonian 3¢ and the supermomen-
tum 3¢ expressed as functions of the canonical vari-
ables g;, and 7%,

sc= g "M (myn' - 31%) - g VPR, (39)
get= 2t = —2m* | —g*(285, p — g, DT (40)

The variation of the action functional (38) with re-
spect to the lapse and shift functions gives the ini-
tial value equations

3€=0, 3=0. (41)
The remaining Einstein vacuum equations are ob-

tained by varying the action functional with respect
to the dynamical variables g;, and 7%,

OH OH
gik.o=_5ﬁ ’ 77“2,0= —E ’ (42)
HEf d3x (N3C+N,3C') . (43)

In the Hamiltonian formalism, g;, and 7'* are
understood as independent variables given on a
spacelike hypersurface {=const. However, as a
consequence of the dynamical principle 6S=0,
these variables are subject to the constraints (41).
If we know g;, and 7'* satisfying these constraints
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on the initial hypersurface ¢, and want to know g;,
and 7% on the neighboring hypersurface ¢+ 8¢, we
must first locate the new hypersurface with respect
to the initial hypersurface, and choose a system of
spatial coordinates on it. This is done by prescrib-
ing the lapse function N and shift functions N;. We
are completely free to do this, because the lapse
and shift functions are not determined by the field
equations. The lapse function gives the proper-
time separation 6T(x"‘) between the neighboring
hypersurfaces ¢ and ¢+ 6¢ measured in the normal
direction to the first hypersurface,

o7(x*)=N(x*)6t.

The shift functions N; determine how the spatial

5,”1): - 5071”2 +[(1T“sz) m = ,n,ime m = ,n,kmNi |m] ot ,

system of coordinates on the hypersurface ¢+ 6¢

is shifted with respect to the spatial system of
coordinates on the hypersurface ¢{. If the normal to
the first hypersurface drawn at the point with the
coordinates x* intersects the second hypersurface
at the point with the coordinates x* + 6x*, then

oxt=~N*(x*)6t.

Once the lapse and shift functions are prescribed,
the dynamical variables g;,= g, + Gg,-k and
7% = 7** + 67'* on the hypersurface ¢ = ¢+ 6¢ are ob-
tained from the Hamilton equations (42),?!
081r =00 &Zix+ (Nilk +Nk|i)5t ,
-1/2 1 (44)
0 8ix=2Ng (7ip — 278 4) 01,

(45)

81 =[ ~Ng V/2(R™ — $Rg **) + Ng ~V/ 2g *(m,,,1'™ — §m%) ~2Ng T/ 2(ni 7%, — sun') + g VR N | Fg )]t

If the old variables g;,, m'* satisfy the constraints
(41) on the hypersurface ¢, the new variables

Ziet 0Zins 7**+ 67'* satisfy these constraints on the
hypersurface ¢+ 6t. Equation (44) is the inversion
of Egs. (36) and (37).

The change 0g;, or om** of the dynamical variables
consists of two parts. The first part, ,g;, or
6,7, is independent of the shift functions. The
second part contains the shift functions and vanish-
es if the shift functions vanish. Without changing
the first part, we can easily eliminate the second
part by making the transformation of coordinates

xi-x't=xt _N'6t

on the hypersurface ¢+ 8f. This trick, equivalent to
putting N, =0, simplifies many proofs. If we want
to verify an equation which is covariant with respect
to the spatial transformations and contains the
quantities 6g;, and O6n'®, it is sufficient to verify the
corresponding equation for the quantities §,g;, and
6,m'*. We shall use this simplification in the Appen-
dix.

The formalism explained so far is common to the
ADM and the Dirac methods. However, ADM pro-
ceed further to fix the coordinate labels ¢ and x,
i.e., to fix the slicing and the spatial system of
coordinates. In effect, ADM choose four function-
als T(t, x*) and X'(¢, x*) of the dynamical variables
&, T, depending on { and x* as parameters, and

find the canonical transformation
gik,"m"Tyxiyﬂr)ﬂxt;gA:ﬂA’ A=1’2 (46)

after which T and X* play the role of new canonical
coordinates,

S=fdtfd3x(11,.i‘+7rxi5(‘ +74g, - N3C-N3C). (47)

Further, they solve the four initial value equations
(41) explicitly for the four canonical momenta 7,,
‘”X‘y

7TT = WT(gAr TIA; T)Xi) ’

Tyi=Tyi(g4, ”A§ T,Xi) ’

and substitute these solutions into the action func-
tional (47). In this way, the terms containing the
lapse and shift functions disappear. Finally, they
impose four coordinate conditions
T= T(t; xh)|t =2',xk=xk ’
iy (48)
X=X (t; xk) It =T, xk=x%,
meaning that the functionals T and X* are used as
the privileged coordinate labels. After all these
operations, the action functional (47) assumes the
form

S‘dedeX [7%g4 T "GEADM(T’Xi;gA’ ™)), (49)

in which 3, py = -7, represents the true Hamilton-
ian densii_:sr, and g,, 7* represent the true dynam-
ical variables. The transition to the quantum theo-
ry is then straightforward. The dynamical vari-
ables g,, 7 are replaced by operators satisfying
the commutation relations

[ga(xX'), 7B (X")] =658 6(X* —XP).
If we decide to work in the Schrddinger picture and
the g, representation, the state of the gravitational

field is described by a functional ¥,py of g4, satis-
fying the Schrddinger equation

9%, py
] ——=="=H
o7~ Haom¥apm,

Hapm EdeX Kapm- (50)
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The Dirac method of quantization is more direct.
No coordinate conditions are imposed, the slicing
and the spatial coordinates being left completely
arbitrary. The dynamical variables g;,, 7'* are
replaced by operators satisfying the commutation
relations

[gun(x"™) , 7' ™(x")] = 3(0}0F + 67'6,)0(x" = £ 7).

If we decide to work in the “metric representation,”
the state of the gravitational field is described by

a functional ¥ of the metric g;,. The super-Hamil-
tonian and the supermomentum become operators
and the initial value equations are imposed as con-
straints on the state functional:

¥ =0, 3¥=0. (51)

Of course, other representations may be used in-
stead of the metric representation. In particular,
we can perform the canonical transformation (46),
and decide to work in the T, X*, g, representation.
The relation between the ADM state functional ¥,y
and the Dirac state functional ¥ then becomes ap-
parent:

\I’[T(xk), X‘(xk)’gA(xk)] IT(xk)=T = const ;Xi(xk) =yt

=¥ pM T, g4 (X5)].
(52)

The two methods are equivalent, but the Dirac
method asks a broader set of questions. In the
ADM method, we want to know the state of the
gravitational field on a privileged but limited fam-
ily of slices; in the Dirac method, we want to know
the state of the gravitational field on an arbitrary
slice.

V. MINI-SUPERSPACE, MINI-PHASE-SPACE, AND
THE REDUCED CANONICAL FORMALISM

The configuration space of geometrodynamics is
superspace: the set of all possible three -dimen-
sional geometries. In the canonical formalism,
we deal also with the geometrodynamical phase
space. A point of the phase space is the class of
couples g;,, 7**; two couples belong to the same
class if they can be transformed into each other by
a three-dimensional diffeomorphism. The dynam-
ical evolution of geometry can start from an arbi-
trary initial geometry in superspace. On the other
hand, the geometrodynamical momentum is re-
stricted by the initial value equations (41). The
dynamical trajectory in phase space is therefore
necessarily confined to the constraint hypersurface,
defined by the conditions (41).

Nobody knows how to find the general solution of
the Einstein equations. All that we have today are
various particular solutions, or classes of such
solutions, characterized either by their symme-
tries or by other geometrical properties. Super-

space is a bewilderingly large dynamical arena for
such solutions; like animals adapted to their envi-
ronment, they tend to keep themselves only in cer-
tain limited regions of superspace which are favor-
able to their geometrical properties. The same
tendency can be observed also in the phase space;
the symmetric solutions are to be found only in
certain limited regions of the constraint hypersur-
face. It seems a real waste of energy to apply the
formidable canonical formalism of the full geomet-
rodynamics to such classes of solutions; one is
tempted to think that a limited dynamical arena
and the canonical formalism restricted to such a
limited arena should suffice.

DeWitt and Misner found such limited arenas and
restricted canonical formalisms for the specific
problems they investigated - for the Friedmann
universe and the mixmaster universe, respective-
ly.3*® Misner invented the term “mini-superspace”
to describe the limited region of superspace in
which the dynamics takes place. The prefix “mini”
emphasizes the drastic character of the reduction
—out of the infinitely many degrees of freedom of
the gravitational field, only a finite number are
left. The reduction is based on the groups of mo-
tions of the investigated solutions. If we spell out
the general outline of such a reduction —as we shall
do later in this section — we find that the two reduc-
tions investigated by DeWitt and Misner are in fact
very special. Their exclusiveness rests in the fol-
lowing: The minimal invariant varieties of the re-
spective groups of motions are three-dimensional
hypersurfaces fitted into a one-parameter family.

~ The family provides a privileged slicing of space-

time, which is used in the reduced formalism.,
This simplifies the formalism enormously. But
the very same simplification makes it impossible
to illustrate certain aspects of the Dirac and the
ADM methods within the DeWitt and Misner mini-
superspaces. In fact, one of the most conspicuous
features of the Dirac method is that no unique slic-
ing of spacetime is given, every spacelike hyper-
surface being admissible. The Dirac formalism
was invented just to cope with this general situa-
tion. A special slicing of spacetime is picked out
in the ADM method, but it is picked out by arbi -
trarily imposed coordinate conditions, not by the
symmetry of the problem. In the mini-superspaces
mentioned so far the distinction between the Dirac
and the ADM approaches is blurred out, the two
approaches becoming virtually identical.

The most important motive for investigating var-
ious mini-superspaces is the belief that some char-
acteristic features of quantum geometrodynamics
are exhibited even by these extremely special (and
therefore tractable) models. However, the more
specialized the model we investigate, the less jus-
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tified this belief appears to be. It is therefore im-
portant to investigate mini-superspaces of ever in-
creasing generality. The mini-superspace corre-
sponding to the cylindrical gravitational wave is a
natural step in this program. In contradistinction
to the symmetry groups of the Friedmann universe
or the mixmaster universe, the minimal invariant
varieties of the cylindrical wave are fwo-dimen-
sional spatial surfaces. Any spacelike hypersur-
face containing these minimal invariant varieties
is an admissible slice of the restricted canonical
formalism. There are therefore many more slices
than can be fitted into a one-parameter family, and
the distinction between the Dirac and the ADM
methods becomes nontrivial. Moreover, the cylin-
drical symmetry does not restrict the dynamical
degrees of freedom on the admissible slices so
radically as the groups of motions of the two pre-
vious models. . Because of homogeneity, only a fi-
nite number of degrees of freedom is left in the
Friedmann and in the mixmaster universe. The
cylindrical wave is not homogeneous, and possesses
o! degrees of freedom, described by one real func-
tion ¥ (R). The corresponding mini-superspace is
therefore much richer than the mini-superspaces
of DeWitt and Misner. One is almost tempted to
borrow once more a term from the world of fash-
ion, and call it “midi-superspace.” It is still not
the full-length imperial robe that general geomet-
rodynamics wears, but it certainly uses more fab-
ric than the more youthful models. Curiously
enough, truth is better revealed dressed than na-
ked in geometrodynamics.

The Friedmann universe as treated by DeWitt,
the mixmaster universe as treated by Misner, and
the cylindrical gravitational wave as treated in this
paper are all examples of the same general proce-
dure. This procedure reduces the geometrodynam-
ical phase space by allowing only such slices which
respect the symmetry of spacetime. The intrinsic
geometry and the extrinsic curvature of such slices
are then symmetric, and also the lapse function
between two neighboring slices is symmetric. This
imposes a set of conditions on the dynamical vari-
ables g;, and 7**, If spacetime possesses reflection
symmetries in addition to motions, the dynamical
variables satisfy yet another set of conditions. All
conditions share an important feature: They no
longer explicitly refer to the imbedding spacetime.
We can therefore forget that they were derived by
using the four-dimensional picture. All we have to
do is to accept them as definitions of our mini-
superspace and the corresponding mini-phase-
space. ,

What does it mean that a slice respects a space-
time symmetry? We always start with spacetime
which admits an intransitive 7 -parameter group of

o>

motions *G, with spacelike Killing vectors % (y»
A=1,2,..., 7. The minimal invariant variety of
such a group is spacelike. We allow only such
spatial slices which contain this minimal invariant
variety and are therefore invariant varieties of the
group. The Killing vectors *¢,, are tangential to
the slices and can be represented as three-dimen-
sional vectors £f,, intrinsic to the slices. The
vectors ng) generate a group G,, which is said to
be induced by the group *G,. If there exist rela-
tions

é% c¥ety=0, ¢“=const

between the Killing vectors 5&)‘ on the slices, the

dimension s of the group G, is smaller than the

dimension 7 of the group *G,; otherwise, s=7.
By virtue of the spacetime symmetries

By, tEw=0, (53)

the dynamical variables g;, and 7** on the allowed
slices have the induced symmetries

£ely Enn=0, (54)
£e1, T=0, (55)

and also the lapse function between the neighboring
slices is symmetric,

£, N =0, (56)

An easy way to check Egs. (54)-(56) is to choose
a system of coordinates in which a one-parameter
family of allowed slices is taken as the family of
hypersurfaces of constant time. In this system,

0= (0, £y, (57
and Eq. (53) splits into the three equations

Lty &nn=0,

Ll Nut Enna)0=0 (58)

£§2A) &oo+ 2N,E4y,0=0.

The first of them coincides with Eq. (54) which we
wanted to prove. Equations (55) and (56) are simple
consequences of Eqs. (58), if we recall the defini-
tions (36), (37), and (34) of the momenta 7** and
the lapse function N.

As already mentioned, the dynamical variables
are further restricted if the spacetime has re-
flection symmetries in hypersurfaces orthogonal
to some of the Killing vectors. The Killing vector
4t is hypersurface-orthogonal and the spacetime
metric has the reflection symmetry, if
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4etrAp 4€K4£)\,“=0, (59)

To derive the restrictions, we can again use the
coordinate system in which Eq. (57) holds. The
covariant components of %"’ are

%, =(NE, &)
and Eq. (59) splits into two sets:

et =0 (60)
and

g[8, o - (N;‘é')|,,]+N;€'€,|k}=0, (61)

corresponding to the choice ¢t =0 and v =¢. We take
now the second equation of the system (58), and
rearrange it by means of the definition (36) of the
extrinsic curvature into the form

Euo— (ngl)]k = ‘ZN-legl -2N,¢ 'S

Substituting the last equation into Eq. (61), we ,
obtain

eiikngmgl = 0' (62)

Returning to the definition (37) of the momenta, we
see that they satisfy essentially the same equation
as the extrinsic curvature, namely,

€8T =0, (63)

Equations (62) and (63) are the additional restric-
tions imposed on the dynamical variables by the
reflection symmetries. .

Conditions (62) and (63) can be formulated yet in
a slightly different way. According to Eq. (62), the
vector product of the vectors £ and K& vanishes.
These two vectors are therefore collinear,

kagl = agk, a= (gmgm) —lkagk‘Ely (64)

which means that £, is an eigenvector of K,,. Simi-
larly, Eq. (63) implies that £, is an eigenvector of

.n.hl,

7"”51 =ﬂ§k’ .ﬁ= (gmgm) _lﬂklgkgz' (65)

The spatial metric g;, and the geometrodynamical
momentum 7'* of the allowed slices are therefore
restricted by conditions (54), (60) and (55), (63).
Following our program, we take these restrictions
as definitions of the mini-phase-space, and the
first set of them, Egs. (54), (60), as definitions of
the mini-superspace. Let us describe their
meaning in this new language, avoiding the notion
of the imbedding spacetime.

Equation (54) tells us that from all geometries
only those having the symmetries generated by the
Killing vectors &{,, are allowed. Equation (60)
means that some of the Killing vectors are surface-
orthogonal, so that the spatial geometries have
additional reflection symmetries. Fischer, analy-
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zing the topological structure of superspace, came
to the conclusion that the neighborhood of symme-
tric geometries in superspace has a different
structure than the neighborhood of general geome-
tries. He decomposed superspace into a system

of manifolds of geometries, the strata, in such a
way that the geometries of high symmetry are
completely contained in the boundary of geometries
of lower symmetry.?? Our mini-superspace is
therefore a union of Fischer’s strata.

The restrictions (55) and (63) on phase space go
hand in glove with the restrictions (54) and (60) on
superspace. We wish the geometry to remain in
mini-superspace throughout its dynamical evolu-
tion. The momenta must have the symmetries (55)
and (63) to preserve the symmetries of the geome-
try. However, the symmetries of the momenta are
insufficient to do the job alone. It is easy to see
the reason, if we return for a while to the space-
time language. The symmetries could not be main-
tained if we decided to cut the next slice across
the symmetrical spacetime in an arbitrary manner,
disregarding the symmetries., How do we know
that the next slice is a good one if the spacetime .
through which this slice is to be cut is not yet con-
structed, but is only to be built up step by step in
the process of integrating the Hamilton equations?
The answer is that we must proceed from one slice
to the next in such a way that the proper time be-
tween the two slices measured in the direction nor-
mal to the first slice has the same value in all
points of the slice that are equivalent under the
group of motions G,. The proper time between the
two slices is proportional to the lapse function.

We are thus led to the condition (56), which en-
sures that the symmetry will not be broken be-
cause of a bad choice of slicing.

While the symmetry (56) of the lapse function is
necessary to keep the dynamical trajectory within
the mini-superspace, no symmetry requirements
are imposed on the shift functions. This is intu-
itively clear because the N, fix only the spatial
system of coordinates on a new hypersurface and
have nothing to do with its intrinsic symmetries.

Let us present the same argument, but in dif-
ferent wording. Equations (36) and (37) defining
the momenta 7* in terms of the velocities g;, ,
cannot be inverted to express the velocities by
means of the momenta alone. There are always
lapse and shift functions present in the inverse
formula (44). As explained, the shift functions can
be eliminated by a transformation of the spatial
system of coordinates. On the other hand, the
lapse function occurs in the geometrodynamical
velocity 8,g;,/6¢ as a multiplicative factor. The
symmetry (56) of the lapse function is therefore
necessary in addition to the symmetries (55) and
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(63) of the momenta to make the geometrodynami-
cal velocity symmetric, i.e., to make it tangential
to mini-superspace as embedded in superspace.

There is still some question whether momenta
may not lose their symmetries (55) and (63) a
little while later and then push the geometry out of
the mini-superspace. To safeguard ourselves
against this chance, we prove in the Appendix the
following basic theorem: If the dynamical varia-
bles g;, and 7* satisfy the conditions (54), (60),
(55), and (63) on the initial hypersurface #, and if
we pass to the new hypersurface by specifying a
symmetric lapse function (56), then the dynamical
variables g, and #** given on { by the solutions
(44), (45) of the Hamilton equations satisfy again
the conditions (54), (60), (55), and (65) for any
choice of the shift functions. This means that un-
der the slicing (56) the whole dynamical trajectory
lies in the mini-phase-space, if its initial point
lies there.

The Killing equations (54) and the conditions of
surface orthogonality (60) reduce the number of
independent canonical coordinates. The best way
to get rid of the surplus variables is to choose a
standard®® system of space coordinates x' reflect-
ing the symmetries. In it, the canonical coordi-
nates g;,(x') are expressed as functions of inde-
pendent quantities g,,

&in=8in(84)- (66)

In general, the g, do not depend on certain of the
coordinates x’, and their number is less than the
number of algebraically independent components
of the metric tensor g;,, i.e., less than six.

Of course, we require that the standard system
of coordinates be introduced on each allowable
hypersurface. Passing from one hypersurface to
another during the dynamical evolution of geome-
try, we must adjust the shift functions in such a
way that they preserve the standard system of
coordinates, This subjects them to the restric-
tions of symmetry

£§2A)Nk=0’ (67)
and also to the restriction
Nigi = O, (68)

if the vector & is surface-orthogonal.

Equations (55) and (63) reduce the number of
independent canonical momenta ‘% in the same
way as Eqs. (54) and (60) reduce the number of
independent canonical coordinates. If we write
Eqgs. (55) and (63) in the standard system of coordi-
nates, the canonical momenta are expressible as
functions of some independent quantities 7,

T =g ,, 7). (69)

We do not exclude the possibility that these func-
tions depend also on g,. The main task is to
choose the new quantities 74 in such a way that the
variables g, and 74 are canonically conjugate.
This means that the action functional (38) ex-
pressed by means of the variables g, and 74 as-
sumes the canonical form

S=fdtfd3x [14g 4 0 = N3C(g,, T°) = N; 3¢ (g, 7).
(70)

The super -Hamiltonian € and the supermomentum
3¢t are of course symmetric by virtue of their con-
struction from the dynamcial variables g;, and 7'¥,

£§3A)3C=0, (71)

i_
£er, 5C =0, (72)
If a Killing vector £ is surface-orthogongl, it is
also orthogonal to the supermomentum 3¢,

5eiE, =0, (73)
We prove Eq. (73) by differentiating Eq. (65),

T+ ﬂikgi]k =Bs"+ BE k|k' (74)

Because of the symmetries (54) and (55) of the
metric and the momentum, we have

£apB=pt"=0. (75)

Equation (75) and the Killing equation eliminate
all the terms in Eq. (74) except the first one. By
the definition (40) of the supermomentum, we ob-
tain Eq. (73).

Equations (72) and (73) for the supermomentum
have their counterparts in Egs. (67) and (68) for the
shift functions, just as Eq. (71) for the super-
Hamiltonian has its counterpart in Eq. (56) for the
lapse function. The role of this correlation is
evident. In the standard system of coordinates,
the super -Hamiltonian 3¢ and the supermomentum
3¢ do not depend on certain of the coordinates x*
by virtue of the conditions (71) and (72). Equations
(56) and (67) ensure that also the lapse function N
and the shift functions N; do not depend on these
x* in the standard system of coordinates. The
action functional can then be easily integrated over
these coordinates. Also, by virtue of Eq. (73),
some components of the supermomentum 3 may
vanish in the standard system of coordinates. The
condition (68) ensures that the corresponding shift
functions also vanish in this system. This makes
the reduction of the canonical formalism self-
consistent.
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VI. EINSTEIN-ROSEN WAVES IN THE REDUCED
CANONICAL FORMALISM

In Sec. V, the general method of the reduction of
superspace by the spatial groups of motions was
developed. We shall see how this method works
for the two-parameter Abelian group of motions
*G, with two hypersurface-orthogonal, spacelike
Killing vectors *£,, “4(,, characterizing the
Einstein-Rosen wave.

Let us recall that this group is intransitive and
its minimal invariant varieties are the two-dimen-
sional cylindrical surfaces. Any spacelike hyper -
surface containing these cylindrical surfaces is an
allowed slice. In the Einstein-Rosen coordinates,
any hypersurface (7, R)=const [subject to the con-
ditions (22)-(27) discussed in Sec. III] represents
such a slice. The group *G, induces the Abelian
group G, with two mutually orthogonal, surface-
orthogonal Killing vectors £, and £}, on each of
the allowed slices. _

Let us begin by reducing the superspace by the
group G,. This means we impose the conditions
(54) and (60) with the Killing vectors £, and £, on
the metric. Conditions (54) and (60) eliminate a
number of the degrees of freedom of the gravita-
tional field. To uncover the remaining independent
degrees of freedom, we introduce a standard sys-
tem of coordinates. It is easy to prove that if £tis
a surface-orthogonal Killing vector, then £i/&,&%
is a gradient. Also, if £}, and £}, are two com-
muting (not necessarily surface-orthogonal) Killing
vectors, and Fis an arbitrary scalar invariant
under the motions generated by £f, and &,

Ea)F,.- = g(iz) F;=0, (76)‘

then Fe;,&f &5 is a gradient, Because the Killing
vectors &{, and £} of G, are both commuting and
surface-orthogonal, we have at our disposal three
functions 7, ¢, z defined by the equations

7 = Fentlytly, (77)

?,i=8@i/ Skl
(78)

zi=801/E 0y
If we choose these functions as the standard coor -

dinates x*=(7, ¢, z), we have
Y= (1’ 0, O)y ;= (0; 1,0), g;= (0,0,1),

Equations (78) determine the covariant components
of the Killing vectors, §,; and £ ,);, by means of
the components of the metric tensor in the stan-
dard system,

g((ﬂ)i = (0’ (g22)—1’ 0)7 g(g){ = (09 0; (g33)-1) . (79)

The contravariant components of these vectors are
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'quy): (gzz)-1(g12, g227 g32)’
Ely= (&™) (g", 8%, &%)
Substituting them into Eq. (77), we find that the

off-diagonal components of the metric tensor must
vanish,

gl=gB=g220,
Returning to the restrictions (54) and (60), we see
that Eqs. (60) are satisfied automatically as a con-
sequence of Egs. (78). On the other hand, the Kil-
ling equations (54) imply that the components of the
metric tensor do not depend on the coordinates ¢
and z. We can therefore write

gu=e"", g;,=R%, & =e?, (80)

812=813=823=0,
where v, R and § are three arbitrary functions of
the single coordinate ». In the dynamical theory,
they must satisfy the boundary conditions (25),
(26), (27), (31), and (33). The functions R and
can be given an invariant meaning by constructing
them from the Killing vectors,

R= (it bt n)''? (81)
IP:m(ggg)g(g),‘)- (82)

Equations (81) and (82) are the spatial counterparts
of Egs. (1) and (4).

The standard system of coordinates is not en-
tirely unique, While ¢ and z may be changed only
by the trivial transformations

P> Q=P+ @, Z—~Z=QzZ+Z,

the radial coordinate » can be gauged completely
arbitrarily,

r =7 =f"(7), (83)

without changing the general form of the metric
(80). This is due to an arbitrary invariant factor
F in the definition equation (7) for ». If » corre-
sponds to the choice F=1, then 7 corresponds to
the choice F=(f"(7))’. Under the transformation
(83), R(#) and y(») behave as scalars, whereas

y(#) =¥(@) =y(f (M))+ 2Inf ' (7). (84)
The three functions
(), R(»), ¥(7) (85)

of one real variable 7 €[0, «) specify completely
the cylindrically symmetric geometry (80) and can
be thought of as the coordinates of a point in a
mini-superspace, with the understanding that the
functions (85) and the functions

y(F(M+2Inf'(»), R(F(M), Wf(7), (86)

where f(7) is an arbitrary function of 7, represent
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the same point.

To preserve the symmetry of the slicing and the
standard system of coordinates, the condition (56)
on the lapse function, and the conditions (67) and
(68) on the shift functions are imposed. If we write
them in the standard system of coordinates, Egs.
(56) imply that the lapse function does not depend
on ¢ and z, Eqs. (67) imply that the shift functions
do not depend on ¢ and z, and Egs. (68) imply that
the azimuthal and axial shift functions N, and N,
vanish. In short,

N=N(), N;=((),0,0). 87

Equations (87) together with the form of the re-

duced metric (80) bring us back, through the de-
composition (34) of the spacetime metric, to the
starting form (2) of the cylindrically symmetric

spacetime line element,

The next task is the reduction of the geometro-
dynamical phase space. This is accomplished by
writing down the reduction equations (55) and (63)
for the momenta 7* in the standard system of
coordinates. Equations (55) imply that the momen-
ta do not depend on ¢ and z, and Eqs, (63) imply
that the off-diagonal components of the momentum
tensor density 7** vanish,

7T11 = ,”11(7.)’ 7'.22 = ,”22(,',)’ 7.’.33 - ”38(1,)’

(88)
T2=qi3= 2820,

It remains to express the diagonal components of
the momentum tensor density by the three quanti-
ties m,, mg, and m, canonically conjugate to the
three functions y, R, and ¢ specifying the metric.
The prescription

2

- 1
™ =me’™?, 7% =3Rmge?,

33 L - (89)
w3 = (ny+ sRmg+ Trw)e
achieves this aim, bringing the expression nt*g;,
to the canonical form 7,7 + 7R +m .

As already remarked, the standard system of
coordinates is arbitrary up to the gauge transfor-
mation (84) of the radial coordinate . From the
fact that 7** transforms as a tensor density of
weight 1 we can deduce the transformation proper-
ties of the momenta 7, g, 7,. In contradistinc-
tion to the transformation properties of the varia-
bles v, R, ¢ themselves, the transformation prop-
erties of the momenta are uniform:

1 (V) =7 (P =f' (Pw f (7)),
TR(7) =T () =f' (P)r (£ (7)), (90)

7y (1) =Ty (7) = (P (f (7).

We can now think of the six functions

[

Y ('}’), R(7), ¥ 7);

T(7), wR(7), m(7) @)

of one real variable # €[0, ») as the coordinates of
a point in a mini-phase-space, with the understand-
ing that the functions (91) and the functions

y(f(M)+2Inf'(7), R(f(7), Wf("); 02)

F'Naff(7), fralf(), f'(Pmf(),

where f(7) is an arbitrary function of 7, represent
the same point. .

To complete the reduction of the canonical for-
malism, we must express the super -Hamiltonian
3C and the supermomentum 3¢ as functions of the
canonical variables. This is done by brute force,
substituting the reduced metric (80) and the re-
duced momentum density (89) into the definitions
(39) and (40). We obtain

¥C= e%(‘l’-)’)(_n-y”R_,_ %R-lﬂwz+ 2R" —y'R’ + '%RIP'Z),
(93)
¥t =e?N(=2m, +y'm + R'np+P'm),

94
¥ =3%=0, (04)

In accordance with Eqs, (71) and (72), the super-
Hamiltonian J€ and the supermomentum 3¢ do not
depend on the coordinates ¢ and z, and in accor-
dance with Eqs. (73), the azimuthal and the axial
components of the supermomentum vanish, This
is in tune with the form (87) of the lapse and shift
functions, There is a slight difficulty with the
action functional (70), because the total action be-
comes infinite when integrating over z, We must
limit the integration by two “planes, ” z=z, and
z=2z,+1, which are at a unit distance apart at in-
finity. Performing the integrations over ¢ and z,
we get the action in the form

S=21 f at f dr (1,3 + 1R + 1= N3C = N,3E).
-0 0
(95)

There is yet one minor but convenient trick by
which the action functional (95) can be simplified.
We can get rid of the exponential factors in the ex-
pressions (93) and (94) for 3C and 3¢*, if we rescale
the super -Hamiltonian and the supermomentum
and at the same time rescale the lapse and the

shift functions,
fo=et0-0ge, § =el6-ny,
- ~ (96)
3t =e’v3et, N,=e''N,.

It is easy to check that the action functional
S= an dtf dr(nyy +w R +m ) - N - NR),
-0 0 p
(97)
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in whichy, R, y, m,, mg, m, and N, ﬁl are varied
as independent variables, leads to the same Ham-
ilton equations as the action functional (95), pri-
marily by virtue of the initial value equations.

VII. THE EXTRINSIC TIME AS A
CANONICAL COORDINATE

The structure of the super-Hamiltonian (93) and
the supermomentum (94) is far from being self-
explanatory. The canonical variables y, R, ¢ and
my, M, Ty enter 3¢ and 3¢! in a highly nonsymmetri-
cal fashion and it is difficult to see the physical
meaning of the different terms. The complicated
appearance of Eqs. (93) and (94) discourages us
from attempting to impose the constraints in this
form on the state functional, because it seems
hopeless to solve the resulting functional differen-
tial equations. The vast simplifications achieved
by reducing the canonical formalism are still in-
sufficient to handle the problem of determining the
dynamical evolution of the state functional.

This is not totally unexpected. The reduction of
the metric (80) together with the reduction of the
lapse and shift functions (87) corresponds to the
general form (2) of the cylindrically symmetric
line element in the standard four-dimensional treat-
ment of the cylindrical gravitational fields. If we
write the Einstein vacuum equations for the line
element (2), they are also complicated and difficult
to solve, unless we take advantage of the further
simplification resulting from the introduction of
the privileged Einstein-Rosen coordinates 7' and R.
It is exactly this step we would like to repeat in the
canonical formalism.

At first sight, this looks self-defeating for the
Dirac approach to the canonical formalism. Is the
introduction of the privileged coordinates not equiv-
alent to taking only the privileged slices T =const
and the privileged worldlines R = const, ¢ =const,

z =const, instead of admitting all slices and all con-
gruences of worldlines compatible with the cylin-
drical symmetry? Not necessarily. When we in-
troduce the privileged coordinates into the canon-
ical formalism, we introduce them as canonical
variables, not as the coordinate labels t and v,
which may still remain arbitrary.

In this sense, one-half of the work is already
done, because the Einstein-Rosen radial coordinate
R is one of our canonical coordinates. But is it
possible to accomplish the other half of the work ?
In the conventional approach, the Einstein-Rosen
time T is introduced by the requirement (N)?=g,,,
implying that the cylindrical wavefront propagates
with the unit velocity in the Einstein-Rosen coordi-
nate frame. This condition makes no sense in the
canonical formalism. We must stay within our own

slice while finding out the Einstein-Rosen time cor-
responding to its different points. We do not pass
to another slice, a step implied by prescribing the
lapse function. We are given the canonical vari-
ables v, R, y and m,, mg, m, on our slice, but no
information on how this slice is cut out of the
spacetime. Our task is to reconstruct the paramet-
ric equations T'=T(r), R =R(r) of the slice in the
Einstein-Rosen coordinate chart from the knowl-
edge of the canonical variables.

The answer to our problem is surprisingly
simple, being given by the formula ‘

T(r) = T(e) +f r- T, dr. (98)

We can check that T(r) defined by Eq. (98) remains
unchanged, if we change the coordinatization of the
slice, by virtue of the transformation property (90)
of the momentum 7, under the change (83) of the
coordinate label ». We could even guess that the
Einstein-Rosen time is connected with the partic-
ular momentum 7,. In the Einstein-Rosen coor -
dinates, the I function plays the role of the energy
superpotential, 27y, being the total energy of the

P field. Of course, time is canonically conjugate
to energy in the canonical formalism. However,
we must rely on a formal argument if we want to
show that the connection between T and m, takes on
the concrete form (98).

There are different ways of verifying Eq. (98),
one of them starting by writing down the Hamilton
equation for the canonical coordinate R, corre-
sponding to the action (95),

Y 1
-MR{ dr (N3C+N, 3¢b).

Because the super-Hamiltonian (93) and the super-
momentum (94) do not contain the derivatives of the
momentum 75, the operation of taking the varia-
tional derivative is trivial. We can use the con-
straint equations 3¢=3C'=0 and bring the result to
the form

R= —Nnyew'7)+N1e""7. (99)

The last equation determines the momentum m, by
means of the canonical coordinates y, iy, the velo-
city R, and the lapse and shift functions.

On the other hand, we already know from Egs.
(80) and (87) that the spacetime line element is in
form (2). This means that the lapse and shift func-
tions can be expressed through the Einstein-Rosen
variables by Egs. (29) and (30). Substituting these
expressions for N and N, into Eq. (99), we initiate
a great cancellation of terms leading to the result

(100)

Equation (98) is the integral form of Eq. (100).
We must know the Einstein-Rosen time at one point

- = ’
my = T'.
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of the slice to be able to determine it at other
points of the slice. We choose the point at infinity,
where the spacetime is locally Minkowskian, but
any other point, e.g., the point at the axis of sym-
metry, would do as well. In open spaces, the in-
trinsic geometry or the extrinsic curvature need
not carry complete information about time because
the boundary conditions have their word to say.
This explains why the knowledge of T(r) at a bound-
ary point of the slice is necessary, before the ca-
nonical variables propagate that knowledge to all
other points of the slice.

The concept of time has many different meanings
in the general theory of relativity. For the cylin-
drical fields, it is tempting to identify time with
the Einstein-Rosen time, primarily because tre-
mendous simplifications result from introducing it
into the field equations. Equation (98) indicates
that this time is a momentum variable and not a
superspace coordinate. It is not the first time we
have been taught this lesson. In a quite different
context of the linearized theory of gravitation, it is
also natural to identify time with a momentum vari-
able.*!"!®* Because momentum variables are con-
nected rather with the extrinsic curvature of a
slice than with its intrinsic geometry, we shall call
this type of time the extrinsic time. The reasons
why the extrinsic time works better than an intrin-
sic time for the almost flat spacetimes were dis-
cussed in Ref. 18. However, the prescription (98)
works not only for weak cylindrical fields, but also
for strong cylindrical fields. It would be important
to inquire whether a natural extrinsic time exists
in the other mini-phase-spaces and, even more
important, if some privileged extrinsic time exists
for the general geometrodynamics.

The proof that T(») given by Eq. (98) is identical
with the Einstein-Rosen time as introduced in Secs.
II and III rests on manipulations with the complete
spacetime metric, and therefore reaches outside
the narrow framework of the mini-phase-space.
Not only that; in the quantized theory, the complete
spacetime metric loses its meaning and it is im-
possible to introduce the Einstein-Rosen time as
was done in Secs. II and III. However, in the ca-
nonical formalism we can define the Einstein-Rosen
time by Eq. (98). Even more, we can perform a
canonical transformation after which T'(») becomes
one of the canonical coordinates. This enables us
to choose the quantum representation in which T
as well as R and ¢ are diagonal. The usefulness of
this procedure is revealed by the resulting simpli-
fications in the structure of the super-Hamiltonian
and the supermomentum.

Wanting to find the canonical transformation to
T(r), we perform a double integration by parts in
the action integral,

4
211[’ dtf drn77?=21rfwdtfmdr(—'y’)1."
—o0 0 —00 0
sonf " atlTo)5
—27 wdr[T’y]‘T’_w. 101
fo ‘ (101)

In this process we have picked up a number of
boundary integrals. Except for one, all these
boundary integrals vanish by virtue of the bound-
ary conditions (24) —(27) and (31) that we have im-
posed ony, T, and R. Indeed, [T'y];z%, =0byvirtue
of Eq. (27), and [Ty],-,=0 by virtue of Eq. (31).
The term 2a[Ty]|™° remains, but because of Egs.
(25) and (32) it equals a constant: the total energy
E.=27T,, of the y field. We can renormalize the
action by subtracting E, from the Hamiltonian (43).
In fact, this renormalization is a characteristic
feature of the formalism applied to open spaces,
as remarked by DeWitt.®

The boundary terms having been eliminated from
the relevant part (101) of the action functional, it
is possible to identify -y’ as a momentum canon-
ically conjugate to the Einstein-Rosen time T,

Tp=—y' (102)

However, it pays to keep striving for the most nat-
ural choice of the canonical momenta. An unsatis-
factory feature of the canonical momentum (102)
is its behavior under the change (83) of the radial
coordinate. Recalling the transformation prop-
erties (84) of the function y, we see that

To(7) =f' P u(f7)) - 21" (7)/f'(7).
On the other hand, the remaining momenta 5, m,
transform simply as scalar densities, and the ca-
nonical coordinates T, R,y transform as scalars.
The canonical momentum 7, is thus a black sheep
in the flock of canonical variables.

We would expect that the momentum II, naturally
conjugate to the Einstein-Rosen time T is the en-
ergy density I" x(T,R) (with the minus sign, and
multiplied by the factor R’, to account for the
change of the coordinate cell): Il;=-T zR’.
Inspecting the relation (28) between I" and y, we
see that 7, does not coincide with Il1,. In fact,

Mp=np+[In(R" - T"?)]". (103)

By virtue of the transformation properties of T, R,
and 7y, the momentum II, transforms as a scalar
density,

ﬁT(?) =f/(7)I T(f(?)) .
We would therefore like to introduce II; instead of
7Tp as a momentum canonically conjugate to T. This
can be done only at the expense of introducing si-
multaneously a new momentum Il ; instead of the
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old momentum 7g,

Op=me+{In[(R'+T)/(R' -T]}". (104)

The change (104) does not disturb the desired trans-
formation properties of momenta. We can easily

check that 1 still transforms as a scalar density.

Equations (103) and (104) define a canonical trans-
formation. Introducing Il,, Il instead of 75, 7, into
the action functional, we pick up an additional in-
tegral:

© o . . 0 o . . Y o . ’ AN
211] dtj; dr (nTT+1rRR)=211f di| ar (I T+IgxR) - 211[ dt‘/; d1f|:(1n(R'2 - T’z))’T+<ln%> R:I .
o o Jo -

However, the expression enclosed in the large square brackets is a complete divergence

[(R+T)InR'+T") -(R - T)In (R’ = T")) +[2T' =R/ +T")In (R’ + T")+ (R’ = T")In (R’ - T")]",

and the integral can be transformed into the sum
of surface integrals at the remote past and future,
at the axis of symmetry, and at spatial infinity.
All these surface integrals vanish because of our
boundary conditions (24) —(27). This proves that
the change (103), (104) is really a canonical trans-
formation.

We see there is a considerable freedom in the
choice of the momenta canonically conjugate to a
given set of canonical coordinates. This freedom
has its source in the fundamental ambiguity exist-
ing in the specification of the Lagrangian density.
We can add a complete divergence to the Lagran-
gian density without changing the Euler equations
of the Hamilton variational principle. In particular,
we can pick out either 74, m or Il 4, II; as the mo-
menta canonically conjugate to the coordinates T
and R. For several reasons it is advantageous to
work with the momenta I, and IT,. First, they
are susceptible to a simple physical interpretation.
We have already seen that -II, is the energy den-
sity (18) of the i field (contained in the unit cell of
the coordinates 7, ¢, 2). Similarly, we could show
that Iz is the momentum density (19) of the y field
(contained in the unit cell of the coordinates 7, @, 2).
Second, when we use the momenta II; and Il in-
stead of the momenta 7,, mg, the canonical for-
malism for the gravitational wave becomes com-
pletely identical with the ordinary parametrized
canonical formalism for a scalar wave in a flat
Minkowskian background. (This will be proved in
Sec. IX.) Third, the new coordinates of a point in
mini-phase-space,

T(V); R(’V), ZP("’)Q HT('V)’ HR('V); ﬂ'w(’}’)

have simple transformation properties under the
change (83) of the radial coordinate. The canonical
coordinates T,R,y transform as scalars and the
canonical momenta Il , I, m, as scalar densities.
This means that the functions

T(f(r), R(f(r), Wf());
M (f), fraMLfr), f/mlf(r),

(105)

=

where f(7) is an arbitrary function of » € [0, »),
represent the same point in mini-phase -space as
the functions (105).

The purpose of the canonical transformations
(98), (102), and (103), (104) was, of course, to
simplify the structure of the super-Hamiltonian
and supermomentum. We are now in a position to
check that we have achieved this aim. The canon-
ical transformations bring the action functional
(97) into the form

s=2ﬂfwdtfwdr(l'l,- T+ILR +1T,1,Zl; -N3e - N, 5.
-0 (1)
(106)

Introducing the new canonical variables into the
rescaled super-Hamiltonian (93) and the rescaled
supermomentum (94), we obtain

J=RMp+TTg+3R 1% +LRY?, (107)

(108)

Even a casual comparison of Eq. (107) with Eq.
(93) and of Eq. (108) with Eq. (94) reveals a re-
markable gain of structure and simplicity. The
variables T, R, II;, II; enter the super-Hamilton-
ian in almost the same way they enter the super-
momentum so that we get the terms of ¢! from the
corresponding terms of 3 by the interchange
T--R, keeping the momenta IJ ; and II fixed. On
the other hand, the truly dynamical variables ¥,

m, enter ¢ and ! in characteristically different
combinations. The dynamical term in ¢ has the
form of the energy density, and the dynamical
term in 3! of the momentum density, of cylindrical
scalar wave in Minkowskian spacetime.

The canonical transformation (98), (102) - (104)
which proved itself so efficient in simplifying the
constraints obviously mixes super space withthe mo-
mentum space. Our configuration space was there-
by changed into the T,R, 3 space which no longer is
a mini-superspace. Thisisperhapsthe mostimpor-
tant message from the cylindrical gravitational
waves: superspace, though a dynamical arena of
geometrodynamics, is not the only dynamical

F'=TM+RMg+Y'm,.
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arena. A different configuration space may very
well be much more convenient for a study of the
time evolution of general gravitational fields. The
principal question which remains unsolved is to un-
cover such a general dynamical arena.

VIII. THE ADVANCED AND THE RETARDED
TIME AS CANONICAL COORDINATES

The symmetry of the action functional (106) is
‘exhibited even better if we introduce the advanced
and retarded time coordinates U and V instead of

the Einstein—Rosen coordinates T and R;
U=T+R, T=3U+V),
(109)
V=T-R, R=3U-W.

We obtain a canonical transformation, if we ac-
company (109) by the transformation of momenta

Oy =3 p+0g), Mp=IHy+Iy,

L (110)
M, =3Iy -Ig), Np=Iy -I.
We also regroup the terms in the Hamiltonian
H=27| dr (ﬁff@“(llﬁncl),
0

by introducing the new quantities 3¢, 3¢” and Ny,
NV ’

&

=fe+dct,  Fe=30e” +3"),
_jcly 561:%(3(:” _ch)y

Ny =%(1:I+1\./'1), N=Ny +Ny,
1
2

g R
]
=

(111)

After the canonical transformation (109), (110)
and the substitutions (111), the action functional
(106) assumes the form

s=27rf dtf‘” dr (U +11, V + 1y - Ny 3% —N,3¢).
-0 )

(112)

Here we have
57 = HR ™21, + RY 2/ F +2U Ty, (113)
5% = 4R /2, ~RY2y')? - 2V'IL,, (114)

where R is an abbreviation for 3(U - V). The ad-
vantage of the form (112) is that the “coordinate
part” of 3c” contains only the advanced variables U,
I, and the “coordinate part” of 3 contains only
the retarded variables V, II,. Of course, both U
and V enter the dynamical terms
%(R—l/zﬂd,:thlzlP')z.

The use of the advanced and retarded times as
canonical coordinates is not to be confused with
the characteristic initial value approach to geomet-
rodynamics.?* This approach owes its name to the
fact that the initial data are prescribed on the

characteristic lightlike hypersurfaces rather than
on the spacelike hypersurfaces. This is not what
is done in this paper. Our initial data U, V, I,
Iy, ¥, m, are still given on the spacelike hyper -
surfaces ¢=const and not on the characteristic null
hypersurfaces U=const or V=const.

IX. THE PARAMETRIZED CANONICAL FORMALISM
FOR CYLINDRICAL SCALAR WAVES ON
A MINKOWSKIAN BACKGROUND

We have reached the point where all prelimi-
naries are prepared for the Dirac quantization of
the Einstein-Rosen waves. We should only turn
the super-Hamiltonian (107) and the supermomen-
tum (108) into operators and impose the Dirac con-
straints on'the state functional. However, we shall
postpone the quantization of the Einstein-Rosen
waves to Sec. XI, and begin instead quite a dif-
ferent line of investigation. It is well known from
the work of ADM* that the general form (38) of
the gravitational action functional has its counter-
part in the “parametrized form” of the action func-
tional of ordinary field theories. By “parametriza-
tion” we mean the introduction of curvilinear
spacetime coordinates into the action functional
f d*X &, followed by a conversion of the Minkow-
skian coordinates into supplementary canonical
variables. Now, the Einstein field equations for
the cylindrical waves in the Einstein-Rosen co-
ordinates reduce effectively to the cylindrical
wave equation for a scalar field i in a Minkow-
skian spacetime. This strongly suggests that the
parametrized action functional for the cylindrical
scalar field in the Minkowskian background may
be identical with the action functional (106) — (108)
for the Einstein-Rosen wave. This is exactly what
we shall prove in this section. For this purpose,
we build the parametrized formalism for the sca-
lar wave.

The cylindrical wave equation (17) may be de-
rived from the action functional

S=2ﬂ£defwdR£(¢7¢,Tylp,R)> (115)

with the Lagrangian density
L=3RW r* =P5°)

The time 7T is interpreted as the Minkowskian time,
and the coordinate R as the radial distance from
the axis of symmetry in a flat space. Let us now
introduce the curvilinear coordinates ¢ and 7 (still
flat space) by the formulas (21). The functions
T(t,7r) and R(¢,7) are assumed to be subject to the
restrictions (22) —(27). Under the substitution (21),
the action functional assumes the form

(116)



(£

S=2nf”dtf”drs(zp,z/3,zp') (117)

-0 'Jo

with

=iR(TR' -T'R)™
X[(RIZ _ T,z)d;z —Z(RR' _ TT')([J P - (Tz _éz)zplz].

(118)

The canonical momentum 7, obtained from the La-

grangian density 2 is

m, E% =R(TR' = T'R)"[(R” - T"*)§ - (RR' - TT")}y"].
(119)

Passing from the Lagrangéan density £ to the
Hamiltonian density $=my - £, we get
$=TR" - T [3R'(R'm2+RY") - T'¢'m,]
+R(R" - T?) Y[ -5 T'(R™'n? +RY*)+R'Y'my].
(120)

We can simplify the expression for $ even more if
we again introduce the advanced and retarded time
coordinates,

D= [']X%U"I(R —1/2”w+R1/2¢/)2
- VX4V R 2, - RY 2y (121)
The Hamiltonian (120) is linear in the “velocities”
T, R, and the Hamiltonian (121) is linear in the
“velocities” U/, V. This allows us to write the

action functional in a homogeneous form. If we in-
troduce the abbreviations

My = -iy-yR —1/zﬂw+R1/2¢/)z’

M, =§V' "R ™2m, —RY 2y ), 122)
we have

$=-N,U-1m,V
and

S=2nf:dthdr(HUﬁ+Hvt7+nwzﬁ). (123)

The definitions (122) can be written in the form

3" =0, 3¢"=0, where 3, 3" have exactly the same
structure as the expressions (113), (114) obtained
for the gravitational wave. In the action functional
(123), only the true dynamical variables y, m, are
varied, while U and V are thought of as some pre-
scribed functions of ¢ and », and II; and I, as
mere abbreviations (122). However, we may vary
all the variables ¢, m,, U, Iy, V, Iy freely if we
add the constraint functions 37 and 3¢” to the action
functional (123) by means of the Lagrange multi-
pliers Ny, N,. In this way, we arrive at the action
functional which is identical with the gravitational
action functional (112).
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Of course, we can return from the advanced and
retarded time coordinates to the original coordi-
nates T and R by the canonical transformation
(109), (110). After the substitutions (111), our ac-
tion functional assumes the old form (106), with
3¢ and ¢! defined by Eqs. (107), (108).

The ADM canonical formalism for the cylindrical
gravitational wave is thus completely equivalent to
the parametrized canonical formalism for the cy-
lindrvically symmetric massless scalar field on a
Minkowskian spacetime backgrvound. This is a
very important conclusion because it allows us to
take all results we have about the classical and
quantum behavior of the scalar field, and apply
them to the cylindrical gravitational waves.

X. CYLINDRICAL SCALAR WAVES IN A HALF-
PARAMETRIZED CANONICAL FORMALISM

The parametrization of the scalar waves in Sec.
X was complete. Arbitrary cylindrically sym-
metric spacelike slices were admitted and an ar-
bitrary radial coordinate » was used to label their
points. While the arbitrariness of slicing is vital
for the Dirac approach, the arbitrariness of the
space coordinatization of such slices is much less
important. Nothing physical is gained by maintain-
ing the flexibility of the spatial system of coordi-
nates, its only advantage being the preservation of
manifest spatial covariance.

The canonical formalism is usually introduced
only at the price of losing the spacetime covari-
ance of the theory. The spatial covariance is the
maximum which is retained. Thus the ADM super -
Hamiltonian and supermomentum are manifestly
covariant with respect to spatial transformations,
but not with respect to spacetime transformations.?®
We can go one step further and play hide-and-seek
with the spatial covariance itself. We can abandon
it by adopting a special system of coordinates, and
we can restore it again, starting from the canoni-
cal formalism in a special system of coordinates.
We shall not try to present a general theory of
these two complementary procedures, but we do
illustrate how they work for the cylindrical waves.
In this section, we deliberately abandon the spatial
covariance of the scalar waves formalism. In Sec.
XII, we quantize this noncovariant theory and show
how to restore the spatial covariance of the quan-
tum formalism.

To get rid of the spatial covariance is trivial.
All we have to do is to pick out a special radial co-
ordinate. The privileged radial coordinate with an
invariant geometrical meaning is, of course, the
radial distance R. Let us therefore put

r=R, t=HT,R), (124)
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which means that we parametrize even the curved
slices ¢=const by the “straight” distance R from
the axis of symmetry.

The formalism of Sec. IX is then largely simpli-
fied. Comparing Eqs. (124) with Eqs. (21), we see
that only time is parametrized, the spatial coordi-
nates being kept fixed. We shall therefore speak of
a half-parametrized formalism. Because of Eq.
(124), only the term proportional to 7 remains in
the Hamiltonian density (120),

©=T3.(T(R), Y(R),,(R)),
where JC assumes the form
¥= (1- T,Rz)ﬂ(%R -1%2 + %Rlp,Rz - T,Rlp,ze”w)
=31 - T2 MR /1, ~R T 9 o) + LRy 2°.
(125)

Calling the coefficient 3C(T(R), $(R), m, (R)) of T in
the Hamiltonian density by the new name -II,
we again cast the action functional to the homo-
geneous form. If we want to vary Il and T freely,
we must take the constraint

3=0, ¢=M,+X(T(R), p(R), 7, (R)), (126)

multiply the constraint function 3¢ by a Lagrange
multiplier N, and add it to the action functional.
We thus end with the variational principle 6S=0,
where

s=2nf°°dtf°°d3 (T +my ) ~N3C), (127)
Sl A

and all variables T, Iy, ¢, m, N are varied freely.

XI. THE DIRAC QUANTIZATION OF THE
CYLINDRICAL WAVES

We can finally turn to the quantization of the cy-
lindrical waves. Because the canonical formalism
for the scalar waves in the Minkowskian spacetime
is identical with the canonical formalism for the
Einstein-Rosen cylindrical waves, and the pre-
scribed Minkowskian geometry seems conceptually
simpler than the quantized Riemannian geometry,
we can concentrate our attention on the scalar
waves when trying to grasp the meaning of quantum
formalism. The interpretation of the identical for -
malism for the gravitational waves requires a few
cautionary remarks which we postpone to Sec. XV.

To quantize the cylindrical waves, we turn the
canonical variables T, R, ¢, lI, I, II, into op-
erators. All these operators commute, except

[T(r), (7)) =[R(r), ()] =[9(7), my (F)] = id(r 7).

No ordering problems arise when we substitute the
operators into the super-Hamiltonian (107) and
supermomentum (108). The individual terms of the
super-Hamiltonian contain only the manifestly com-

[ v

muting operators. In the supermomentum, pro-
ducts of the type T'(v)Il ,(r) occur. Happily, in
spite of the fact that T(») and I1 ,(#) do not commute,
T'(v) and W1 () taken at the same point v do. This
is a consequence of the differentiated commutation
relations

[T(r), 1 (7)] = 6" (r - 7)

and the antisymmetry of the differentiated 6 func-
tion, by virtue of which ’(0)=0.

We are now ready to impose the Dirac con-
straints (51) on the state functional ¥. We choose
the representation in which the canonical coordi-
nates T, R, y are diagonal and

I15(r) = - ISRy

. 0 _

ok [x(r) =
(128)

)

Ty (’V) =-1 W .

The Dirac constraints can then be written down ex-

plicitly:

[—iR’('r)a—%—y—) —iT’(r)SFG(y—)
_iR ‘%ﬂé—f(y—)z ‘ %R('r)w'z(r)]w= 0,
(129)
' 5 ' 5 ’ _6__ - :
[T (Y)GT('}’) +R (y)_éR(r)+¢ ) w(y)]w_o. (130)

The state functional ¥ is a functional of the three
functions 7(7), R(»), ¥(r). The first two functions
T(r), R(r) define, in a parametric form, one space-
like hypersurface T=T(»(R)) in the Minkowskian
spacetime. The functional ¥[7,R, ] is physically
interpreted as the probability amplitude that the
scalar field y has the definite distribution ¢ (#) on
this hypersurface. Of course, the same hypersur -
face can be coordinatized in a number of different
ways. If we change the coordinate label » to
7=f"Y#), the functions T, R, and ) behave as
scalars. In order that the interpretation of ¥ as
the probability amplitude be consistent, ¥ must
remain unchanged under the relabeling of the hyper-
surface,

V[T (f ), R, 9(f D] =¥[T(r), R(r), p(r)].
(131)

Because the finite transformation f(») may be ac-
complished in infinitesimal steps, it is sufficient
to check that Eq. (131) holds for the infinitesimal-
transformation

f@)=r+e(r).

To the first order in €(7),

(132)



£

Y[ T (7 +e(@)),R(r +€()), p(r + e(r))]=\If[T(1f),R('r),zp('r)]+fwdr[T —
0

Because the infinitesimal quantity () is other-
wise arbitrary, Eq. (131) reduces to Eq. (130).
The supermomentum constraint (130) tells us
merely that the state functional is independent
of the coordinatization of the hypersurface. The
only equation carrying dynamical content is the
super-Hamiltonian constraint (129). We shall
study it in detail in Secs. XII and XIII.

XII. THE DIRAC QUANTIZATION OF THE
CYLINDRICAL WAVES IN THE HALF-
PARAMETRIZED FORMALISM

Because the state functional is independent of the
coordinatization, it appears sufficient to solve the
constraint equations in one definite coordinatiza-
tion, and to define the state functional for any
other coordinatization by the requirement of co-
ordinatization independence. The natural coordi-
natization is the choice » =R, leading to the half-
parametrized formalism of Sec. X. In this formal-
ism, there remain only two canonical coordinates,
namely T(R) and $(R), and only one constraint,
namely Eq. (126). In quantum theory, we replace
the variables T(R), $(R), I (R), m,(R) by opera-
tors. All these operators commute, except

[T(R), I (R)] =[$(R), T, (R)]=id(R -R). (133)

We now turn the functions JC and 3¢, defined by Eqgs.
(125) and (126), into operators. Repeating the
argument of Sec. XI, we could show that no order-
ing problem arises. We choose the representation
in which the canonical coordinates T(R) and y(R)
are diagonal and the momenta assume the form of
variational derivatives,

. b

i3 B (134)
In this representation, the state functional ¥ de-
pends on two functions, T(R) and y(R). The classi-
cal constraint (126), 3¢=0, is replaced by the Dirac
constraint JC¥ =0 imposed on the state functional

¥. The Dirac constraint can be written as a
Schriddinger -type equation

oW
)

I7(R)= —iG—lek—), Ty (R)= -

=3C(T(R), $(R), my (R)) ¥ (135)

-

W[ T(@)+6T(r),R()+0R(¥), p(r) + 6(»)]= ¥

YTUR)+6*TWR)), prR)+6*p(r(R)) ].
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o
' zp' ] Xe(r).
6T " 0% J 76y, Rt 0t

with the Hamiltonian density operator 3¢ defined by
Eqgs. (125), (134). Explicitly,

I} 2
=3(1 _T,Rz)“< ~iR™ ¢(R)-R"2T,R¢,R> + 3Ry 5%

(136)

The two functions 7(»), R(r) specify in the para-
metric form the same hypersurface as one func-
tion, T(r(R)), specifies in the half-parametrized
formalism. If T(r), R(r), () lie in the range of
the functional ¥, then T(»(R)), ¥(»(R)) lie in the
range of the functmnal ¥. Letus have a ¥ that sa-
tisfies the constraint (135) and define the new
functional ¥ by the requirement

Y[T(),R(r),p(»)] =¥ T R)), p(rR)].

We expect that the state functional ¥ satisfies the
two constraints (129), (130).

To check our expectation formally, we must ex-
press the variational derivatives of ¥ by means of
the variational derivatives of ¥. For this purpose,
we vary the three independent functions R(r), T(r),
and y(r),

(137)

(1'3 8)

R(r)=R(r)+0R(r),
Tr)-T@)+6T(r),

(139)
Y )= P(r) +09(r).

The variation (138) of R(») induces the variation
&7 (R) = —R'(r(R)) " 6R(r(R)) (140)

of the inverse function 7(R). The variations (139)
of T(r) and y(r), together with the variation (140)
of 7(R), induce the total variations

T(r(R))~Tr(R)) +6*T (r(R)),

(141)
P RN=plrR) +6*y(r(R))

of the composite functions T(»(R)) and y(r(R)). We

have
0¥ T(r)=0T(r) = (R (»))T'(r)6R(»),
5*p(r) = 64(r) - (R ()~ 9' ()8R (7).

According to Eq. (137), the values of the function-
als ¥ and ¥ must be the same even for the varied
arguments,

(142)

(143)

If we subtract (137) from (143) and confine ourselves to terms linear in the variations, we obtain

J;wd"[567‘*lzy)6T(”)+5R( )GR(r)+6¢( )Ozp(r)]=j:dR|:

o

W)G*T(r(R))+5Z,D(1’(R))6 y(r R))] (144)
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In the last integral, we can introduce 7 instead of R as the integration variable,
f &R’ (r)( o+ T(r) + | srur)), (145)
GT( (R)) R=R(r) Glp("'(R» R=R(r) '
and substitute the expressions (142) for 8*T(r) and d*y(»). Comparing (145) with the first integral in (144),
we see that
o 0¥
=R'(r = ,
700 2 ) STG @Y peey
o¥ ov ow
—_— = T (Y) ———— —
I AT M G 73] (146)
o¥
=R'(Y) —F—=w .
56) "2 ) S0 s

It is easy to verify that ¥ satisfies the super-
Hamiltonian constraint (129), if ¥ satisfies the con-
straint (135). We take the left-hand side of Eq.
(129), multiply it by [1 - T((R)) z*] " %®, and re-
place the variational derivatives of ¥ by the varia-
tional derivatives of ¥ according to the schema
(146). By this process, we get exactly Eq. (135).
The supermomentum constraint (130) is satisfied
automatically, as a consequence of Eqs. (146).

All quantum dynamics of the scalar cylindvical
waves ts thus concentrated in one functional dif-
ferential equation (135) of the Schvddinger type.
The Hamiltonian density operator (136) is a sum
of two terms which are counterparts of the kinetic
energy and the potential energy of the standard
Hamiltonian. The kinetic energy term is rather
complicated. The factor (1 — T g*)™* reminds us
that the hypersurface T'=T(R) is not a hyperplane
and that we observe the scalar field § from differ-
ent local Lorentz frames at different points of the
hypersurface. If the hypersurface is one of a con-
stant Minkowski time, T=T,=const, the factor
(1 - T £%)7* reduces to unity. The rest of the kinet-
ic energy term is reminiscent of the kinetic energy
+m ~Y(pF - eA*)? of a charged particle moving in
the magnetic field described by the vector poten-
tial A*. The correlation is eA*— R'?T py .. We
shall see in Sec. XIII that the analogy continues if
we compare the expressions for probability fluxes.
The potential energy term is much simpler than
the kinetic energy term. It has exactly the form
of the potential energy density of the cylindrical
scalar field on a constant Minkowski time hyper -
surface.

The most important aspect of the reduced super-
Hamiltonian constraint (135), however, is the pres-
ence of the familiar energy operator —i5/6 T(R).
This operator is brought in by our choice of the
extrinsic time representation. In the metric rep-
resentation, we would have obtained an equation of

the Klein-Gordon type. The time variable T(R)
represents a Tomonaga -Schwinger many-fingered
time. This is why Eq. (135) is a functional differ -
ential equation rather than a partial differential
equation and why the kinetic and potential energy
terms are to be interpreted as the energy densities,
not as the total energies.

XIII. PATH INDEPENDENCE OF THE
EVOLUTION OF STATE

The entire quantum dynamics of the cylindrical
waves is contained in the functional differential
equation (135). If we solve this single equation, we
know how to generate the state functional ¥ which
satisfies all Dirac’s constraints. However, the
single functional differential equation (135) still
represents a system of «' equations, one equation
for each value of the radius R. How do we solve
such a system of equations? The answer is that
these »! equations are not mutually independent.
We can further reduce them to a single partial dif -
ferential equation and solve this equation instead
of the original system of «! equations. Let us
show that such a reduction is both physically rea-
sonable and mathematically consistent.

We expect, of course, that Eq. (135) governs the
evolution of the state functional ¥, i.e., that it
determines the state functional \i;[ T(R), $(R)] on an
arbitrary hypersurface T=T(R), if the initial value

Y ToR), Y(R)] = L [Y(R)]
of this functional on the initial hypersurface
T=TyR) is known. To obtain ¥[T®R), (R)] from
¥[T,(R), y(R)], we pass from the initial hypersur -
face T=T,(R) to the final hypersurface T = T(R)
through a continuous one-parameter family of hy-
persurfaces T=T(R,1),

TR,0)=T,(R), TR,1)=TR), t€[0,1], (147)
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labeled by the values of a time parameter 7.

If we confine ourselves to such a family of hyper -
surfaces, the state functional ¥ becomes a func-
tional of the single function $(R), depending on't
as a parameter,

TR, ), y(R)] =¥ [y(R)].

Its rate of change B:I_lt/ 9t when passing from one
hypersurface of the family to the next is

gi:fdel: 5‘1’ ] a_T_(.M
ot 0T(R)] rgy=rm,ey 91 .

(148)

Using the Schridinger equation (135), we get

i %:g,[w(R),nw(R)]gu (149)
where
g= [ arse(r®, ,9R), 7, @)L (150

In contrast to the Hamiltonian density operator JC
which depends locally on the operators T(R), ¥(R)
and m,(R), H, is the total Hamiltonian defined on
the hypersurfaces t=const, which is a functional
of the operators y(R), m, (R), depending on ¢ as a
parameter.

Equation (149) is a partial differential equation of
the Schrédinger type which readily permits us to
write down the formal solution of the evolution
problem:

W{TR), 9R)) = Pexp(~4 [ dLH )Gl (151)

By P we denote the time ordering operator which,
applied to a product H; H,, * * * H;, of Hamiltonians,
rearranges them with respect to the decreasing
time parameter ¢,

P(—I{h-}—l‘z' : '-Iitn)=£‘i1£1‘£2. ’ .I—I‘in’

(), %3 ..., i,=a permutation of indices 1, 2,...,n

J

such that #; >¢;,> +--># ), where the Hamiltonian
corresponding to the earliest ¢ operates on the
state functional ¥, first.

Writing down the solution (151), we come upon a
serious consistency problem. We can pass from
the initial hypersurface T= T,(R) to the final hyper-
surface T=T(R) along different paths T=T(R, ).

If the final state functional ¥[7(R), ¥(R)] should
depend on the path chosen, the Schrodinger equa-
tion (135) would be clearly inconsistent. Because
the finite deformation of the path can be achieved
in infinitesimal steps, it is sufficient to ask if the
change of the state functional ¥ induced by deform-
ing the hypersurface 7= 7(R) at first by a small
amount 8 T(R) and then by another small amount
AT(R) is the same as the change of ¥ induced by

‘the deformations performed in the reversed order

AT(R), 6T(R). This question is finally equivalent
to the formal question whether the system of
equations (135), one equation for each value of R,
is integrable. The variational derivatives taken at
two points R and R must commute,

62 ¥ 0%

6T(RYST(R) 6 T(R)5T(R)*
Differentiating Eq. (135) with respect to T(R) and
then switching the labels R and E, we obtain the
integrability conditions of this equation,

SH(T(R) _ S T(R)
8T(R) 8T(R)

+ i[3.( T(R), % T(R)] = 0.
(152)

The evolution of the state functional is path-inde-
pendent if and only if the integrability condition
(152) is satisfied.

We can check directly that the Hamiltonian den-
sity operator (125) satisfies Eq. (152). By the
repeated use of the commutation relations (133),
we evaluate the commutator of the Hamiltonian
density operators,

[3(T(RY, 3 T(R)] =286 p(R =~ RN~(1= T 2)™"% gy + (1= T *) 2T g (R7'm,2 ~2 T g gTy+ R ).

The variational derivative of J¢( T(R)) with respect
to T(R) yields the same expression multiplied by
the factor —3i, The integrability conditions are
therefore satisfied.?® They tell us that the = equa-
tions contained in the functional differential equa-
tion (135) are not all independent and can be re-
placed by the single partial differential equation
(149).

XIV. THE INNER PRODUCT OF THE
STATE FUNCTIONALS

The evolution of the state functionals is governed
by the Schrédinger-type equation (135). As a con-

T
sequence, the state functional ¥ may be normalized
in the usual way,

[ovelzw, wlelr®), wr)l=1, (159

and the expression

YT (R), Y(R)1¥[T(R), Y(R)],
interpreted as the probability density that the field
¥ has the distribution §(R) on the hypersurface
T=T(R). The symbol | Dy denotes the functional

integration with respect to the function variable .
We can easily prove that the normalization (153)
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of the state functional is preserved under the de-
formation of the initial hypersurface. The first
step is to derive, by exactly the same procedure
as in particle dynamics, the continuity equation
for probability. The time variation of the probabil-
ity density is determined by the Schrodinger equa-
tion (135),

b
ST (R) - T NEDTF - (CH)* ).

The right-hand side of the last relation may be ex-
pressed as the variational derivative with respect
to Y(R) of a functional —Z4[T(R), $(R)]. In fact,

1z 2)y=-1)p=1 62* * 6!’
Za=it =10 1 (¥ -4 50t
+ 2T (R, o(R)¥ ¥ * g (154)

This leaves us with the functional differential equa-
tion

S(EI*  OZg
5T(R) +6w(R)=0' (155)
The structure of X is strikingly similar tothe struc-
ture of the probability flux for one particle in an
external electromagnetic field. The discrete index
k labeling the Cartesian coordinates x* of the par-
ticle is replaced by the continuous parameter R,
the coordinates x* are replaced by the field vari-
ables Y(R), the momentum operator —id/ax* is re-
placed by the field momentum operator —i5/6¥(R),
and the vector potential term em™*A* is analogous
to the factor T R(R)¥ r(R). The functional 2 de-
pends on the continuous parameter R; similarly,
the probability flux for one particle depends on

the discrete index k“labeling the components of the
flux vector. However, Eq. (155) still does not have
the form of the equation of continuity. There is no
integration implied over the label R, so that the
expression 6Z g/6y(R) is not analogous to the diver-
gence of the probability flux. In fact, Eq. (155) is
not a single equation, as the equation of continuity
should be, but represents an infinite system of
equations, one equation for each value of the pa-
rameter R.

To get a true equation of continuity, we again
pick out a one-parameter family of hypersurfaces
T =T(R,t) and ask how ¥} V¥, changes when we
pass from one hypersurface of the family to the
next one. We get

* «© *
21T, =f 4 D) 8T (R, 1)
at o 0T(R) lp(my=1(r,e) Ot
© 5 aT(R,t)
:—l dRW(ZRIT(RPT(R.t)T)'
(156)

o>

The last integral represents a divergence of the
“flux vector” 48T (R, t)/d¢ in the infinite-dimen-
sional space of functions ¥(R). We can now inte-
grate both sides of Eq. (156) with respect to the
function variable . The functional integral [Dy

of the divergence on the right-hand side of Eq.
(156) can be transformed by an infinite-dimension-
al version of the Gauss theorem into a functional
surface integral over the boundary of the space of
functions . Under the appropriate boundary con-
ditions for the state functional ¥, this functional
surface integral vanishes. Therefore, the normal-
ization integral [Dy ¥* ¥, does not depend on t. Be-
cause our slicing T =T (R, t) is completely arbitrary,
we can conclude that

(157)

More generally, let us have any two functionals
¥, [T(R), ¥(R)] and ¥,[T(R), ¥(R)] which satisfy the
Schrodinger equation (135). On any hypersurface
T =T(R), we can define the inner product of these
functionals by the formula

(¥, ¥odpery = f Dy ¥#[T(R), y(R)] &[T (R), ¥(R)].
(158)

By virtue of the Schrodinger equation, this inner
product does not depend on the choice of the hyper-
surface T =T(R). The normalization condition
(158) can be written as ( ¥, ¥)=1 in the new nota-
tion.. The conjugate operators $(R) and my(R)
=-306/6y(R) are Hermitian with respect to the inner
product (158). So is the Hamiltonian density opera-
tor 3¢. The inner product (158) turns the space of
the state functionals into a Hilbert space.

XV. THE REALIZATION OF THE EXTRINSIC
TIME REPRESENTATION

To obtain knowledge of the good and evil of quan-
tized geometry, we have committed the original
sin of freezing the extracylindrical degrees of
freedom. This sin is transmitted from one genera-
tion of our results to another and corrupts their
strict validity. However, within the necessarily
imperfect world of the model, the results are as
perfect as they can be. The quantum formalism
for the cylindrical gravitational waves looks as
simple as the quantum formalism for the scalar
waves on the unquantized background of the Minkow-
skian geometry. There are, however, some subtle
points in the interpretation of the quantized gravita-
tional field we would like to"touch briefly at this
moment.

We want to work in the “extrinsic time repre-
sentation,” in which the operators T(r), R(v), and
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Y(r) are diagonal. But what does this mean in
terms of the theory of measurement? The repre-
sentation is physically realized by a complete set
of measuring apparatuses, one subset of apparatus-
es designed to measure 7'(7), another subset de-
signed to measure R(¥), and still another subset
designed to measure y(»). Because the operators
T(v), R(r), and y(») commute, the apparatuses can
be constructed in such a way that the measure-
ment of any one of these quantities does not disturb
in an unpredictable way the measurement of any
other of these quantities. What is the nature of
the apparatuses? Things are easy for a scalar
field in the Minkowskian spacetime. There we
know exactly what the apparatuses measuring T'(7)
and R(7) look like. The spacetime is not quantized,
and the measurement of time intervals and dis-
tances does not disturb the measurement of other
quantities, like the field variable y(»). We have

a rigid inertial structure of reference points, each
point carrying a label indicating its coordinates

v, ¢, 2, and equipped with a coordinate clock show-
ing the coordinate time . Moreover, at each ref-
erence point there is a standard clock showing the
standard time T, different standard clocks being
synchronized by light signals, and a net of stand-
ard measuring rods, connecting the reference
point with all neighboring points. The hypersur-
face ¢ =const is determined by the readings of the
coordinate clocks. The standard clocks installed
on the reference points measure the time 7', and
the rods stretching radially from the axis of sym-
metry of the ¢ field to the point in question mea-
sure R.

Measurements of the quantized Riemannian geo-
metry are much more sophisticated. They again
presuppose a structure of reference points defining
our system of coordinates and the hypersurfaces
of constant coordinate time. But the net of stan-
dard measuring rods may be set up only in the
azimuthal and the axial directions. If the rods are
placed also in the radial direction, they would
measure the g;, component of the metric, and with
it the coefficient y. But -y’ is canonically conju-
gate to T, so thaty and T cannot be measured
simultaneously. Laying the rods in all possible
directions would be equivalent to fixing a repre-
sentation quite different from the extrinsic time
representation T, R,  — namely the metric repre-
sentation y, R, . That is why we can lay the rods
only in the azimuthal and axial directions. These
rods serve as the apparatuses measuring R(7) and
¢(v). We measure by them the width and the cir-
cumference of the portion of the cylindrical sur-
face 7 =const lying between the circles z =z,
z=2z,+1. According to Eq. (80), the surface area
of this portion divided by 27 is the radial coordinate

R and the natural logarithm of the width is ¢.

The apparatuses for measuring the Einstein-
Rosen time T are also much trickier than the stan-
dard clocks synchronized by light. Some of the
components of the metric tensor *g,, become op-
erators, and it thus makes no sense to speak about
the classical propagation equations for light sig-
nals and consequently about light synchronization.
Moreover, the proper time along the worldline of
a reference point is also an operator, and the stan-
dard clocks moving along the worldline do not
show a definite time. All this indicates that our
“T clocks” must be very queer clocks indeed.

What we require is a device measuring a peculiar
combination 7, =n}=g"?(K}+K3) of the components
of the extrinsic curvature, without ever attempting
to measure these components or the determinant
g individually, plus a standard clock at spatial in-
finity, where the spacetime is asymptotically
Minkowskian. This set of instruments permits us
to measure T as defined by Eq. (98).

These few remarks suffice to point out the de-
gree of sophistication needed to interpret the quan-
tum gravitational formalism. Let us stress once
more that the subject of this interpretation —namely,
the formalism itself - is the same as the Dirac
formalism for the cylindrical massless scalar
field on an unquantized Minkowskian spacetime
background.

XVI. THE ADM QUANTIZATION OF THE
EINSTEIN-ROSEN WAVES

After all the intricacies of the Dirac method, it
is a relief to follow the ADM procedure. The
most difficult point is, of course, a clever choice
of the functionals T and X', which later become
the privileged coordinates of the theory. By clever
choice we mean a choice which makes it easy to
solve the initial value equations (41) explicitly for
the momenta 7, and i, and which makes the
“true” Hamiltonian density ¥C,py as simple as possi-
ble. But we have already seen that the maximum
simplification of the formalism is achieved by the
Einstein-Rosen variables 7, R. We therefore
take the Einstein-Rosen time (98) as our T, and
R as our X*. Equations (98) and (103) realize the
canonical transformation (46), and the action func-
tional (106) has the form (47). The next step is to
solve the initial value equations (41). Here we see
the advantage of the Einstein-Rosen variables:
The super-Hamiltonian and (what is more remark-
able) the supermomentum do not contain the deriva-
tives of the momenta II, and II;, and the momenta
themselves appear linearly in these expressions.
It is thus trivial to solve the initial value equations
for II; and Il;, and substitute these solutions back
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TABLE I. The quantization of the cylindrical gravitational waves.

The standard form of the cylindrical metric

The standard form of the cylindrical mo-
menta

The standard form of the lapse and shift
functions

The super-Hamiltonian and supermomentum

The canonical transformation to the extrinsic
time representation T ,R. The coordinates

T ,R are the Einstein-Rosen time and cylin-
drical radius, and the momenta Il;, Il are
the C-energy density and C-energy flux.

The standard coordinate system determined
up to the gauge transformations

Gauge transformation of canonical variables

The rescaled super-Hamiltonian and super-
momentum in the extrinsic time representa-
tion

The reduced action functional

The Dirac constraints in the fully parametrized
formalism

The Einstein-Schrddinger equation in the
half-parametrized formalism

The connection between the functionals
¥ and ¥

The integrability conditions of the Einstein-
Schrddinger equation

Solution of the evolution problem

2 =YM") | gy = Ri(r)e~v™),
g3=e"", g1=813=853=0
mil=m (r)e?™r, m=3Rmp(r)e’ ,

1f33=[1f7(1’)+%R7TR(1’)+1rw('r)]e"" , m2=qld=q2=0

N=N@), N;={;(),0,0)

3(3—_-3%(1[)"7) (_W‘yrR +%R—l,n.w2+2Rn __,YIR/ +%R¢/2) ,
301=ew'7’(—21r;,+'y’1r), +R'mp +9'my) ,
%2=5%=0
T
()= @)+ [ =mriar,

() =" () +{IlR"2) =120},
R(r)=R(7),
R @) —m, (7))'

r—f"1w),

Q=P +@,, B—~0Z+2,

T (r),R(),3)=T(f@) ,R(f ), (),
(), Mg @), Ty~ F* O (f@)) , f O (@), f )y (f(r)

R=R'Np+T'Ug +3R 2 +3RY2,
T =T'Ip+ R Mg+ 1,

S=21rf dtf”dv(nTT' +TIgR +my — Nie — N )
—c0 0

o O 9 -
<—1.R 7~ T -2315¢2 +2R¢’)\If =0,

’ 6 l__ -
<T oT +R +3’ w)w—o

2
=31 sz)_%m_l/zgd%_Ri/z T.R‘P.R) +3Ry ol

¥[T@),R (r), )] =UT(rR)), $(r R))]

83(TR)) I TR))
oTR) ~ OTR)

+ilI(T®) ,5(T®R)) =0

1
YITR),YR) =Pexp<—if dtI_lglll)(R),W,p(R)l)‘Xo['/)(R)],

0

LItEf RIAT R 1), 9R), 7y ®) )
0
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TABLE 1. (Continued)
wocntimuity equation” " SWEY o3y _
The “continuity equation” for probability 5T®R) +3 v (R)_O’
Zp=3i(1-T g9~ R™! w—‘sﬁi-w*—@— +2iT, p(R)Y pR)TT*
R2 ® S OYR) T oY) T RTIRET==

The inner product and the normalization
of the state functionals

The ADM coordinate conditions

The ADM state functional

The ADM Hamiltonian

The ADM Schrodinger equation

@Y Drm) = f Dy ¥EHTR), yR,ITR), yR)]

&, Vg =1

T=T@,")iep,r=g» R=RE,7)t=p ,=x

¥ apm@) =TITR), Y®R)| y(r)=r = const

Hapu= f” dR(—%,R'i——isz—-f +RY 2)

i . sy@y "R
ov

; & = ADM
§—=
oT

=Hapm¥ apm

into the action functional (106). We arrive at the
action functional

S=£dtlmdr(nw&—©) ,

where 9 is identical with the expression (120).
Finally, and this is a decisive step, we impose
the coordinate conditions

T =T, ")i=p,;=rs R=RE7)|s=1, r=x)

(159)

as prescribed by Eq. (48). These coordinate con-
ditions reduce the action functional (159) to the
form

3=£wdT£”m[nw¢,,-§(R-lnw2+R¢>,R2)]. (160)

We easily recognize 3(R™'mn,*+ Ry, z°) as the Hamil-
tonian density corresponding to the cylindrical
massless scalar field ¢ propagating in a Minkow-
skian spacetime. The quantization then proceeds
along the familiar lines. We may choose the field
representation, in which ¥ apy= ¥ Apml¥(R)], and

.0
ﬂw(R)=—lW ,

and write the Schrédinger equation (50),

. 0¥ apM
i -#=£ADMLI’_ADM,

62

EADM=‘/“°dR <_%R-l Glp(R 2
()

The ADM state functional ¥ 4py is the Dirac state
functional ¥[T(¥), R(7), ()] evaluated at the point

+ %R¢,R(R)z> .

T(¥) =T =const, R(»)=7, in accordance with the
general formula (52).

Other representations may be used instead of
the y-field representation. For example, we can
take a complete set of solutions of the cylindrical
wave equation (17), construct the corresponding
creation and annihilation operators, and use the
occupation number representation. In any case,
the gravitational formalism is equivalent to that
of a standard field theory.

XVII. SUMMARY

To summarize our discussion of the quantization
of the cylindrical gravitational waves, we present
the main results in the form of a table.
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APPENDIX

We give here a formal proof of the statement
that the whole dynamical trajectory lies in the
mini-phase-space, if its initial point lies there.
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We simplify the argument by imposing the co-
ordinate conditions N;=0 as discussed in Sec. IV.
We proceed in several stages. In the first stage
we check that, under the conditions (55) on the
momenta and the condition (56) on the lapse func-
tion, the original symmetries (54) of the spatial
geometry are preserved. The central formula is
Eq. (44), determining the geometry 2;,=g;,+0gi,
on the spacelike hypersurface with the time label
f=t+ ot, if the geometry g;, on the initial spacelike
hypersurface with the time label ¢ is known. We
show that the new geometry g;, has the Killing vec-
tors £5=£(s), if the old geometry has the Killing
vectors ¢{,). We use the identity

£0(8:1,+08:i) =R g+ £ 084, (A1)

The first Lie derivative on the right-hand side of
Eq. (Al) vanishes because the old geometry admits
¢! as a Killing vector. Under the coordinate condi-
tions N; =0, we have 0g;,=0,g;,, and the second
Lie derivative vanishes because of Egs. (54), (55),
and (56). The new geometry therefore admits

E’ =t'asa Killing vector. In the coordinate system
fixed by the coordinate condition N;=0, the new
Killing vectors have the same components as the
old Killing vectors and the group structure of the
generators is therefore preserved.

In the second stage of the proof we show that the
new Killing vector £!is surface-orthogonal and
Eqgs. (60) and (63) are satisfied. We again assume
that N;=0. Then

6gi,=2NK,, 0t

and, as we have just proved, Z'=t'. On the other
hand,

Zi=§ikzk=§‘+6g“’§k'
We must show that
gikt‘é‘gk“..€‘k‘§i'k§,+2€‘k'[(NK;m§m§z)lk
~2NK; "6, ), 06 =0

Because we assume that Eqs. (60) and (63) [and
therefore also Eq. (62)] hold, the only relation to
be checked is

K, EmE, =0 (A2)

This is easy. We already know that Eq. (62) im-
plies Eq. (64), telling us that £’ is an eigenvector
of K,,. Because of this, Eq. (A2) reduces back to
Eq. (62). This completes the second stage of our
proof.

In the third stage of the proof, we check that the
new momenta 7* have the symmetries (55), if the
old momenta have the symmetries (55), the old
geometry has the symmetries (54), and the lapse
function has the symmetries (56). We again put

N,;=0, and look at the variation 5,7 ‘* given by Eq.
(45). If the geometry has the symmetry (54), then
£g1R‘k=0. Under the rules of how to apply the Lie
derivative to a product of tensor densities, we see
that £ 6,m**=0. Using the identity

£§I (77“2+ 5071'”?) =£51 Tf‘k+ £El 501l'ik,

we see that under our assumptions we arrive at
the desired result

Ly (mFrogmi*) =0,

In the fourth and last stage of the proof, we show
that the new momenta satisfy the condition (63), if
the old momenta satisfy it, the old geometry has
the symmetries (54) and (60), and the lapse func-
tion has the symmetry (56). We need only to check
that Eq. (63) is fulfifled, if 6011“’ is substituted for
7'%, This means that we must prove that §, is an
eigenvector of 6,7'*. The condition (63) is equiva-
lent to Eq. (65) telling us that £, is an eigenvector
of m*#, It is therefore also an eigenvector of
m'™r%. Of course, &,is automatically an eigenvec-
tor of g**. Looking at the structure (45) of the
variation 6,1*%, we see that it remains to be proved
that £, is an eigenvector of R** and Nt The
whole proof then reduces to the proof of the follow-
ing two statements:

(1) Every surface-orthogonal Killing vector is
an eigenvector of the Ricci tensor, i.e., R;,£*=p¢;.

(2) If a scalar function N is symmetric with re-
spect to a Killing vector &f, i.e., if

£uN=N;£=0, (A3)

then &* is an eigenvector of the matrix Nirs
Nlik £k= Vﬁi .

The condition that the Killing vector ¢* is surface-
orthogonal can be written in the form

§i€h|t+§k§1|i+£l§ilk:0~ (A4)

If we differentiate it with respect to x™, and use
the integrability condition

Eilu=—R"1ipénm
of the Killing equation, we get

‘Ei|m§kll+§k|m§1|i+€1|m§i|h

~E (EsR" iy + £, R" i + £ R” 14) =0,

We contract the last equation in the indices m and
l. Because the Killing vectors are divergenceless,
we get

=8 &R+ £, E,R";=0.
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Multiplying this equation by &%, we get the result

R"; £,= (£, ") R E7E" &4
which completes the proof of the first statement.
We now multiply Eq. (A4) by N!! and use Eq. (A3)
together with the Killing equation. We obtain the
relation
‘ﬁkgihN““'gz Ede“:O,

which can be rearranged by a repeated use of Eq.
(A3) into the form

£xN i £ - §1N|ik£‘=0 .
Multiplication of the last equation by &* shows that
& is an eigenvector of N|;,» This completes the

proof of the second statement, and with it the
proof of the whole theorem.
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