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In generalization of known results, we present rigorous sum rules for inclusive cross sec-
tions based upon conservation of momentum or of any additive discrete quantum number. In-
cluded are formulas which normalize inclusive cross sections in terms of o.

fpt8] independently
of multiplicities. The sum rules could be useful in constraining theoretical models which con-
struct inclusive cross sections without detailed reference to exclusive processes. Some ap-
plications are described and a generalization to the tensors governing weak and electromag-
netic inclusive reactions is given.

For the inclusive process a+ b- x+ (anything), it is well known that integrating the production cross sec-
tion over all momenta of particle x yields the average multiplicity of particle x times the total cross sec-
tion:
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It has been shown by Chou and Yang' that energy and momentum conservation imply
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where the sum is taken over all stable species of particles x, and E„, P„i|, E„p,~i, E„P„,are the ener-
gies and longitudinal momenta of particles x, a, and 5, respectively, in any frame.

Ne present here a collection of sum rules which generalize these results.
%'e write the exclusive cross section for producing n identical particles in the reaction a+b-1+2+ ~ ~ ~ +n

as
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where
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dp= d' p/[ E2( w2)'],

A, (x, y, z) = x +p + z —2' —2x& —2p&,

and the normalization is specified by the completeness relation
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The cross section is invariant under permutations of identical particle labels.
The partial cross section for producing n identical particles is then

() l do
~l ~n dp. . .dp

so that the total cross section is

go(n)

(6)

and the inclusive cross section for producing one particle with momentum p is

dp ~ (n —1)! ' ' " dpdp, ~ dp„'
n=1

(8)
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From Eq. (8) we easily find
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'
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/
where the last equality defines the average multiplicity. If we multiply Eq. (8) by a component p„of the
produced particle momentum and integrate over P as above, we obtain
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where the manipulations on the right-hand side use
the symmetry properties of the exclusive cross
section and momentum conservation.

The generalization of Eqs. (9) and (10) to the pro-
duction of several species of stable hadrons is
straightforward, and leads to the sum rules
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do'

d
—dp„= (n„)cr,

Combining (A), (B), and (D), we obtain

while (B) and (D), taken together, yield the second
moment sum rule

dgzfg PX
(B)

do' dG
+
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where P„ is the four-momentum of particle x.
Equation (B) expresses the momentum balance in
hadron collisions, and provides a normalization of
do/dp„ in terms of the total cross section.

These techniques may be generalized to the two-
particle inclusive cross section, which, in a sim-
plified world of one stable species, is defined as
follows:

—P„P,cJ .
(F)

Contracting tensor indices and using the definition
s =(,p+p)'=P', we get the Lorentz-invariant sum
rule

do
Px'P~

dP dP
dPxdP&+& m, ' n, =st.

X,g X

l dpdq =g n(n —l)a!")= (n(n —1))(T, (12)
dpdq

dptkf) ~ d
~
~
~ ~~ ~

u

d~~
Ip, d & dp=(&-q)„—.

In the real world with several kinds of stable
hadrons, the general results for the two-particle
distribution do/dp„dp, in the reaction a+ 5- x+y
+ (anything) are

dp„dp, =(n„n, —n„5„,)o,l dcJ

PX PP
(C)

dpdq ~ (n -2)! ' " dpdqdp, ~ dp„'

(11)

Proceeding as in Eqs. (9) and (10), we find the sum
rules

QQ„n„=Q =Q, +Q, , (14)

where nx is the multiplicity and Q„ is the charge
(or baryon number, etc.) of the stable hadronic
species x produced in the final state. If we form
the integrated inclusive distribution for production
of species x, and use Eqs. (14) and (A), the sum
rule

Further generalization of these techniques to n-
particle inclusive cross sections is possible, and
leads to sum rules relating integrals over m-parti-
cle distributions, for m ~ n.

A new class of sum rules can be derived, based
on the conservation of any discrete additive quan-
tum number such as charge, baryon number, etc.
The conservation law demands that in any exclusive
process initiated by particles a and b,

dO' d 0'

""dp„dp, " ""dp (D)
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follows immediately. It is also straightforward to
show that

QQ„(n„n, ) =Q(n, ) .

The sum rules (A)-(I) must be satisfied in all
theoretical models for inclusive reactions. Of
course, if one constructs inclusive distributions
as integrals of exclusive cross sections, they
would be satisfied trivially. However, in theoret-
ical approaches which construct 2-2 and 3-3 ampli-
tudes without detailed use of unitarity, the sum
rules become nontrivial constraints expressing
part of the unitarity requirement. As an example,
using Mueller's' approach, the asymptotic behavior
of the 3-3 amplitude is described by a set of Regge
parameters which must be constrained by sum rule
(B) if unitarity is to be satisfied. Curiously, sum
rule (B) is a consequence of exact units, rity, valid
at all energies, which explicitly involves only am-
plitudes with six or fewer external lines.

The possibility of using inclusive reactions and
optical theorems for deriving bootstrap conditions
has been proposed recently, ' with special emphasis
on constraining the coupling constant of dual mod-
els. The sum rule (B) is indeed an exact constraint
which can be used to that purpose.

Because they are based solely on energy conser-
vation, sum rules (B), (D), and (F) might be of
some use in checking the normalization or produc-
tion cross sections in counter experiments; how-
ever, their usefulness is limited, since it is neces-
sary to sum over all particle species, including
neutral species, which are difficult to detect.
Neutral particles often carry off appreciable frac-
tions of the total energy. The sum over cross sec-
tions for produced charge species is subject to an
inequality constraint, but this would be easily sat-
isfied by data unless large normalization errors
w'ere present.

At high energy it is possible to isolate regions of

phase space which separately saturate sum rules.
From sum rule (B), applied in the c.m. frame, we
can deduce approximately

(15)

where p„l = )J.s x/2 and the integral covers half the
phase space. In sum rule (G), the dominant con-
tribution comes from the first term on the left
side, integrated only in the double-fragmentation
region where p„~ p, - s.

One can also use sum rule (B) to deduce, without
supplemental counting arguments, that the triple
Pomeranchukon vertex must vanish4 at zero mo-
mentum transfer in any theory with a Pomeran-
chukon Regge pole at o, q, (0) = 1.

It should be pointed out that sum rule (B) for the
energy component, in conjunction with the Frois-
sart bound ' for 0, gives the inequality

dP„(E„/Er ) & c(lns)' .f 40'

Further, by restriction to the integration region
(E„/Er) & f where f is a positive fraction and Er
is the total energy, one obtains

dp„& cf '(lns)'.J cf 0'

. Ez&fEZ ~Px

These trivial but rigorous inequalities are of in-
terest only because integrals of the inclusive cross
section are not, a priori, bounded from above by
0'.

The techniques of this paper can be applied to
discontinuities of arbitrary S-matrix elements, or
to weak processes such as deep-inelastic electro-
production, lepton-pair annihilation, and others.
With normalization specified in Eq. (5) and for a
world with one stable hadron species, we write the
discontinuity~ in the variable P' in the k- j scatter-
ing amplitude as

1 n

»qq(K (l lq lq. ' '(rrr& = I,—, r(q, r(q„((rl ''(rllq'lq "'q. &(q, q'. lql(r, q ) (qq)'q' I q)qn!n=1

and, in the variable (P-q) in the (0+ I)- (j+ I) amplitude, a.s

»sc(p1 "pa qlT'lp, 'P& q)

1
n

qq. qq(q ~ .q lqr)qq. ' . q& (qq. "' q lq Iq, '
qr& (q &'q' &-q --.I q )tl =1 i=1

Then, using momentum conservation and identical-particle symmetry, we find
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(2o)

where P„=Q', ,pI„= Q', ,p». In the real world, the left-hand side of Eq. (20) would include a sum over
stable hadron species.

Finally, we write the tensors which describe the electroproduction processes e+ a- e+ (anything) and
e+ a- e+ x+ (anything) in a one-species world as

(21)

and

(22)

where p, q, and k are the momenta of incident hadron, incident virtual photon, and detected final hadron,
respectively. One then easily derives the identity

Q f &&. &.%„.0', q, ).) = (t + e) i)(',.(u, e), (22)

valid in the real world, where it perhaps can be used to constrain theoretical models for electroproduction
based on partons, light-cone expansions, and approximations to field theory.

Note added in proof. An unpublished report describing very similar work has recently come to our atten
tion. It is by Dr. K.-J. Biebl and Dr. J. Wolf of the Institut fear Hochenergiephysik, Deutsche Akademie der
Wissenschaften zu Berlin, Berlin-Zeuthen, DDR.
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