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The parity rule for natural- and unnatural-parity exchange is proved on the basis of the
L-S scheme. The parity rule is shown to be a general feature of t-channel exchange proces-
ses. Experimental consequences of the parity rule are discussed. The s-channel helicity
conservation in p photoproduction is considered on the basis of the Regge-pole model with
L -S coupling and general arguments from the complex-angular-momentum theory. It is
found that the s-channel helicity conservation in p photoproduction can be described by the
coupling I =n-2, S =2 with a multiplicative fixed pole at the nonsense wrong-signature
point n =1.

I. INTRODUCTION

One of the difficulties encountered by the Regge-
pole theory' ' is the description of the coupling
between the exchanged Regge pole and the external
particles with spin. Considerable progress has
been made, among other things, by the introduc-
tion of the concept of parity-conserving amplitude'
and the investigation of its kinematical singulari-
ties. '

From a phenomenological analysis of resonance-
production data, ' the author has earlier proposed
a model' to describe the Regge-pole couplings,
which is based on the L-S scheme. This model
has been applied to simple processes. ' One cannot
hope to be able to explain detailed aspects, such
as polarization, from such a simple model. For
the explanation of polarization, additional correc-
tion terms to the Regge-pole contribution will be
required. " As a first approximation, neverthe-
less, this model is still of interest, since the
residues are characterized by the total spins of
the external particles as a manifestation of the
residueAependence on the external spins and
quantum numbers. This might be useful, since
one of the sources of ambiguities in Regge-pole
models is the parametrization of the residues.

The L-S scheme itself has been shown to be use-
ful in the study of the kinematical factors and the
threshold condition by Jackson and Hite."

Recently, more data suitable for the study of
these couplings became available. These data are

the data summarized in the Morrison empirical
rule" and the data on the spin-density matrices
for p' photoproduction, "which indicate s-channe1.
helicity conservation. ""

The Morrison rule" gives the condition for the
appearance of the diffraction scattering stated in
terms of spins and parities of the external parti-
cles involved in the vertices of the corresponding
t-channel exchange process. The rule is stated in
Sec. III. This rule is an attempt to classify the
dynamics of the diffraction phenomena. The rule
as it is stated suggests its intimate relationship
with the nature of the coupling at the t-channel
vertices. Leader"" has shown that the rule for a
spin-0-induced reaction is implied by the kinemat-
ics of the reaction. Considering that this rule has
so far not been established for diffraction processes
induced by particles with nonzero spin, it is pos-
sible that this rule has its origin in the kinematics
alone. On the other hand, the s-channel helicity
conservation might be related to the dynamics of
the diffraction phenomenon, e.g., due to the nature
of the above-mentioned coupling. In this case the
Morrison rule would be valid only for a spin-0-
induced reaction and the approximate s-channel
helicity conservation is a characteristic of the
diffraction phenomenon. These considerations are
the motivation for the present investigation. ""

Note that the evidence for s-channel helicity con-
servation in p photoproduction comes from the
measurement of the spin-density matrix of the pro-
duced p'.
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The density matrices in general, roughly speak-
ing, depend on ratios of bilinear combinations of
the helicity amplitudes. Unlike the polarization,
the density matrices are less sensitive to small
phase differences between the components of the
helicity amplitude. ' If only one particular ex-
change is dominant, the main features of the den-
sity matrix are determined by the ~atios between
the components of this dominant exchanged ampli-
tude. In ordinary Regge-pole exchange, these
amplitude ratios reduce to residue ratios, which
are characteristic of the coupling, and the trajec-
tory dependence cancels out. Consequently, the
spin-density matrix becomes less sensitive to the
details of the trajectory at least in a small-momen-
tum-transfer t region, like the diffraction region"
(ltl& o 4 Ge&'&.

Experiments show that natural-parity exchange
is dominant in p' photoproduction. ""This domi-
nant exchange is the Pomeranchon exchange. Pre-
sumably there is also a contribution from Regge
cuts." If these cuts are important, then the above
arguments have to be modified because the ampli-
tude ratio does not depend only on the residue of
the pole but also on the relative magnitude of the
pole and the strength of the cut. It will be assumed
that the shielding cuts either are negligible or do
not seriously affect the description of the density
matrices in terms of the Regge pole only.

In connection with the s-channel helicity conser-
vation, two problems have been raised. First, it
is possible that s-channel helicity conservation
alone is sufficient to exclude the t-channel ex-
change description. It is shown that a certain /-
channel coupling picture has been ruled out by s-
channel helicity conservation in p photoproduction. "
Reference 14 has shown that s-channel helicity con-
servation is compatible with a t-channel exchange
description with factorizable couplings in the
processes nm -w~, mN-mN and NN-NN and mm

7TA j p
7l'7T A yA y Moreover, it is conj ectured'

that it is possible to describe the diffraction phen-
omenon with a t-channel exchange process with
factorizable couplings in a special way to result
in s-channel helicity conservation. If one wishes
to maintain the t-channel picture, the second
question which remains is then the dynamical ori-
gin for the special coupling.

Preliminary results of the present investigation
have been reported. " It is found that the Morrison
rule for spin-0-induced reactions can be shown
from the kinematics alone, on the basis of the L-S
scheme. In the general case a modification of the
rule, referred to as "the parity rule" for natural-
parity exchange, based on the same scheme has
been proposed. Concerning the s-channel helicity
conservation in p photoproduction, it is found that

Sg = s~ + s~

C, Sc~ mc

5, Sb, mb S~ = Sb+ Sg sg, mg

FIG. 1. The s-channel reaction is a+b~c+d; the
t-channel reaction is 0+b c+a; m„=the mass of x;
s„=the spin of x; $„=the intrinsic parity of x. L;&& =the
orbital angular momentum in the initial (final} state t-
channel reaction. S&& = the total spin of the external
particles at initial (final) state t-channel vertices. In
photoproduction the convention used is such that the t-
channel process is Ã+N po+y; p =total helicity of the
ÃN system and A. =total helicity of the p, y system.

the t-channel description for this process is com-
patible provided the coupling chooses a special
form expressed in terms of the residue ratios.

In this paper we extend the parity rule to unnatu-
ral-parity exchange. From the derivation of the
parity rule it is suggestive that the parity rule is
a general feature of the t cha-nnel exchange pro
cesses. As to the s-channel helicity conservation,
it is shown that exactly the above-mentioned con-
straint on the residue ratios can be naturally sat-
isfied within the model with the L-S scheme and
the general framework of complex angular momen-
tum. ' 4 It is found that the data require a multipli-
cative fixed pole" "at the wrong-signature point
o. =1. The particular coupling in our model, which
can accommodate this multiplicative fixed pole,
has the residue ratios required for the s-channel
helicity conservation. This result is compatible
with the assumption stated above concerning the
effect of cuts on the density matrices. "

In Sec. II we define the notation and review the
essentials of the L-S scheme. In Sec. III the parity
rule for the natural and unnatural parity is derived.
Some illustrative examples are discussed. In Sec.
IV the structure of t-channel helicity amplitudes
within the L-S scheme is presented. In Sec. V we
derive the relation between the p' spin-density
matrices and the t-channel amplitudes in p' photo-
production by linearly polarized y's. The expres-
sion for the spin-density matrices due to Regge
exchange with a general coupling is also given in
this section. In Sec. VI the spin-density matrices,
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according to the s-channel helicity conservation,
are expressed in the Gottfried-Jackson frame and
the necessary coupling to produce s-channel heli-

city conservation is identified. The conclusions
are summarized in Sec. VIII.

II. THE L-S COUPLING SCHEME IN THE REGGE-POLE MODEL

We are concerned with the reaction

a+b-c+d.
The physical process (I) occurs in the s channel and the i channel will be defined by the process

0+5-c+ a. (2)

The helicity of the particle x will be denoted by x, its mass by m„, and its spin by s„, where x=a, b, c,
d. The helicity amplitude in the i channel will be denotedby f„- n, (s, i) or simply f&„„(s,t), where A. =c a-
and p=d —b; the s-channel amplitude will be denoted by f;~ „.For convenience, these notations are
shown in Fig. 1. For the application to p photoproduction it will be helpful to remember that A. is the heii-
eity of the boson system (p, y) and». is that of the NN system. The kinematical variables s and i are de-
fined as usual: s = (p, +p,)' and f = (p, -p, )'. The partial-wave expansion for f~„ is given by

fi„(s, f) =g(Z+ z)f~,d„'~(z, ),

where z, =cosa, and 0, -=production angle in the t channel. The general expression for z, is

z, = [2st+ i' —tom'+ (m, ' —m~')(m, ' —m, ')],
ac bg

where

T,~'=[i —(m;+m~)'][i —(m, —m,.)'], i,j =ac, bd.

The total spins in the i-channel will be denoted by Sz = s-, +s, and 5, = s„-+s, and the addition of the spins
follows the usual rule of addition of angular momenta (see Fig. I). In the t channel, the Regge pole will be
coupled to the particles in the initial (final) state with the orbital angular momenta L,&&

such that J = L,.&&

+8;+&. Note that the mismatch between the total angular momenta J and the orbital angular momenta L,
viz. , J -L, is always an integer. The L-S scheme can be introduced in the partial-wave expansion (3);
this leads to the relation

f~- p$
= Q(JAIL f Sfac&(L~S~If IL,S,&(L&S)bd IJ&)&.

L$S

where the coupling coefficient is given by

«&IL,s,ac&= ~ &L,s,o& I~&&(s.s„'acls~». -2L, +y»2

The general expression for the Regge-pole contribution is given by"'

f~„s,(a)Ã~„(l!R~~(!)d~~( I(=." '"
)0

(6)

It&„(f)=&&~& IL, S,ac&&L, S, l
p"IL&si&(L~S;, bd

I au&.
L$S

For brevity we shall denote (L~s&Ip"IL;S,& by p ~ & !si(o). We refer to Ref. 6 for the phenomenological
arguments for introducing the L-S scheme.

The explicit expression for d~„(z) for large z is given by"
d~ (z)-s~~«»&l~-& ly (n)[-, (l+z)]l~+&!I~2[-,(I z)]l~-&li2(~)~ s[l+0(i/zz)],

(6)

where I= max(I&&. I, I p I) and S+(o) = [I+ e "&'&]/[2sin n'o. (t)] is the signature factor; K~„(t) is the kinematic
factor as derived from the crossing properties and B&"„(t) is the Regge residue of the amplitude fz„. There
are certain ambiguities in choosing the kinematic factors. We shall always choose the evasive solution, "
which is also compatible with the L-S scheme. "

If the Sommerfeld-Watson transform is applied to the partial-wave expansion, with the L-S scheme, then
we obtain the residue parametrization according to L„L&, S„S&. The relation between the residue Jl~„
and the residues in the L-S scheme is given by
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where q= sgnimx, and the normalization factor +„(o.) is given by

( )
(2o+1)!

[(o.+ M)t(o. —M)t(Q+ N)!(e —N)!]'t'

where M =max((A ), )p() and N =min()A), (p)}. For noninteger x, then, x!=I'(x+1).

(10)

III. THE PARITY RULES

q =$-, t',(-1)~ ~ =+1. (12)

Note that the angular-momentum mismatch J—I
is an integer. The Clebsch-Gordan coefficient

(&tSy,'00~«)~ g0 if ( 1)~ ~'s=+-1.I. S n

From Eqs. (12) and (13) one then obtains Eq. (11).
For the unnatural parity, condition (12) becomes

Together with (13), the condition for the coupling
of unnatural parity to f,„becomes

Sy (14)

Let us consider some illustrative examples. The
reaction PN -P'N, '

where P, P' is a 0 meson
and N is the nucleon, satisfies (11) and does not
satisfy (14). Therefore, only natural parity can be
exchanged in this reaction. Similarly, according
to these equations, for PN- SN, ' where S is a 0'
meson, only unnatural parity can be exchanged in
the t channel. These we11-known results can also
easily be obtained using the parity-conserving

In a recent paper the parity rule for natural-
parity exchange and its role in the diffraction
scattering has been reported. In this section it is
generalized to the case of unnatural-parity ex-
change. The parity rule can be stated as follows.
In the reaction (1), the natura/ parity -exchange
will be coupled to the t-channel helicity amplitudes

f, „(s, t) for alt s and t, only if the parities $-, and

(, satisfy the relation

~-.~.=(-I)'~,
where 5z—- s-, +s,. The corresponding rule for the
bd vertex can be obtained by replacing a by d, c
by b, and S& by S,. The reason for considering
only the f,'„amplitude has been discussed in Ref.
22.

In order to prove the parity rule for the natural-
parity exchange, we need Eq. (8) and substitute
A. = 0. Then

R „(t)cc (n0~1&S&ac)~ (I&S&, 00~ «).
Since P = $;$,(-1) ~, then it follows that q =+1 is
equivalent to

amplitude. "
Let us consider the application of the parity

rules to the p' photoproduction yp -p'p. Possible
total angular momenta in the boson vertex are
S&=0, 1, 2. The total spin of the external particles
in the coupling to the exchanged object depends on
the C and P quantum numbers. Since for the neu-
tral system yp, C = (-1)~&' s& and P = t &)~(-1)~t,
then CP = (-1)s&$z$p. If the exchanged particle has
CP =+1, then it is coupled to yp' with total spin S~
= 0, 2 and those with quantum number CP = -1 are
coupled with Sz ——1. Then it follows from Eqs. (11)
and (14) that the natural-parity exchange with CP
=+1 will be coupled to f» and the unnatural-parity
exchange with CP =+1 (such as A, ) will be decou-
pled from the amplitude f». On the other hand,
unnatural-parity exchange with CP = -1 (e.g., w, 7!,
B) according to Eq. (14) will be coupled to f,~. In
Regge-pole exchange, this unnatural-parity con-
tribution is suppressed by a factor O(&t)."~"

In the NNvertex, it can easily be shown that ex-
change of CP =+1 will be coupled to the NN system
in the triplet state and exchange of CP = -1 will be
coupled to NN in the singlet state. ' According to
(11), the natural parity will be coupled to f~„and
according to (14), the unnatural parity with CP =+1
will be decoupled from f~,. The exchange of un-
natural parity with CP=-1 is only coupled to fz,
due to S; =0. From these properties it follows
that in any reaction aN-cNthere can be no inter-
ference between unnatural-parity-exchange ampli-
tudes with CP =+1 and CP = -1.

The possible connection between the parity rule
and the Morrison rule has been discussed in Ref.
22. The Morrison rule can be stated as follows:
For the diffraction peak to be observed it is neces-
sary that (1) Pomeranchon exchange be allowed,
e.g., by 0-parity conservation, (2) parities and
spins of the particles involved in the reaction on
each vertex satisfy the relation

« =(-I)!"-"!.
This rule is an attempt to classify the dynamics of
the diffraction scattering.

For spin-0-induced reactions, this rule seems to
be established. However, its validity for diffrac-
tion scattering induced by particles with nonzero
spin still requires experimental support. For S,
=0, the Morrison rule (2) is equivalent to the
parity rule stated above. This observation raises
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the possibility that the Morrison rule might be
equivalent to the parity rule, which arises from
the kinematics alone. It.is possible to distinguish
these two alternatives by looking at the reactions,
which the Morrison rule does not allow, but which
is allowed by the parity rule. An example of this
reaction is the production of N*(1535) with J~= a .
According to the Morrison rule this isobar cannot
be produced diffractively, while according to the
parity rule this production can be diffractive. The
possibility of diffractive N*(1535) production is
not yet excluded by recent experiments on pp
-pN*(1535)."" Another example is the B' photo-

production. Assuming J"=1+ and C„=-1 for B',
then Pomeranchon exchange is allowed. Accord-
ing to the Morrison rule (2), B' photoproduction
will not proceed diffractively, while by the parity
rule, diffractive B' photoproduction is allowed.
The parity rule requires that B' photoproduction
proceed's with Sf = 1.

The above-mentioned examples show that the
parity rule is a general characteristic of t-channel
exchange processes. The fact that diffraction
scattering is compatible with the parity rule in-
dicates that the diffraction scattering is also a
t-channel exchange process.

IV. THE STRUCTURE OF THE HELICITY AMPLITUDE IN THE J.-SSCHEME

For simplicity, in this section we shall restrict ourselves to the structure of the helicity amplitude in
yp-p'p for natural-parity exchange. The kinematical factors for this reaction are K~„(t)~O(1) for @=0
and K~„(t)= O(Wt) for p, g0,"and therefore the dominant amplitudes near the forward direction are f~, (X

=0, 1, 2). Using Eqs. (I) and (9), the Regge-pole contribution is given by

f,.= S(n)p,.[-'(I+ ~)]!"'!'[-'(I—~)]!"-"!'(s/s.)""'-", (15)

where P~, = R~,P~, and P~, is given by Eq. (10). In the following the problem is to find the helicity depen-
dence of the residue Pz, for a particular coupling. We have shown in Sec. III that for natural parity the
relevant couplings are S = 0, I.=4 and S= 2, I.=J,J+ 2. When there is mixing between various couplings,
we have the relation

P~o =ZP~'0
L,S

(16)

according to Eq. (8). Explicit calculation of the relevant Clebsch-Gordan coefficients" gives the following
results. The orbital part of the coupling coefficient (L&S~OA, ~

nA) in Eq. (6) is

(n+~)!(n-~)! '"
(n —2, 2; OXI ~)=

(2+3.)!(2—A.)!

(n, 2; Ox
~
m)=+ [2(n+ 1) -x'(2n —1)];; c(n),

(n+A. }!(n-A.)! '~'

(-1)'a,(n)
[(n+x)!(n -x}!(2+x}!(2-X)t]'~' '

(16)

(19)

(n, 0; OX
~
(A) = 1,

where

(2 n 4)I4l

(n —2)! (2 n)!

2 (2 n+ 1)(2n —2)!
(n —1)! (2 n+ 3)!

, (2n+1)!4! ' '
a (n) (n+ 2)

( 5)t

The relevant spin part (S,S„ac~SfA) of the coupling coefficient in Eq. (6) is given by

1 (2+x)!(2-x)!
v 6 (1+a)!(1—a)!(1+c)I(l —c)!

and

(1, I;ac ~0, 0)= 1/W3.

(20)

(21)

(22)

(23)

(24)

(25)
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Using Eq. (8), we obtain the following results for the residues p~~p~:

[(1+a)!(1—a)!(1+c)!(1—c)']' '

[2(u+ 1) -A. '(2u —1)]C(u)
[(1+a)!(1—a)!(1+c)!(1—c)']'~' '

n+2, 2 n+ 2,2 A+ (u)
[(1+a)!(1—a)!(1+c)!(1—c)!]'~'(u+X)!(u-X)!'

(27)

(28)

where

1 (2u —3)!4! 'i2 (2u+1)!
2 6 (2u+ 1)l ul(u —2)l'

2 (2u+1)! (2u+1)(2u —2)!
~6 u!(u —1)! (2u+ 3)!

(29)

the subscript ss for A. =O, 1 and p, =0, where A. is
the helicity associated to the boson vertex and p.

is the helicity associated with the NN vertex.
Let us consider the behavior of the residues for

each coupling L-S. The residue P~,"according
to Eq. (26) behaves like

(30) P„" ' A(u), p" 2'2 «A (u) (33)

(u+2)!(2u+1)! (2u)!4!
+' ' u! (2u+ 4)!

P~o=~ '&p~.

As is well known, " "the helicity amplitudes
have fixed poles at nonsense wrong-signature
points. These poles are compatible with the con-
tinued unitarity conditions' "in the t channel,
because of the presence of the shielding cuts. As
far as the high-energy behavior in the s channel is
concerned, the relevant question is whether a
fixed pole and a Regge pole appear in additive or
multiplicative form. In the first case,"the fixed
pole does not influence the high-energy behavior,
but in the second case, ' it gives rise to a factor
[u(t)-1] ' in the Regge-pole residue and generally
prevents the decoupling of the trajectory at the
point u(f) =1. The decision a,s to whether a fixed
pole and a Regge pole appear in additive or multi-
plicative form can only come from the dynamics of
the model. ' Fixed poles at wrong-signature points,
multiplicative or additive, require shielding cuts4
which are moving branch points u, (t) in the com-
plex angular momentum, with u, (0) = 1. For later
discussion we shall assume that these shielding
cuts are either negligible or do not seriously
affect the description of the density matrices in
terms of the poles only. This assumption will be
justified when comparison with the data is made.

Consider now the special case of p' photoproduc-
tion. For the Pomeranchon exchange, the point
n =1 is a wrong-signature point. The amplitude

f2p corresponds to a nonsense -sense transition
(n, s) and the amplitudes f„and f«describe the
sense-sense transition (s, s). Note that in the
residue P~p of the amplitude we have included the
coefficients P~, coming from the asymptotic form
of the rotation functions. For brevity, in this
section we use the index ns for A. = 2 and p, = 0, and

It follows from Eq. (29) that the coefficient A near
u = 1 behaves like A (u) «(u —1), unless the residue
has a pole at a=1. Therefore, we have the follow-

, ing possibilities for the coupling with L = a —2 and
S=2

(a) The residue is regular near u= 1; then

P.".""(u—1), P.." (u —1).

(b) The residue has a pole at u= 1; then

pn 2,2 O(l ) pn-2, n P(l )

In the usual terminology" case (a) corresponds
to the Gell-Mann nonsense-choosing mechanism
and case (b) corresponds to a multiplicative fixed
pole at the wrong-signature point n = 1 mentioned
above. These two alternatives can be distinguished
by looking at the contribution of nonsense-sense
transition a,mplitude f„, (i.e., f„in this case) to
the observed spin-density matrix. It is helpful to
keep these remarks in mind since they will be es-
sential for our discussions in the following sections.

The other coupling does not enter into our dis-
cussions in the later sections. For completeness
we shall indicate their behavior near the wrong-
signature point n = 1. The coupling with L = n,
a+2, and S=2, satisfy the following property:

P~,' ~ (u - 1) and P~' = 0(l),

which correspond to the sense-choosing mechanism
in the usual terminology. Finally, the coupling
with L = n, S = 0 corresponds to the coupling in
which t-channel helicity is conserved. " Note that
this behavior changes as we go into wrong-signa-
ture points o. =n, where n is a negative integer.
However, this i's irrelevant for the present prob-
lem.

The ratios of the residues which will be needed
later are as follows:
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&-2,2 +-2,2
20

+oo +oo

p 0 p 1
Pa!2 0 P(K2 ~2(++ 1) 0

(34)

(35)

concerned with the experiments using linearly
polarized y, the discussion will be restricted to
pz„, p~„, and p~„. The explicit expression of (39),
(40), and (41) is

pC+2, 2 pR+2, 2

+20 P OO++~ (36)

0 1 S SQ
PkV Z fXNt, yNf VN', yNt

zv ~NN
(43)

V. DECAY DENSITY MATRIX

IN p PHOTOPRODUCTION

For the sake of completeness, the expression
for the measured spin-density matrices, in terms
of the s-channel helicity amplitudes, "will be re-
viewed briefly. Then, these quantities will be ex-
pressed in terms of the t-channel helicity ampli-
tudes.

Let p(y) be the spin-density matrix of the polar-
ized incident photon beam in the reaction yp -p'p.
This matrix can be expanded in terms of the com-
plete set of 2@2 matrix basis I, o, where o are
the Pauli spin matrices and I is the unit matrix.
This expansion is given by

p(y) = -.'I+ 22y p, (3 7)

where P is the degree of polarization. If the s-
channel amplitude of the reaction yP p'P is f',
then the spin-density matrix of the p in the final
state p~„(V) will be given by

p, „(V)= Lf'p(y)f']„.
Since p(y) is linear in 0, then p( V) can be ex-
pressed as a linear function of P as follows:

(38)

pz„(V) =p'„(V)+XI py, „(V),
Ot= 1

where

(39)

(40)

p,"„(V)=„If" f'l... — (41)

with a =1, 2, 3. The normalization factor N. is thus
chosen such that Trp~~(V) =1, which gives

~=Elf;,I'. (42)
Xp

gS+
phd &y ~ ~ kN', —yN~ VN', yNtzv yNN

(44)

0 1
PkX. P Zf Xg, NNf k'y, NN

yNR
(46)

PXV p M J X.-y, NNf Vy, NNx
yNN

(47)

1
pXV ~ Z yf y.-y, NNf Vy, NN'

yEN

The relevant property of the photon crossing ma-
trix is that the crossing matrix is diagonal due to
the zero mass of the photon. "

Using the Regge-pole contribution given by Eq.
(15), substituted into (46)-(48), we obtain

(48)

2m m (49)

1
A~ =y Z yf gN, yNf g*~. ,yN, (45)

yNN'

where y, N, N' are the helicities of y, N, N'. The
expressions (43)-(45) give the density matrices,
expressed in terms of the s-channel amplitudes,
which are measured in the helicity frame. The
helicity frame is the rest frame of p' with the z
axis chosen opposite to the direction of the out-
going proton. For testing the t-exchange model it
is more convenient to use the Gottfried-Jackson
frame. " The Gottfried-Jackson (GJ) frame is
defined to be the rest frame of the p meson with
the choice of the z axis along the direction of the
incident photons.

It can easily be shown, using the orthogonality
properties of the crossing matrices" of the nu-
cleons N and N' and those of the photon crossing
matrix, that in the GJ frame the density matrices
are

The spin-density matrices will then appear as
parameters in the observed angular distributions
of the p' decay. We refer to Ref. 34 for the de-
tails of these angular distributions. The informa-
tion which can be extracted from the p -meson de-
cay are as follows. The spin-density matrix p~„
can be obtained from the unpolarized-beam ex-
periment. From the linearly polarized beam ex-
periments one can extract the density matrices
pz„and p~„, and the circularly polarized experi-
ments will give information on p'„„. Since we are

2 2 mNmp Ppp 2

2mNmp, Ppp

2mm P

(50)

(51)

(52)

(53)
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p', , =2+ O(y'), (55)

(56)

Imp', , =--,'+ O(y2), (57)

where y = t/mz', taking into account only the domi-
nant amplitude f~, (A. =0, 1, 2). In obtaining these
density matrices, the approximation e = st/
m„mz' has been used. This is legitimate, because
we are concerned only about the diffraction region
in which ~t~&0.4 GeV'.

VI. sXHANNEL HELICITY CONSERVATION

(56)SfpN', yN gNy6N'N6py

Substitution of this ansatz into Egs. (43)-(45) leads
to the following expressions for the density ma-
trices:

0
P y.v 2(4i~|v+ ~x, -x&-|v)~

py g'
——a(6g ~6),',+|+6g~6v, -|)~1

(59)

(60)

(61)imp') v = &(4,-i~xi —4x~x.-i)

In the heIicity-conservation model" a= & for q =+1
exchange. The density matrices in Eqs. (59), (60)
are measured in the helicity frame. The density
matrix in the GJ frame p'„&. is related to the den-
sity matrix in the helicity frame p~». by the equa-
tjon21 34

Pyy~ d y.p(e}PNN~dp~V( e)t

where

1+~ 2v'-ycosP=, sing= 1

(62)

(63)

y = i/mz', and d~&,„ is the rotation function. Per-
forming the transformation (62) up to the order y,
for the near-forward direction, the data can be
represented well by

In this section the prediction given by Egs. (49)
-(57}will be compared with the experimental data.
In order to do this, the data will be expressed
analytically near the forward direction, using the
experimental fact that s-channel helicity is con-
served. The helicity conservation can be ex-
pressed by demanding that the s-channel helicity
amplitude be given by"'~

Imp|'0=~2-2y, Imp', , =-2(1+2y). (66)

Let us first of all consider the contributions of
the sense-nonsense amplitude f» into the density
matrix in the first order. From Egs. (51) and (53)
it follows that the sense-nonsense amplitude f„
contributes to p', , and p11 for the wrong-signa-
ture point a =1 of the Pomeranchon. The experi-
mental points clearly exclude the possibility p1
=0 and P1, =Gin the diffraction region ~t~(0.4
(GeV)'. Therefore, there are contributions from
the sense-nonsense transition amplitude. In Sec.
IV we have noted that there are two possibilities
for the L=a-2, S=2 coupling. First, the non-
sense-chosing mechanism which does not contri-
bute to the sense-nonsense transition amplitude
and, secondly, the multiplicative fixed pole at the
wrong-signature point, which does lead to a non-
vanishing sense-nonsense transition amplitude.
Since the data prefer a choice of f„,x0, it follows
that the coupling L= a-2, 8=2 must be present
and, from the general argument in p' photoproduc-
tion, this corresponds to the wrong-signature point .

multiplicative fixed pole. In addition to this, if one
uses the ratio of the residue coupling given by (34)
and takes s, =2mNm~ in Egs. (49)-(57), then one
obtains Eqs. (64)-(66), with the exception of the
equations for p,', and Imp', , in the terms of order

This is due to an approximation where f» is
neglected with respect to f„, since f„=O(1) and

f„=O(v t }which comes from the angular factor
2(1- e,')' '. While this gives a higher-order ef-
fect in 7, in other density matrices it will give a
O(y} correction in p', , and Imp,', .

The result of this section can be summarized as
follows. The data prefer the contribution of sense-
nonsense amplitude; hence there is the L= e-2,
S =2 coupling at the wrong-signature point u = 1,
with a multiplicative fixed pole. Subsequently, the
choice of this coupling with multiplicative fixed
pole gives the spin-density matrices which show
the s-channel helicity conservation. Considering
the fact that a shielding-cut contribution is pre-
sent, ""this result is consistent with the assump-
tion that these shielding cuts are either negligible
or do not seriously affect the description of the
density matrices in terms of the multiplicative
fixed pole only.

VII. CONCLUSION

The discussions and conclusions in the previous
sections can be summarized as follows.

A. The Parity Rule

p00 =-27~ p'„=2v'-2T p', (64}

p'„= gv' 2y, p-', , -=g(1+ 2y),
(65)

Consider the vertex ea in which the spins are s,
and s;. The total spin of the external particle is
S&=s,+s;. In the coupling to the Regge exchange,
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the system ca has orbital angular momentum L&,
such that the total angular momentum J = Lz+ 5»
(see Fig. 1). Denoting the Regge-exchange contri-
bution to the t-channel amplitude by f~„=f'„„+f~„,
where f~& is the contribution from natural- (un-
natural-} parity exchange, the parity rule can be
stated as follows: f,'„u0 only if the condition
$A, =+(-1)~& is satisfied. If the above-stated con-
dition is not satisfied, then f,'„=0 for all s and t.
If the Regge exchange has a quantum number C xI',
evenness or oddness of Sz is determined by the
relation

if C conservation applies.
Remarks. In obtaining the parity rule, we have

used only the I -S scheme and the well-known re-
lations between the quantum numbers C and I' of a
system with spin and orbital angular momentum.
The addition of spins at the vertices is specific to
t-channel exchange processes. Therefore, this
rule is a general feature of t-channel exchange.
A consequence of this rule is that for Pomeranchon
exchange, in order that the diffraction be observed,
the intrinsic parities $-„ t', and the total spin must
satisfy the relation $-, $, = (-1}~~. For a spin-0-in-
duced reaction, this rule is equivalent to the Mor-
rison rule. For a nonzero-spin-induced reaction,
this rule leads to different consequences. For
example, from the parity rule it is expected that
the 8' photoproduction and the N*, with J = ~, &

yroduction, are expected to be produced diffracti-
vely. These possibilities are at present not yet
excluded by the experiments. Since the parity rule
seems to be satisfied by the diffraction processes
it may suggest that the diffraction phenomenon is
a t-channel exchange process.

B. Helicity Conservation in p Photoproduction

The natural-parity exchange in p' yhotoproduction
can couple to the boson vertex with Sz = 0, 2. A
priori, the coupling with Sz = 2 and angular momenta
L = e —2 at the wrong-signature point a = 1 is con-
sistent either with a nonsense mechanism or with
a multiplicative fixed pole at the wrong-signature
point. In the first case the amplitude does not con-
tribute to the high-energy behavior, while in the
second case, the amplitude does contribute to the
high-energy behavior, in particular, the nonsense-
sense amplitude gives a nonvanishing contribution.
This is a well-known property in the Regge-pole
theory. The other couylings with Sf = 2, L = 0,,
a+2, will lead to the nonsense-sense transition
amplitude f»=0 at n=1. The experiment re-
quires a nonvanishing amplitude f» in the diffrac-

tion region, therefore it prefers the coupling Sz= 2,
L = g -2. From the residue ratios it is found that
the residue ratio of this coupling by itself gives
the s-Ichannel helicity-conserving density matrices
in p' photoproduction by linearly polarized photons.
Therefore we may conclude that the data indicate
that the diffraction in p photoproduction occurs al-
most entirely through l = o. - 2 wave with a multi-
plicative fixed pole. The implications of this re-
sult on the cut contribution in the framework of
complex-angular-momentum theory' ~ will be
discussed below.

In the discussion of the s-channel helicity con-
servation we have used the classification of pos-
sible couplings according to the Regge-pole model
with L-S coupling. In addition to these, we use
general arguments from the theory of complex
angular momentum' 4. According to the latter,
we know that in general there are two types of
fixed poles: i.e., the additive and multiplicative
fixed pole at the wrong-signature point o. =1. The
additive fixed pole does not contribute to the high-
energy behavior. The multiplicative fixed pole at
the wrong-signature point is a dynamical question. 4

Here the experimental evidence for this multiplica-
tive fixed pole is indicated. However, within the
framework of complex angular momentum, this
fixed pole requires shielding cuts which are moving
branch points n, (t} in the complex angular-momen-
tum plane, with o,(0) =1. The above result, that
the residue ratios alone give the s-channel helicity
conservation, is compatible with the assumption
that these shielding cuts are either negligible or
do not affect the description of the density matrices
in terms of the multiplicative fixed pole.

For an ordinary Regge pole, the multiplicative
fixed pole at wrong-signature points is not consis-
tent with the exchange degeneracy. " But the
Pomeranchon does not participate in exchange
degeneracy, and therefore this fixed pole may be
a specific feature of the Pomeranchon exchange in
this process.
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