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A quasipotential approach to the high-energy scattering of hadrons is developed. The con-
sideration is based on the quasipotential equation for the scattering amplitude in quantum field
theory, and on the physical assumption of the nonsingular character of hadron interactions at
high energies. The results of the theoretical calculation are compared with experimental data
on elastic nucleon-nucleon and isobar production processes.

I. INTRODUCTION

In this work we shall give the quasipotential des-
cription of high-energy hadron scattering.!'? This
approach is based on the quasipotential equation
for the scattering amplitude in quantum field
theory.®*

To begin with, let us consider the simplest case
of scattering of two spinless particles with equal
masses. In this case the quasipotential equation
reads

T(E; B, K) = V(E; (5 — K)?)
. ad__ WE; G- T(E;§, k)
f(mz +§2)L/2 Q+mr=-E*=i0 °
(1.1)
where E is the energy, and P, k, and § are the
(center-of-mass system) relative momenta of
particles in the initial, final, and intermediate
states, respectively. The physical relativistically

invariant scattering amplitude T(s, ¢) is defined by
the condition

T(S, t) = 32773T(E; ﬁ, E) s=4E2=4( 5’2+m2) =4( ?2+m2),
t==~(F -K)2, (1.2)

Equation (1.1) presents the generalization of the
Lippmann-Schwinger equation for the case of rela-
tivistic quantum field theory. In contrast to quan-
tum mechanics, however, the quasipotential in
Eq. (1.1) is, in general, a complex function of the
energy E. The imaginary part of the quasipotential
is due to inelastic processes in two-particle scat-
tering and is a positive definite quantity.

It can be rigorously proved that the condition of
positivity of the imaginary part of the quasipoten-
tial ensures the validity of the so-called “under-
unitarity” condition

sst<1 1.3)

for the two-particle scattering matrix S.° For a
pure real quasipotential, for example, we have the
relativistic condition of elastic unitarity.

As was shown in Refs. 3 and 4, for the case of

| >

weak coupling a general method exists for con-
structing the local quasipotential using the pertur-
bation expansion for the scattering amplitude. The
quasipotential constructed in this way gives a solu-
tion which coincides on the mass shell with the
physical scattering amplitude. This method was
used by Faustov® for investigating the spectra of
positronium and hydrogenlike atoms in the frame-
work of quantum electrodynamics.

For strong interactions, there is no general
method of constructing the quasipotential. For this
reason we develop a model of high-energy hadron
scattering which is based on the phenomenological
choice of the quasipotential in Eq. (1.1). In fact,
we will use essentially the following general prin-
ciples:

(a) The existence of the local quasipotential V(s, T)
which gives an adequate description of high-energy
hadron scattering.

(b) The positivity of the imaginary part of the
quasipotential:

ImV(s,T)=0. (1.4)

(c) Smooth and nonsingular behavior of the quasi-
potential at the origin as a function of the relative
coordinate of two particles.

The last principle, we believe, concerns the dy-
namics of hadron interactions at high energies.
Probably it means that in high-energy collisions
hadrons behave as extended objects with finite
sizes.™®

The important consequence of the assumption (c)
is that the high-energy hadron scattering has a so-
called semiclassical character when the wave-
lengths of the colliding particles become very small
as compared to the size of an effective range of in-
teraction. As a result we have the eikonal or
Glauber representation for the scattering amplitude
at small angles,''? and the exponential decrease of
the scattering amplitude with energy at large an-
gles.® ,

Next, the assumption (c) allows the solution of
Eq. (1.1) to be found, in the high-energy limit, as
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a convergent series of Born approximations. The
interesting point is that under certain conditions
the first Born term in this series should suffice
at small enough momentum transfers.

On the other hand, as is known from experiments,
the elastic hadron scattering at high energies and
small momentum transfers has a diffractive char-
acter, and can be approximately described by a
pure imaginary amplitude of the form

T(s, 1) %50 1o ()e* ¥, (1.5)

The formula (1.5) ensures the constancy of the to-
tal cross section and the exponential decrease of
the differential cross section with increasing
square of momentum transfer. The quantity a(s)
is related to the diffraction-slope parameter and,
in general, varies slowly with energy.

It is natural to consider the expression (1.5) as
the Born approximation for the scattering ampli-
tude. The corresponding local quasipotential can
be found by the Fourier transformation and has
the Gaussian form

V(s, F) =isgy(m/a)*2e~""/4 (1.6)
Here
O or(0) = 3273g,, (1.7)

and thus g, is a constant and positive parameter.
One can easily see that the local quasipotential
(1.6) has a positive imaginary part, and is a smooth
and nonsingular function of ».

We will consider Eq. (1.6) as a simplest form of
quasipotential which obeys all the principles listed
above and also the requirement of diffraction be-
havior at small momentum transfers. In what fol-
lows, we will show that the quasipotential (1.6)
allows the main features of high-energy hadron
scattering at small and large angles to be repro-
duced. We should like to stress that some results
do not depend on the specific form of the quasipo-
tential (1.6) and have a general character.

Now let us briefly discuss the connection between
the quasipotential approach and that which is based
on the Regge~pole hypothesis.

It was suggested several years ago® that the dif-
fraction behavior of high-energy hadron scattering
is due to the exchange in the ¢ channel of the Pom-
eranchuk Regge pole with the amplitude

) 1 +e-—i1rap(t)

sinma p(t) ° (1.8)

T(s, t) = -B(t)s*F"

In fact, if one assumes the linear rising of the tra-
jectory and the smooth behavior of the residue
function, i.e.,

ap(t)=1+a't, (1.9)
B(t)=B(0)e"",

| v

one gets just the expression (1.5) with
ctot("o) =B(0))

a(s)=b +a'lns.

(1.10)

However, as is well known now, the single Pomer-
anchuk pole, if it exists, gives a very crude ap-
proximation for the high-energy scattering ampli-
tude.

There appears in general an infinite sequence of
Regge cuts in the complex angular momentum
plane, which should be taken into account. Unfor-
tunately, in spite of considerable efforts in the in-
vestigation of these Regge cuts,' there is as yet
no method of calculating their contributions in an
unambiguous way. For this reason, the quasipoten-
tial approach has a considerable advantage, be-
cause it allows the corrections to the Born term of
the type (1.5) to be found in a simple way.

It should be noticed that we consider here a rath-
er simplified model of a “pure elastic” scattering.
In the intermediate-energy region, it may become
necessary to take into account secondary effects
such as, for example, nonleading Regge-pole ex-
change or direct-channel resonances. To do so in
a consistent way, the requirements of analyticity
and crossing symmetry in the form of finite-
energy sum rules'' may be used.

II. SMALL-ANGLE ELASTIC SCATTERING

Here we will consider the small-angle elastic
scattering at high energies,

|t/s]<<1 and as>>1, (2.1)

where the parameter a is connected with an effec-
tive range of interaction by

4a=R2, (2.2)

We will assume here that the quasipotential is pure
imaginary and of the simple Gaussian form (1.6),
and put off the discussion of other quasipotentials
to the end.

A. Small Momentum Transfers

Let us consider first the case of small momentum
transfers,

|at|<1 and as>>1. (2.3)

In this case, Eq. (1.1) can be solved by iteration
procedure:

T(&% E)= V(A% E) + 8T(R% E) + -+, (2.4)

and one can expect that only the first few terms in
the series (2.4) should suffice.

The expression for the first correction to the
Born approximation is of the form



|

5T(R% E) f ——:27,7

V((p Q)z E)V((q K% E)
@C+m* —E®-i0

=(isg°)2e”/2A(K2; E), (2.5)
where
. e-2a(@=-3)2
A% E) f(m 2)1/2 T —E: -0
(2.6)
x =§(§ +k ).
After integration over the angles, we get
. = qdq e~2da-N)*
A(a% E)—Zak j:_m(mz_'_qZ)l/z q%+m?—E? -0 ’
2.7
where 1=3|p+k | or, on the mass shell,
A=(p?+ 1) 2= pcosse. (2.8)
Let us rewrite (2.7) as follows:
A=R+il, (2.9)
where

2

m
2o

-2a(0-0? _ p=2a0+ M%) (9 10)

and R is determined by the principal value of the

integral (2.7). In the high-energy small-momentum-

transfer limit (2.3), one can get

[=£ +0(1/s?), (2.11a)
(—2;1-;;)-17- +0(1/s?). (2.11b)

Thus the first two terms in the series (2.4) give

T(R? E)=isg,e® atle

- ngo(” 2go/a)(1 +ia)e
(2.12)

where a =1/(27as)"2.
The conditions of validity of the Born approxima-
tion read

m2gy/a<1, |at|<21n{a/m%g,). (2.13)

Under these conditions the first term in Eq. (2.12)
describes the diffraction scattering at small mo-
mentum transfers with the diffraction-peak slope
A= 2a.

Near the point

tm =2 Ina/n?g,), (2.14)

where the correction becomes comparable to the
first Born approximation, a minimum can be ob-
served in the differential cross section.

Further, from Eq. (2.12), at =0 we get for the
total cross section
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Utot=32773go(1 —ﬂzgo/a)- (2.15)

If one assumes that the parameter a increases with
energy, say, as a logarithm of s, it can be seen
that the total cross section will tend to its asymp-
totic value

Otot (00)=321l’3g0 (2.16)

from below.? We notice that this behavior of the

total cross section is preserved when the whole
series of Born approximations is taken into ac-
count.

Next, in the approximation (2.12) the ratio of the
real and the imaginary parts of the scattering am-
plitude is determined by

o(s, t)= ReT(s,t)  w%g, -at/2

Im7(s, ) a(2mas)® © (2.17)

and is a small, positive quantity.

Apparently, both phenomena, the growth of the
total cross section to its asymptotic value and the
positivity of the real part of the scattering ampli-
tude at very high energies, are connected by gen-
eral principles such as analyticity, crossing sym-
metry, etc.

It should be noticed that the observable behavior
of the total cross sections and the real parts of the
scattering amplitudes at accessible energies do
not contradict, generally speaking, the behavior
discussed above, and can be explained by secondary
effects such as the nonleading Regge-pole or the
direct-channel resonance contributions. In any
case, the smallness of the real part of the scat-
tering amplitude at high energies and small trans-
fer momenta is in agreement with experimental
data. For this reason, in what follows we shall
neglect the real part of the scattering amplitude at
high energies and small angles.

B. Large Momentum Transfers

Let us consider now the scattering at 1arge mo-
mentum transfers outside the diffraction region,
when

|t/s|«1 and |at|>1. (2.18)

In this case the scattering amplitude can be found
as a convergent series of the Born approximations:

- . © eat/n 47ng n=1
T(AZ,E)=zsg°Z - (—T°> . (2.19)

It is easy to see that at large momentum transfer
the main contributions to the sum (2.19) are given
by the terms with large numbers .

Now we study the asymptotic behavior of the ser-
ies (2.19) in the limit |a¢|>1.

Using the Sommerfeld-Watson transform, we re-
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write Eq. (2.19) as follows:

. _as_ dz e-oz-w/z
T(A% E) = 812 Jo 22I(z +1)sinmz ’ (2.20)
where
o=In(a/412g,), w=|at|. (2.21)

The integration contour C surrounds the positive
real semiaxis in a clockwise direction and contains
the integers 2 =1, 2, ....

It can be shown that in the region (2.18) the main
contributions to the integral (2.20) come from the
first terms of the series expansions of the function
1/sinmz,

1
sinmz

-394 i: pt2mizlni1/2) , (2.22)
n=0

on the upper and lower branches of the contour C,
respectively.
Using the saddle-point method, we get

T(A% E)~ —

isa (e—z(zalt\)l/zsinhy+y/2

472 (a|t|coshy)*/? >'(2'23)

Here the parameter y is related to the position of
a saddle point z, by

2,=(2a|t|) 2™ (2.24)
and is determined by the following condition:
€27 +2y =2[0 - im +1n(2a| ¢])!/2]. (2.25)
Equation (2.23) can be written as
TR E)N(—aZISTT)Wg e BeltD 2 cocu(s 1), (2.26)

where the parameters a and B are slowly varying
functions of s and ¢.

Thus one can see that in the region (2.18) the
scattering amplitude is an exponentially decreasing
function of the momentum transfer |¢|'/2, with pos-
sible oscillations'® near the points where

¥(s, t)=m(k +3), « an integer. (2.27)

However, as is seen from Eq. (2.25), at sufficiently
large momentum transfers the oscillations, if they
exist, should disappear, and the scattering ampli-
tude should behave as follows:

i e-(awlnzw)l/2

tsa 1/4
o 2 (In2w) (—2'——')—172— .

win2w (2.28)

T(R% E)~ -

C. Eikonal Description of Small-Angle Scattering

The eikonal approximation of the scattering am-
plitude at high energies and small angles has been
known for a long time and is very popular nowa-
days.'* It is based on the semiclassical picture of
high-energy scattering when the wavelengths of the
colliding particles are very small as compared to

the size of an effective range of interaction. Fur-
ther, we shall see that the semiclassical character
of high-energy small-angle hadron scattering is
essentially due to the assumption of nonsingular or
smooth behavior of the quasipotential as a function
of the relative coordinate of two particles.

Let us first discuss the properties of the solution
(2.19). There is a useful formula:

eat/n 1

. S 2. iB R, ~-np2/aa
= fd pe p Le™np s

” dra (2.29)

where the vector A =B —E) varies in a plane which
is perpendicular to the vector (P +k).

Substituting the formula (2.29) into Eq. (2.19), we
get

oo 2iX(P) _q
2 ) oS 2 ip-A €~ =1
&% E)=jos f d%pe > (2.30)
where
2i x(p) = —(4m2g,/a)e"P */4e (2.31)

Equation (2.30) is just the eikonal representation
for the scattering amplitude in the region (2.1), and
the phase function is related to the quasipotential
(1.6) by

X =% [ Vs, (0422 d. (2.32)
Obviously, this representation would hold for a
large class of smooth quasipotentials.

To show this, it is convenient to consider the

quasipotential equation for the wave function of two
particles in configuration space:

(B? = nd? + V2)9(F) = _lw V(s, F)0(E), (2.33)
where
w=(m? - V)2, (2.34)

Owing to the presence of the operator (2.34),

Eq. (2.33) is nonlocal. However, under the condi-
tion of nonsingular or smooth behavior of the quasi-
potential V(s, ¥), Eq. (2.33) takes an effectively
local form in the high-energy limit. Actually, let
us look for a solution of Eq. (2.33) in the form

W(F) = e (), (2.35)

where ¢(F) is expected to be a slowly varying func-
tion and E = (p? + m?)'2.
It can easily be shown that on a space of slowly
varying functions, in the high-energy limit,
e P wet? = p—ia/oz +O(1/p), (2.36a)
or

e”(1/w)e*** =1/p+0(1/p%).
Thus the function ¢(¥) obeys the equation

(2.36Db)
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3¢(T)
0z

~2ip 220 2y (s, 1) ), (2.37)
which coincides with the one which follows from
the local Klein-Gordon equation with effective po-
tential (1/p)V(s, T). As a result we have the eikonal
representation (2.30) with the phase function x(p)
determined by (2.32). So, the eikonal or, as we
now usually call it, the Glauber representation
should not be considered as a primary dynamical
principle (see, for example, Arnold"), but it is a
consequence of the assumption of the nonsingular
character of hadron interactions at high energies.
Recently, many attempts have been made to
formulate the eikonal representation of the scat-
tering amplitude in a way which is not restricted
to small angles, and which is based only on general
principles such as relativistic invariance, unitarity,
and analyticity.'®''” One may suspect, however,
that in all these attempts some additional assump-
tions are introduced in a nonevident way.

D. The Unitarity-Equation Approach

There is a very attractive approach to the des-
cription of high-energy hadron scattering, based on
the unitarity equation in quantum field theory.!®~%°
Here we discuss it briefly and compare it with the
quasipotential approach.

The unitarity equation for the scattering ampli-
tude of two spinless particles of equal mass has the
form

ImT(s, t) = f dw T(s, t')T1 (s, ") + F(s, ), (2.38)
where in the center-of-mass system
v == @-kp,
2) = 4(n? +K?), (2.39)

J

=-@-kF, t'=-@-9)
s =40m? +p2) 4 +§

ImT(s, =B, -k, =F(s, ~(p, -k,) )+87T %s f-’ 2

If we assume that the integration region in

Eq. (2.46) can be expanded out of the circle 442 <s
on the whole plane of transverse momenta, we get
the well-known convolution formula

ImT = T+T' +F.

87 7%s (2.47)
We would like to note, however, that such an ex-
tension is, generally speaking, a nontrivial thing
and needs continuation off the mass shell. Anyhow,
it is connected with the assumption about the non-
singular character of high-energy hadron scat-
tering.

Let us consider now the approximation of the

and

1 dqdq

dw= 82 24,244

8(p+p' -q-4q') (2.40)
is related to the two-particle phase volume. The
quantity F(s, t), which is known as the overlap
function of Van Hove, represents the contributions
of the inelastic states in Eq. (2.38).

It is convenient to choose the following directions
of particle momenta:

p+k=(2p,,0,0),

- - (2.41a)
k -p= (07 A.L))

or

b=(b.» 3B, k=(p,,-35)). (2.41b)
From Egs. (2.41) it follows that

s=40P +p2) + A2,

t==14,2 (2.42)

At high energies and small scattering angles, when
|t/s|«1, we have

s=4p? and t=-4%=—-(k,-D,)>. (2.43)

If one assumes that the main contributions to the
integral in Eq. (2.38) are given by a region of small
scattering angles, one can put in Eq. (2.38)

t'=—(§¢-ﬁ¢)2, t"=-(ﬁL—E;)2- (2~44)
For the same reason we have
fdw~mf - a%q.. (2.45)

Thus, in this approximation the unitarity equation
(2.38) takes the following form:

a2q,T(s, (B, -a.)IT(s, -@. - k.. (2.46)
pure imaginary amplitude
T(s, t)=isA(s, t) (2.48)

and assume, as was suggested in Ref. 18, that the

overlap function is of the Gaussian form
F(s, t) =501 (2.49)

Equation (2.47) can easily be solved using the Fou-
rier transformation

A(s, 1) = f % e'?" Bia(s, ),

where t=-A 2,

(2.50)

In doing so we obtain the equation

als, B)=3a°(s, ) + 22 “‘el e~P?/a (2.51)
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with the following solution®!:

als, B)=1=[1-1(s, p)] /2, (2.52)
where

(s, p) = ok g=P*/ae, (2.53)
Assuming that

n(s, p)<1, (2.54)

we can expand the solution (2.52) in a power series
of (s, p),

(2”)' -np?/aa <O'ine1 )n
als, p)= Z (n!')? 2n-1 \8ma/ "
Substituting the expression (2.55) in the formula
(2.50), we get the solution for the scattering ampli-
tude:

(2n)! e~ot/n Oiner \'
T(s, t) = ls“inelz(nr)z 2n(2n - 1)<Tl-) '

(2.56)
Thus we obtain for the scattering amplitude at high
energies and small angles a series of the type
(2.19), but with coefficients which do not alternate
in sign and which decrease much more slowly with
increasing #.

The constancy of signs of the terms in such a
series has already been mentioned in some works
as a difficulty of this approach, because it prevents
dips and oscillations of the differential cross sec-
tion from being explained.

Another difficulty consists in the following. It
can be shown that the series (2.56) decreases with
increasing momentum transfers as an exponent of
- |t|*2, whereas the overlap function (2.49) de-
creases as an exponent of —|#|. It is known, how-
ever, that the behavior of elastic processes and
that of inelastic processes do not differ consider-
ably at large momentum transfer.

Contrary to this, the quasipotential equation (1.1)
with the quasipotential (1.6) corresponds to the
unitarity equation with an overlap function of a
rather complicated form,

0 atn 4 2 n=1
F(s, t)= sBe"‘+sBz (2= 3)(——%&> s

(2.57)

(2.55)

where B=32n%g,. The expression (2.57) can be
obtained by straightforward calculations using
Eq. (2.19) and the unitarity condition.

One can see that the series (2.57) has the same
properties as the elastic scattering amplitude.

E. Application to Elastic pp Scattering

Here we would like to give a comparison of the
results obtained previously on the basis of the
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quasipotential Eq. (1.1) with the experimental data
on high-energy elastic pp scattering at small an-
gles.

In describing the real physical processes it is
necessary, generally speaking, to take into ac-
count the spin structure of the scattering amplitude.
In the case of elastic proton-proton scattering, for
instance, there are five independent invariant am-
plitudes, which can be chosen in the helicity basis
as follows:

(2.58)

However, only two of them, T, and T, which cor-
respond to the spin-nonflip processes, give non-
vanishing contributions to the forward scattering.
The relative magnitudes of the spin-flip ampli-
tudes T,, T,, and T, at nonzero scattering angles
can be determined from the knowledge of the po-
larization parameter, which does not exceed 10%
at high energies and decreases with increasing
energy.?? The remaining spin-nonflip amplitudes
T, and T, are approximately equal to each other.

102
1£=12.4 GeV/c
- Ref. 24 -
o
(&)
>
© 0%
<
LQ
1S
bl=
o|T
10731
L PR T |
03 13 15

V| GeV/c

FIG. 1. pp scattering at p; =12.4 GeV/c (data from
Ref. 24). The solid curve is the result of our theoretical
calculation.
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This is a consequence of a “pure elastic” char-
acter of high-energy hadron scattering, which is
due to the exchange of zero quantum numbers in
crossed channels.

Thus, in the description of an unpolarized proton-
proton scattering at high energies, one can confine
oneself to consider one amplitude T ~T; ~T, in the
framework of the quasipotential equation (1.1) for
spinless particles.?®

The total and the differential cross sections of
unpolarized proton-proton scattering are related
to the scattering amplitude T(E, A?), which satis-
fies the quasipotential equation (1.1), by

73 -
0 tot =';E— T(E; A%2=0), (2.59a)
d 72T(E; A%)|? -
E%=—41r —(qu , t=-A% (2.59b)

The solution of Eq. (1.1) with the quasipotential
(1.6), in the region of small scattering angles
(2.19), depends on the two real parameters a and
g, entering the definition of the quasipotential (1.6).

The numerical values of these parameters can be
found from the experimental data at small and van-
ishing momentum transfers, i.e., from the total
cross section ¢,,, and the diffraction-peak slope A,
in the following manner:

O10r =8mal (x),

[df(, do\] _, 1 [(*dt
A= [dt(lndt>] 2a I(x)f ), (2.600)

_ ( x) dag e
16)=-3 f (1-e7t), (2.60b)
x=4mgy/a. (2.61)

b, =8.5GeV/c, g,=0.13 (GeV/c)™?,
b =12.4 GeV/c, =0.12 (GeV/c)™3,
P, =18.4 GeV/c, g,=0.14 (GeV/c)2,

which were calculated using formulas (2.60) and
(2.61) from the experimental values of the total
cross section®® and the diffraction-peak slope®*
corresponding energies.?” As is seen from Figs. 1
and 2, the theoretical curves reproduce rather well
the behavior of the differential cross section of
elastic pp scattering in the region (2.1), as well as
the positions of the diffraction minima and their
energy dependence.

It is interesting to mention that the numerical
value of the parameter a for the energy region con-
sidered here corresponds to the effective radius of
interaction

10?
AP =8.5 GeV/c Ref. 24
$ P.= 8.0 GeV/c Ref. 25
§P.=18.4 GeV/c Ref.24
0

gct’ mb/ (GeV/c)2
g
T

3
EA

8.5 GeV/c
' 8.4

P 1 § ¥
Q6 a8 w0 12 14 16
Ji GeV/ie
FIG. 2. pp scattering at p; =8.0 GeV/c (data from
Ref. 25), py =8.5 GeV/c (data from Ref. 24), and p,

=18.4 GeV/c (data from Ref. 24). The solid curves are
the results of our theoretical calculation.

| I
Tz

We have made a comparison of the results obtained
above with experimental data on elastic pp scatter-
ing in the region (2.1) at p, =8.5, 12.4, and 18.4
GeV/c.2*?® The theoretical curves on Figs. 1 and
2 correspond to the following values of the para-
meters g, and a:

a=2.6 (GeV/c)™2,
a=2.8 (GeV/c)™3,
a=3.8 (GeV/c)™?,

R=1/2u=0.T1F or a=3.3 GeV~?

which is just defined by the position of the nearby
singularity in the ¢ channel for the case of elastic
scattering. Moreover, the total cross section is
very close at these energies to its geometrical
value,

0ot *2TR? =7/2%~ 32 mb.

Notice that the qualitative analysis of elastic pp
scattering at high energies has been made from
various points of view in Refs. 13, 19, and 20, and
also by Chiu and Finkelstein,?® Finkelstein and
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Jacob,? Frautschi and Margolis,®® and Frautschi,
Kofoed-Hansen, and Margolis.?! Near the points
where the sum (2.19) vanishes, it is necessary to
take into account the following terms of the expan-
sion of the scattering amplitude in inverse powers
of momentum p. This leads to the so-called “fill-
ing of minima.” Furthermore, in Fig. 6 below the
behavior of the differential cross section of elastic
pp scattering at p, =8.5 GeV/c in the region

0 < |[#]|<0.6 (GeV/c)? is shown. One can see from
Fig. 6 that the existence of a small “shoulder” at
[#|~0.3 (GeV/c)? is in agreement with the results
of the theoretical calculations. A similar behavior
is observed at other energies as well.

III. LARGE-ANGLE SCATTERING

Let us consider now two-particle scattering at
high energies and fixed scattering angles:
as>1, |t/s|~sin?30 is fixed. (3.1)

In this case the series of the Born approximation

for the scattering amplitude has the following form:

2n at/n ng"s/zewe) n=1
T A)'ng"z( 1 % ( e > ’

(3.2)
where

e(0)=1 -~ (3.3)

_6
2tanso
The function @(6) is rather small in the region

(3.1) and in what follows we will neglect it.

It is easy to see that when |af|>1 the main con-.
tributions to the sum (3.2) are given by the terms
with #>1 and we can use the Stirling formula
n! ~(21n)2(n/e)*. As a result, we obtain

) at/n
T(B; 8%) =isg, 2,,2—5/;(—w)"" (3.4)
where
3/2 _ Sgo 3l ‘
Y= psm e(ﬂ/) 17 (n/a) (3.5)

Let us use the representation

at/n 1 TR, er?
!F:Wfdsyen A(e r /4a)n, (36)
where = —KZ, and T is a vector in some subsidiary
five-dimensional space.

Using the formula’(3.6), we can rewrite the ser-
ies (3.4) in the integral form
e-r2/4a
-r2/4a .

- e? > =
cA2) g —_— > iT A
T(E) A ) ZSgO 217(4,”‘1)5/2 f dr e 1 +i')’e

(3.7

After integrating over the angles in spherical co-

ordinates, we get

2me? 1 L e=r2/4a
T(E; 8%~ isgy—=""S—r f Sy ¢t 70
g03(4 )5/2 BN v dre 1+iye"2/"“ .
(3.8)

The integral in Eq. (3.8) is convergent and can
easily be calculated by means of the residue the-
orem:

- Apr.3 .
T(E; Az)z—lg—ﬂ% e't, (3.9)
where
A= I t' 1/2.

The positions of the poles of the integrand are
defined by the equation

1 +iye70/4=0 (3.10)
or

7o2= —211id<1 +—2nilny>. (3.11)

We find from Eq. (3.11) that the leading pole which
lies in the upper half plane is

2 1/2
=i[2na <1 + 1ny>:] . (3.12)

At intermediate energies, when the second term in
Eq. (3.11) can be neglected, i.e. 702 ~-2mia, we ob-
tain the following expression for the differential
cross section at large angles:

3:; (3‘ﬂa)2A2 -2A(1ra)1/2 A= Itll/z- (3.13)
An interesting feature of the result (3.13) is the
fact that at momentum transfers corresponding to
large angles, the do/d depends weakly on energy.
The only energy dependence of do/df enters
through the parameter a which is related to the
forward diffraction-peak width.

At sufficiently high energies, when the second
term in Eq. (3.11) gives the main contribution, we
get for the differential cross section the following
asymptotic behavior:

y1/2
s

= s(3a sin36 Ins)2e~c(®)(2aslns (3.14)

do
an
where c(6)=2 sin3 6

The interesting point is that for the logarithmic
growth of the parameter @ with increasing energy,
we obtain just the Cerulus-Martin lower bound for
the differential cross section at high energies and
fixed scattering angles.3?

Let us briefly discuss the application of these
results to the description of large-angle elastic pp
scattering. As we have seen previously, in the
energy region p, =10-20 GeV/c the parameters a
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FIG. 3. pp scattering at large angles (data from Refs.
33-35). The solid curve is the result of our theoretical
calculations. The dashed lines are hand-drawn to guide
the eye. The numbers on the figure indicate the momen-
tum of the incident particle in the laboratory frame.

and g, are given approximately by

a=3.0 (GeV/c)™?, g,=0.13 (GeV/c)™2.  (3.15)

The condition of convergence of the series (3.4),
|y|<1, for these numerical values of the parameter
a and g, reads

[¢]>5'2(0.3 GeV). (3.16)

The theoretical curve on Fig. 3, which is calcu-
lated using (3.13) and (3.15), reproduces the abso-
lute value and character of the decrease of the dif-
ferential cross section®*-%® in the region of large
scattering angles, restricted by the condition
(3.16). We stress that, in accordance with the re-
mark made earlier,? these results cannot be ap-
plied, generally speaking, to scattering angles
near 9=90°

IV. BACKWARD SCATTERING

One can see from the foregoing considerations
that the scattering amplitude at large angles
[Eq. (3.9)] exponentially decreases with increasing
energy. Thus,the solution of Eq. (1.1) with quasi-
potential (1.6) leads to an exponentially small cross
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section for backward scattering at high energies,
which in a number of cases contradicts the experi-
mental data. As was pointed out in Ref. 2, this
fact is due to the neglect of exchange forces in the
two-particle system.

In what follows we shall show how the exchange
forces can be included in the quasipotential equa-
tion, and shall use the results obtained for the an-
alysis of experimental data on np backward scat-
tering.

In the presence of exchange forces, the scattering
amplitude T(P, k; E) can be represented as a sum of
two quantities,

T, k; E) = G, k; E) + HD, k; E), (4.1)

which obey the following system of quasipotential
equations®®:

(4.2a)
(4.2b)

G=g+g® G+hQ®H,
H=h+h® G+g® H.

The symbol ® in formulas (4.2) implies an inte-
gration in the sense of Eq. (1.1). The quantities g
and % are the Fourier transforms of the “direct”
and “exchange” parts of the quasipotential, re-
spectively:

s>
T

gls, t)=(2m)"* [ dT e'P’

V(s,?)e'”—:'?,
t=-(B-k)2, (4.3a)

h(s, u)=(2m)~3 [dF P T v (s, f)f’e"r' v

u=-@+k)?, (4.3b)

where P is the coordinate-exchange operator.

As a quasipotential of “direct” interaction we use
the expression (1.6), or g(s, t)=isg,e*’.

The “exchange” part of the quasipotential is due
to the crossed u-channel contributions.

Taking into account the condition

Ms, 0) <1 at s~=o, (4.4)
S&o
=
14 7 )4 n 4
H= + +
nn n 14 /4
P p__n P p__n n
+ +
n 2.0 n nipo Y/

FIG. 4. Schematic presentation of the amplitudes
G and H.
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one can neglect the last term in Eq. (4.2a). Iter-
ating the obtained system of equations, we get

H=h+h® G+GO h+G® hQ G, (4.5)

where G is determined by the solution of Eq. (1.1)
with quasipotential (1.6). The expression (4.5) for
the amplitude H is pictured symbolically in Fig. 4.

Let us assume now that the “exchange” quasipo-
tential can be represented as a sum:

s, )=y y(s)e®, (4.6)
i

where |7(s,u)/sg,| <1 at high energies. For this
case the amplitude H in the region |u/s|<«1 can be
found in the following form:

HE™ E)=) /(A% E), &%=-u (4.7)
i

where

- o [abj/(a+ nb;)Ju 4,”2g n
A'z' = e (— 0) .
H@%E) hi(s)zﬂ, (a+nb;)n! a

(4.8)

These results were used for the analysis of the
elastic np backward scattering at p; =8.0 GeV/c
and |u|<0.6 (GeV/c)%.% Only two terms in expres-
sion (4.6) for the exchange quasipotential were
taken into account. For the sake of simplicity the
parameters 4, and %, are assumed to be real; the
cases of equal and opposite signs of z; were con-
sidered.

The parameters a and g, enteriing the definition
of the “direct” part of the quasipotential were de-
termined from the experimental data on elastic
proton-proton scattering at p, =8.5 GeV/c:

2,~0.1 (GeV/c)™%, a=2.6 (GeV/c)™2.

The theoretical curves 1 and 2 on Fig. 5, which
correspond to equal and opposite signs of the quan-
tities %, and %,, are calculated for the following

10°
o
S
[
e
~N
Q
£ 1w
33 | Ref. 37
-2 | |
7y il @ 23 04 05

lu (GeV/c)?

FIG. 5. np charge exchange at py =8.0 GeV/c (data
from Ref. 37). The solid curves are the results of our
theoretical calculation.

| v

values of the parameters #; and b; :

‘Equal signs (1)
|,|=0.07, b,=110.0 (GeV/c)=2,
|hy|=0.30, b,=1.8 (GeV/c)™2.
Opposite signs (2)
|2,|=0.29, b,=34.0 (GeV/c)-?,
|hy|=0.30, b,=1.8 (GeV/c)™.
On Fig. 6 the same theoretical curves are plotted
for comparison together with the curve of the dif-
ferential cross section of elastic pp scattering at
P =8.5 GeV/c, which is normalized to
1mb/(GeV/c)? at t=0. One can see from Figs. 5

and 6 that the case of equal signs is, apparently,
preferable.

V. CHARGE EXCHANGE AND INELASTIC SCATTERING

The process of charge exchange and inelastic
scattering can be described in the framework of a
multichannel quasipotential equation of the form

T=V+VeT, (5.1)

70°

\ §Pp—pp, P = 8.5 GeV/c Ref. 24
Q\Q fpn—np, p_= 8.0 GeV/cRef.37

mb/(GeV/c)2

70-/ -

do
“dff

2 1 1 1
7y a7 2z W 2% a5
[t (GeV/c)?

FIG. 6. np charge exchange at py =8.0 GeV/c (data
from Ref. 37), and elastic pp scattering at pg =8.5
GeV/c (data from Ref. 24). The solid (np charge ex-
change) and dashed (pp elastic scattering) curves are
the results of our theoretical calculations. [The cross
section for pp scattering is normalized to 1 mb/(GeV /c)?
at t=0.]
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where T and V are some matrices and the symbol
® denotes an integration as in Eq. (1.1).

The problem is simplified when inelastic effects
are small as compared with elastic scattering. In
this case we can write

f‘=f‘o+6f‘,

(5.2)
V=V,+067,
and Eq. (5.1) takes the form
6T =56V+0V®T, +V,®57. (5.3)

The quantities V, and f‘o are diagonal matrices and
are related by the equation

To=Vo+V,® T,. (5.4)

Iterating Eq. (5.3) and using Eq. (5.4), we get the
formal solution of the problem:

0T=6V+T,® 6V +6V® Ty +T,®6V®T,. (5.5)

Let us now consider the process of isobar pro-
duction in high-energy proton-proton scattering.
We will assume here that the amplitude of the elas-

0%

\ pp—pN¥*(1.69)
\ 4 R =20 GeV/c Ref.39
$ R=19.2 GeV/c Ref. 40

mb/(GeV/c)2

do
dt

1078

10°¢ I | | ! !
0 1 z 3 41t] (Gew/c)?

FIG. 7. Production of the N*(1.69) isobar inpp colli-
sions at py =20 GeV/c (data from Ref. 39), and p; =19.2
GeV/c (data from Ref. 40). The solid curve is the re-
sult of our theoretical calculation. The dashed-dotted
curve is the result of the calculation of Frautschi,
Kofoed-Hansen, and Margolis (Ref. 31). The dashed
line is the result of our theoretical calculation on elas-
tic pp scattering at p; =20 GeV/c and is shown for com-
parison.

tic scattering of an isobar with isotopic spin I=3%
is approximately equal, at high energies, to the
proton-proton scattering amplitude 7, and the am-
plitude of isobar production 7* is small as com-
pared with 7. Thus we have the equation®®

T=V+V®T,
T*=V*+V® T*+V*® T.

(5.6a)
(5.6b)

Here V=isg,e®’ and V* is an effective quasipotential
of isobar production, which we will represent in the
form

V*=h(s)e®. (5.7)

The solution of Eq. (5.6b) can be found easily by
iteration procedure and has, as in the backward
scattering case considered above, the following
form:

[ab/(a+nb)]t 472 n
&
T*~ h(s)z G (_a_°> (5.8)

We have applied this result to describe the pro-
duction of the N*(1688) and N*(1450) isobars.

The theoretical results, as well as the experi-
mental data®®*'* for these processes, are presented

l0?
\‘\
. \ pp—~pN*(1.4)
107 * PL=20 GeV/c Ref. 39
\
\
\
i0°§

fons

102

%f-' mb/(GeV/c)?

1073

104

{ond

-6 |
10 g 7 2 3

AY I
4 |t| (GeV/c)?

FIG. 8. Production of the N*(1.4) isobar inpp colli-
sions at p; =20 GeV/c (data from Ref. 39). The solid
curve is the result of our theoretical calculation. The
dashed-dotted curve is the result of the calculation of
Frautschi, Kofoed-Hansen, and Margolis (Ref. 31).
The dashed line has the same meaning as in Fig. 7.
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in Figs. 7 and 8. One can see that the agreement is
good enough.

VI. CONCLUSION

We have tried to outline the methods and some
applications of the quasipotential approach for high-
energy hadron scattering. For simplicity we have
ignored here spin complications, mass differences,
etc. Moreover, we have considered here the sim-
plest nonsingular quasipotential of Gaussian form,
which is pure imaginary.

It is interesting, however, to investigate spin
effects in high-energy hadron scattering and to try
more refined quasipotentials. We shall consider
these problems elsewhere. The comparison with
experiment which we have made here is, in gen-

eral, good enough. However, the main point we
would like to state here is not the good agreement
with experiment, but the fact that the quasipoten-
tial equation can serve as an effective tool in
studying high-energy hadron scattering.
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The parity rule for natural- and unnatural-parity exchange is proved on the basis of the
L -S scheme. The parity rule is shown to be a general feature of ¢-channel exchange proces-
ses. Experimental consequences of the parity rule are discussed. The s-channel helicity
conservation in p® photoproduction is considered on the basis of the Regge-pole model with
L - S coupling and general arguments from the complex-angular-momentum theory. It is
found that the s-channel helicity conservation in p° photoproduction can be described by the
coupling L =a-2, S=2 with a multiplicative fixed pole at the nonsense wrong-signature

point a =1,

I. INTRODUCTION

One of the difficulties encountered by the Regge-
pole theory'™ is the description of the coupling
between the exchanged Regge pole and the external
particles with spin. Considerable progress has
been made, among other things, by the introduc-
tion of the concept of parity-conserving amplitude®
and the investigation of its kinematical singulari-
ties.® ‘

From a phenomenological analysis of resonance-
production data,’ the author has earlier proposed
a model® to describe the Regge-pole couplings,
which is based on the L-S scheme. This model
has been applied to simple processes.’ One cannot
hope to be able to explain detailed aspects, such
as polarization, from such a simple model. For
the explanation of polarization, additional correc-
tion terms to the Regge-pole contribution will be
required.'® As a first approximation, neverthe-
less, this model is still of interest, since the
residues are characterized by the total spins of
the external particles as a manifestation of the
residue dependence on the external spins and
quantum numbers. This might be useful, since
one of the sources of ambiguities in Regge-pole
models is the parametrization of the residues.

The L-S scheme itself has been shown to be use-
ful in the study of the kinematical factors and the
threshold condition by Jackson and Hite.!!

Recently, more data suitable for the study of
these couplings became available. These data are

the data summarized in the Morrison empirical
rule'? and the data on the spin-density matrices
for p° photoproduction,’® which indicate s-channel
helicity conservation.'*+'5

The Morrison rule’? gives the condition for the
appearance of the diffraction scattering stated in
terms of spins and parities of the external parti-
cles involved in the vertices of the corresponding
t-channel exchange process. The rule is stated in
Sec. III. This rule is an attempt to classify the
dynamics of the diffraction phenomena. The rule
as it is stated suggests its intimate relationship
with the nature of the coupling at the f-channel
vertices. Leader'?:'¢ has shown that the rule for a
spin-0-induced reaction is implied by the kinemat-
ics of the reaction. Considering that this rule has
so far not been established for diffraction processes
induced by particles with nonzero spin, it is pos-
sible that this rule has its origin in the kinematics
alone. On the other hand, the s-channel helicity
conservation might be related to the dynamics of
the diffraction phenomenon, e.g., due to the nature
of the above-mentioned coupling. In this case the
Morrison rule would be valid only for a spin-0-
induced reaction and the approximate s-channel
helicity conservation is a characteristic of the
diffraction phenomenon. These considerations are
the motivation for the present investigation.?'8

Note that the evidence for s-channel helicity con-
servation in p photoproduction comes from the
measurement of the spin-density matrix of the pro-
duced p°.



