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lations by a factor of 10 '.
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We discuss the properties of the odd-signature amplitude in the case that the total cross
sections of the particle and antiparticle tend to constant but different limits at high energy.
The imaginary and real part of the odd-signature amplitude must be correlated by a simple
relation and also be subjected to various stringent conditions. Sum rules are obtained that
can be used as a test of the violation of the Pomeranchuk theorem. A specific model is pro-
posed satisfying these conditions, and some consequences are discussed.

There have recently been wide theoretical in-
vestigations' ' motivated by the Serpukhov exper-
iment. ". In the case where the total cross sections
of the particle p.~ and antiparticle p' tend to con-
stant but different limits, it necessarily follows
from analyticity, crossing, and polynomial bound-
edness that the real parts of both amplitudes
F~"(s, t=0) behave as +sins as s-~." In the orig-
inal work of Pomeranchuk, this behavior was re-

jected on physical grounds, and limp~= limp' fol-
lowed. Although in some cases or by some as-
sumptions this physical assumption can be re-
placed by unitarity, "we cannot reject the +s lns
behavior in general by the fundamental require-
ment of the field theory. Indeed, experimental
confirmation of the high-energy behavior of the
real part of the scattering amplitudes in the for-
ward direction was urged in Refs. 1 and 2. Ne re-
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call here that even in the case where so(s) -=a'(s)
-o~(s} tends to zero as s- ~, ReEd'"(s, p) may
dominate over Im&"(s, p). This happens, roughly,
when d(),a(s) tends to zero at least as slowly as
1/lns [1/lns corresponds to ReE~"(s, 0) -+s Insj.
Moreover we have the case where ReE~ "(s,0)
grows arbitrarily closely to s lns. Thus, whether
or not «(~} is actually zero, which is difficult in
practice to decide experimentally, the experimen-
tal study of the correlation between the slowness of
«(s}-0 and the growth of ReE~ "(s,0) may in prin-
ciple serve as a test of our fundamental understand-
ing of the whole theory. But the experimental situa-
tion in this direction is not so hopeful. The circum-
stances are such that it is desirable to investigate
further the general properties of the amplitudes
under assumptions familiar to us, and to confront
them with experiment if possible. Motivated by
these situations both in experiment and in theory,
in this paper we study some of the properties of
the odd-signature amplitude in the case where
a~(s) and o'(s) tend to finite but different limits.

Introducing the impact parameter i)(s) = 2l&s,
we can neglect the contribution above b(s) = c lns,
as was shown by Froissart. Then, first of all,
using the Schwarz inequality and unitarity, it is
easy to show that all the waves below b(s) = c lns
contribute, and we conclude that the radius of the
"odd-signature particle" grows with energy as
clns. (We compare this with the "even-signature
particle" with the usual Pomeranchukon pole which
grows as cv'Ins. ) The elastic cross sections &y~;,

'
tend to finite but nonzero constants,

(a o')'-
4Ã c

The equality holds when all the real parts of the
partial-wave amplitudes become equal at s- ~..

1 ImF f"(s)ReE~"(s}——, ' -0.
lns ' ReF)"(s)

When we consider odd-signature amplitudes, we
have to somehow eliminate the appearance of the
massless vector meson; it was shown in Ref. 4
that in the "scale-invariant" case this is automat-
ically guaranteed. Thus we seek a simple form of
E (s, t) that satisfies the following requirements.

(i} ImE (s, p)- —ao(~),
-sinsReE (s 0)- «( ), as s-4m' p

(ii) —, iE (s, t) i
dt- const, as s -~;S

(iii) ImF, (s)-, a(x),
1

ln's
1ReF (s)- d(x), as s-~

lns

ImE (s, t) = f(—T),

ReF (s, t) = 4, Tg(T),
1 s

where T =~t lns.
These forms follow from a combination of the

impact-parameter projection and the dispersion
relation. f(T) and g(T) must satisfy the various
restrictions

f(0) = -g(0) = t), o (~) from (i), (4)

T T d7.' from ii,
0

f f(T)TdT &, f ()ddTTT& from (iii) .
0 0

(6)

a(x) and d(x) are given by

=1a(x}=
1 Tf (T)Jo(xT)dT .

7T 0

1 oo

d(x) =8 2 Tg(T)JO(xT)dT.
0

(8)

f(T) and g(T) are related through the dispersion
relation. Explicit evaluation of Re/ using ImE
shows that in order to get rid of the I/Mt singu-
larity at t=0, we must have

T dT=0.

Thus f(T) oscillates as a function of T. Then, be-
cause of Eq. (6), we get as, s- ~,"

ReE-(s, t)- — 4, — f(T)dT.s lns 1
7T 0

Thus we obtain a simple relation between f(T) and

g(T) by a simple argument:

f(T) = -dT [Tg(T)1, (10)

l,e.)

f(n) (p) (n+ I)g(n) (p)

This automatically ensures the validity of Eq. (9)
because of Eqs. (4} and (6). When transferred to
a(x) and d(x), Eq. (10) reads

( ), d(xd(x)}

with

x =— (scale invariance) .h(x)
lns

We consider the following form for E (s, t) at high
energy":
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rme' (s, t), s Rett (s, t))=-2V—
s Bs s (13)

lns ImF (s, t) s=a —[u~tReF (s, t)].~t st
These relations hold for any t &0 and large s. In-
tegrating them, we obtain new s and t sum rules
which hold at high energy:

~f )mF (s,t)"
2

s, s

(14)

f )me"(s, t),"Ree' (s„t)

0 (15)

(16)J
' lmF~(s, t) ' ImE'(s, t) dt.

Here, s, is some finite constant. Equation (15)
is consistent with Eq. (9) because of Eq. (4), and
it corresponds to the sum rule obtained in Ref.
4 for t &0. Now Eq. (15) holds at f = 0 in the limit-
ing sense. Thus the imaginary part of E (s, i)
oscillates both in s and in t. Equations (13}—(16)
can in principle be tested experimentally. The
conditions (4), (5), and (6) and the requirement of
the Froissart bound on E, (s), which states that as

~F, (s)
~

& As" exp[-b(s)/b()], (17)

with A and 50 some constant and N ~ 2,"rather
severely restrict the form of f(T) or g(T), and
hence these functions necessarily become compli-
cated. There do not seem to exist models that
satisfy these conditions. Take, for example, Fink-
elstein's model corresponding io f(T) cc(1 —cosT)/
T'. It does not satisfy the condition (6) and hence,
when the partial waves are summed over, the total
cross section and elastic cross section grow in-
finitely as s- ~.

ln lns
ImE, (s)- I, for b(s) &c lnsln's

for b(s) =c lns
1

ln's '

and simila, rly for ReE (s) with InRs replaced by
lns. Accordingly, p~", for example, grows as

This is the condition obtained ig Ref. 4 which guar-
antees the absence of the massless vector parti-
cle. Indeed, the t-channel partial-wave amplitude

f~ (t) is given by the Froissart-Gribov projection

f~ (t) = —
Q, (z)lm F (s, t)dz, z = 1+1 2$'

1T
Zp

t t 4 2

2

e r(t' -))l~-~f(T}dT
48m

near j= 1. (12)
Thus f, (f) has no singularity in f due to Eq. (9).
Equation (10) is written at fixed t and s, respec-
tively, as

C WS III S

g~"= g (2l+1)imE, (s)
)=0

& 16m c2v'ln lns .
The same argument applies also to the model pro-
posed in Ref. V. Thus in the model theory the t
dependence of the amplitude must be chosen care-
fully. We consider here the simplest possible
model that satisfies all the requirements given
above:

f(T) = [J,(a—T) —J', (b T)],
1

with

a b=2sa-(~}, a)b )0,
1 T

g(T) —— f(T')dT',
T 0

1 1 1
a(x) = -8(a -x) ——e(b -x),

16m a b

-'--', . b

d(x)=, x& 1 11
8m' ———,b &x&a

a x

0 a &x ~

The j-plane singularity can be deduced from Eg.
(12):

2 1 2 1/2

(18)
Thus root-type singularities develop between j
=I+iav tand bet-ween j= 1 aiba. In order to
see the consistency of the form (3) and Eq. (10)
with this Regge singularity, we reconstruct the am-
plitude from Eq. (18) using the odd-signature fac-
tor (i+t anRja) -i+1/(j —1) near j= 1,'

ImE (s, t) = . (2j+1)fJ (t)P&(z)dj
1

1-—as cos(Tay)(l —y')' 'dy —(a - b)
8m

= 8—s —[J,(a, T) -J,(b, T)]
1 1

s
Tg(T) .

1 sf (T), —
8n

ReE (s, t)= . (2j+1)f& (t)P&(z)tanazjdj
1

27rg

1 s sin+ay
(1 —y ) dy (a-b)-

4m2 V-t 0 y

f(T')dT'S
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In this way we can reproduce the form (3) and the

relation (10}from the Regge analysis also. The
differential cross section is determined mainly

by ReF (s, t) and shows a maximum at t x0 near
-t =A/ln's with A determined by a and b, which
follows from Eq. (11).

In the following we discuss briefly the zeros of
the odd-signature amplitude. This problem has
been discussed recently in many papers. " Here
we want to give arguments based on the above dis-
cussions. The amplitude is an analytic function of
t in the region independent of s. Thus at high ener-
gy, using Eq. (10),. we conclude that both f(T) and

g(T) are entire functions of T. Along the lines
given by Casella, the zeros of E are shown to lie
almost along the real positive axis, i.e., within
the wedge of angle -e &argT &e. If these zeros
are to be detected experimentally, they must lie on
the positive real axis. In this case E (T} displays
interesting behavior near the zeros. If the zeros
of E (T) are on the real axis, f(T) and g(T) sep-
arately vanish at this point. On the other hand,
Etl. (10) tells us that each zero of f(T) is separated
by zeros of g(T}. This is due to the theorem of
Laguerre concerning the zeros of the entire func-

tions." We conclude therefore that if the zeros of
E are on the real axis, g(T} must have double
zeros at these points. Denoting one of these zeros
by T„ the behavior of f or g near T, is given by

Thus F (T} is almost imaginary near T= To. If
the experiment does not suggest this, then the
zeros of F (T) are in the complex region within

-e&argT &c." We must recall here that the even-
signature amplitude must be added or subtracted
before the comparison is made with experiment.
In this connection the work by Eden and Kaiser
is interesting. But it is the amplitude E(s, t)/
F(s, 0) that has been proved to have a zero in a
certain region. For the actual amplitude E(s, t),
the logarithmic growth of the real part may smear
out the zeros of E(s, t), and whether or not these
zeros are detected by experiment depends on the
models.
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