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Nonleptonic weak decays of hyperons and the K~- 2x decay are carefully analyzed using
current algebra, partial conservation of axial-vector current, and once-subtracted disper-
sion relations, a method suggested by Okubo, Mathur, and Marshak. We have calculated the
dispersion integral by assuming it to be saturated by the low-mass intermediate states of
the nucleon octet, of the ~+ decuplet of 4{1236), and of the ~ SUs singlet Fo(1405), in the
case of hyperon decays, and by the intermediate states of vector mesons and a possible 0+

scalar-meson nonet, in the case of Ki 27( decay. The matrix element of the parity-viola-
ting weak Hamiltonian density between two baryons {which is required to evaluate the hyperon
decay amplitudes) is related to the K& 27r decay amplitude by the K& tadpole mechanism.
With pseudovector SUs-symmetric coupling among the nucleon and pseudoscalar-meson
octets, we are able to obtain a good fitting of all the hyperon decay amplitudes in terms of
four parameters. Vile also find that the corrections to the soft-pion values are very impor-

. tant not only for P-wave hyperon decay amplitudes, but also for S-wave amplitudes. They
are also extremely important for K& 2~ decays. Furthermore, we find that, contrary to
the findings of Hara and Nambu, there is no evidence for the concept of a "universal parity-
conserving spurion" in hyperon and K&—2~ weak decays.

I. INTRODUCTION

Based on a current-current theory of weak inter-
a,ctions, current algebra, partia1 conservation of
axial-vector current (PCAC}, and a baryon pole
model, nonleptonic weak decays of hyperons have
been discussed by several authors. ' ' Our work in
this article is along the general lines of these pre-
vious works, but is intended to be more complete
than any of these. We get several new interesting
results, which to the best of our knowledge have
not been reported in the literature.

We will start by discussing the work of Kumar
and Pati (KP),~ which is probably one of the most
improved forms of all previous works. In their
work, Kp" demonstrated that it is possible to fit
the eight independent (if the ihli = —,

' property is al-

ready built into the theory, as is the case here)
decay amplitudes in hyperon decays within about
(60-70)%, in terms of essentially only two param-
eters. This was considerably better than the.pre-
vious analyses, in which there appeared to be dis-
crepancies with factors of 2 to 3, especially in the
P-wave decay amplitudes.

Their work is based on the following assumptions:
(l) The current-current theory is used to the ex-

tent that the equal-time commutators involving par-
ity-conserving (P.C.} and parity-violating (P.V.)
weak Hamiltonian densities satisfy the simple rela-
tions

(2)
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(2»)' '42h (0@ ' 'g (h)) =wf m ' (3)

f» was calculated from the K, -2» decay rate by
assuming its decay amplitude is proportional to the
appropriate extrapolation of the KKmm vertex times
f». The KK»» vertex itself was calculated in a pole
model "'" KP found' '"

f»= (1-3)x10 ' BeV. (4)

With this value of f», they concluded that the effect
of the nonvanishing of (BB&~X»' '~B', ) is negligible in
hyperon decays. In particular, the corrections to
the soft-pion values of the S-wave decay amplitudes
were negligible. It is to be emphasized that these
results, as well as the goqd fitting of experimental
amplitudes they obtained, depend crucially on the
range of values [(1-3}x10 ' BeV] assumed for f».

It is possible, at present, to make a much more
reliable estimate of the parameter f» from the
known K,- 2m decay rate, using current algebra,
PCAC, and once-subtracted dispersion relations.
We have calculated the K,- 2m decay amplitude, in
the p, '=0 limit, using the above techniques, and

where E' and Es (i=1,2, 3) are the charges of the
vector and axial-vector currents V„' and A„', i being
the Gell-Mann" SU, index.

(2} The soft-pion limits (q=0) of the decay ampli-
tudes (calculable through the use of current algebra
and PCAC) are very close to the physical values,
except for the contributions from the —,

"nucleon-
octet pole diagrams.

(3) Even though in the current-current theory
there is an equal mixture of octet and 27 parts in
the nonleptonic weak Hamiltonian, somehow, due
to some strong-interaction effect, the matrix ele-
ments of X~' ' and X~ ' between two members of a
nucleon octet predominantly contain only the octet
part, the so-called octet dominance of matrix ele-
ments. "

(4) The effects of the breaking of SU, symmetry
are important to those entities which vanish in the
SU3 symmetry 1imit and are, hopeful ly, negligible
in those which do not. Thus, KP used physical
masses for the particles involved and assumed a
nonzero v" ice for the matrix element of ~'v be-
tween two octet baryon states, while using SU, -
symmetric values for the couplings of the pseudo-
scalar-octet mesons and the weak parity-conserving
spurion (X~' ') to the nucleon octet. In the current-
current theory, the matrix element of K~' between
two octet baryons and the K,- 2w amplitude are ze-
ro" in the SU, limit. But the latter, instead of be-
ing zero, is rather large. Using the K, tadpole
mechanism, the above two matrix elements can be
related. " Using this mechanism, (BfI)0~' '~B';) is
proportional to the product of the K,I3&J3; vertex
and. a parameter f» defined by

found (see Sec. IV)

f »=0.5x10 ' BeV. (5)

This is about 25 times larger than KP's estimate
[Eq. (4)]. With this value of f», the effects of the
nonvanishing of (B&~X»' '~B', ) are not negligible; on
the contrary, they are very imPo~tant. It is found
that if we use only the nucleon-octet pole diagrams,
the S-wave decay amplitude of Z'- n»' (which is
almost zero experimentally) is not small, and the
observed I ee-Sugawara relation for S waves does
not hold well. Furthermore, the over-all fit is
much worse than that obtained by KP.

There are at least two possibilities for improving
the model of KP. (1) The partial use of SU, - sym-
metric coupling constants may not be justified, and
we should try to calculate the effects of SU, break-
ing in these also. (2) Another possibility is to ex-
amine the extrapolation properties (with respect to
the pion four-momentum q) of contributions of high-
er intermediate states to the decay amplitudes, and
include them appropriately in the calculation. Since
there do not seem'6 to be reliable ways of calculat-
ing the effects of SU, breaking in coupling con-
stants, we propose to consider the second possibil-
ity" in this paper.

We deal with the extrapolation properties of con-
tributions of higher intermediate states to the hy-
peron decay amplitudes, according to a method sug-
gested by Okubo. " According to this method, once-
subtracted dispersion relations are written in a
suitable variable, keeping q'=0, for certain func-
tions (see Sec. II) whose appropriate limits give
the S-wave and P-wave decay amplitudes (which
are actually constants, not functions) of hyperons.
The subtraction point is chosen at the soft-pion
limit, so that the subtraction constant is given by
current algebra and PCAC. Then the dispersion
integral is the change in S- and P-wave amplitudes
in going from the q=0 limit to a much more physi-
cal limit of q'=0. We calculate the contributions of
higher intermediate states according to a dispersion
theory rather than a Feynman-diagram approach,
mainly because the perturbation expansion whi. ch
underlies a Feynman-diagram calculation has no
basis here, since strong interaction is also in-
volved, and also because there is some ambiguity
regarding propagators of particles of spin & and
higher.

In this article, we calculate the subtracted dis-
persion integral (mentioned above) by assuming it
to be saturated by the intermediate states of the
nucleon octet, of the & decuplet of A(1236), and of
the —,

"
SU, singlet Yg(1405). We will retain the as-

sumptions (1), (8), and (4) of KP except that we
will use a more reliable estimate of f». Also, dif-
fering from KP, we will use an SU, -symmetric
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pseudovector coupling for the B'B'P' vertex. It is
found that the fitting of the experimental amplitudes
in hyperon decays is much worse, if we use pseu-
doscalar SU, -symmetric values for the above ver-
tex. As will be discussed in the concluding section,
this is a nice feature of our model, as there seems
to be more justification" for the former assump-
tion. We calculate the matrix element of XI, be-
tween any two baryons by assuming that it satisfies
an unsubtracted dispersion relation in the appropri-
ate variable and that the dispersion integral is sat-
urated by the lowest-mass intermediate state,
namely the K meson. This is the dispersion ver-
sion of the K, tadpole mechanism. " So, all the two-
body vertices of ~~'v' are expressed in terms of f»
This approximation also automatically brings about
the octet dominance in the matrix elements of X ' ',
whatever may be its primary nature.

With the above assumptions, there are four free
parameters in the theory, in terms of which we
are able to 6t the eight independent decay ampli-
tudes (four S wave and four P wave} within 20% to

30%. It is found, with the present value of f»
[Eq. (5)], that the dispersion-integral corrections
(corrections in going from the q = 0 limit to the
q =0 limit) are important for both S-wave and P-
wave amplitudes.

The remaining part of the article is divided into
four sections. In Sec. II we formulate the problem
for the use of once-subtracted dispersion relations.
In Sec. III we discuss the calculation of the disper-
sion integral and give the Gnal expressions for the
decay amplitudes. In Sec. IV we give the outline of
the calculation of the K,- 2m amplitude in the P ' =0
1.imit, using current algebra and once-subtracted
dispersion relations. Section V contains the numer-
ical comparison of our results with experiment.
Finally, Sec. VI is a collection of concluding re-
marks. Several remarks with respect to the con-
cept of the universal parity-conserving spurion, '0

the ~b, l~ =-', rules, the validity of using SUa coupling
constants, the test of current-current theory in
nonleptonic weak decays, etc. are made here.

II. FORMULATION OF THE PROBLEM FOR THE USE OF ONCE-SUBTRACTED

DISPERSION RELATIONS

Consider a typical decay of interest:

N (P)-Ns(P')+((((q),

where o., P, and j are Qell-Mann's SU, indices. The transition matrix element for the above decay due to
the weak-interaction Hamiltonian density 3Ca, (x) can be written

2t P'q "
(2»)'"~ ' ' '

~
...(Ns(P')v, (q)l&w(0}IN.(P)&{a=ius(P'}[S+rP]u V» (6)

where S and P are the S-wave (parity-violating) and the P wave (pa-rity-conserving) decay amplitudes, re-
spectively. The S- and P wave am-plitudes defined here (namely, S and P) are numbers because, by means
of four-momentum conservation, all the relativistically invariant variables in the problem are fixed. By
means of the reduction formula we can consider this matrix element, when the pion is off the mass-shell,
and the energy-momentum-conservation requirement is relaxed. Using the reduction formula, the left-
hand side of Eq. (1) can be written (when the pion is off the mass shell) as

X/2

((({,(q)=(( ' '
(

( +m,(')( w I(d (x-e""( s(P'&(I({(((x (((( )01{Ã 0)).
i

Following Okubo, " we can treat M~s „(q) defined by the above equation as the matrix element of a scattering
process of the type

N (P)+S((h)-Ns(P')+((((q),

where S, (i'a) is a hypothetical massless particle called spurion with four-momentum tt and carrying unit
strangeness and isotopic spin 3. The subscript i is the SU& index, which can take the values 4, 5, 6, or 7.
The matrix element Ms in Eq. (7), when h-0 and q'- m„a, represents the physical nonleptonic weak decay
generated by the weak Hamiltonian density ~(x}. In general, M(s„when iax0 can be written as

t)f sa(q(u) =ius(p')[(F, +ra F,)+ a'(P+((t}(G, +&aGa)]u„(p)

= gus@ I&(+rslfa) +[tf, g](K(+yaKa}] u„(P) . (8}
The H('s and K,.'s' (i = 1,2) can be expressed in terms of the F, 's and G, 's (i = 1, 2) using the Dirac equation.
F„G„H„andK, (i=1,2) are, in general, functions of the invariants s, t, u, q, andi'aa, where
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s = (p+ @ }'= (j '+ q')',

t=(p-P')'=(q-h)',
u = (P —q)' = (P' - /t)' ~

(9a}

(9b)

(9c)

consider first the physical limit h-0 and q'- m, '. Since there are no singularities in K, and K, as h-0,
the terms involving K, and K, in Eq. (8) will vanish in this limit. Then, by comps, ring this limit of Eq. (8)
with Eq. (6), we obtain

H (s=M ' t=m ', qi=m ')= S

H, (s =M„', t= m, ', q2= m „')= P.
In the approximation of neglecting the variation of the functions H, and H, in the range 0 ~t, q' ~m„',

H, (s = M„', t = q' =0) = S,
H, (s=M„', t=q =0) =P.

(10a)

(lob)

(1la)

(1lb)

Next, let us take the q-0 limit of M'& (q, h). Then s-M()', u-M„', and t, q'-0. At first sight there may
appear to be some problems in taking this limit. In this case, ' when the masses of the intermediate-state
baryons in the s and u channels equal, respectively, the external masses M and Ms, the poles due to these
intermediate states occur exactly at the q-0 limit. Because of this, the contributions to K, and K, from
the Born diagrams, namely K, and K2s, have singularities as q-0 and us(p'}[)t, tI](K~s+y+2s}u (p} does not
vanish in the q 0 limit. In fact it is even ambiguous. On the other hand, the contributions to H, and H,
from Born diagrams have definite and finite limits as q-0. This is because in this case the residues, as
well as the denominators of the pole contributions to H, and H, from the Born diagrams, vanish in the q-0
limit, and the limits of these contributions are well defined. In other words, H, and H, do not have pole
singularities due to degenerate intermediate states at the q-0 limits of H, and H„namely H, (s=M()', t=q
=0) and H, (s =M&, t= q'=0), have definite and finite values in all cases. In order to find these values, let
us proceed in the following manner. Using Eqs. (7) and (8), the q-0 limit of Ms„ is

zu()(p')[H, (s=M(), t=q =0)+y~H2(s=M(), t=q =0)]u„(p)+limiu&(p')[tI&, (f'](K, +ysK~)u„(p)

= -t(2v)" P M'M (N, (p') l[Z,'. (0),X„(0)]lx (t ))

pp'"
s(2 ) ( )(

' (imesf 2 e" (Ne(2 )IT'*(Ns(e)'22„(2s))IN (2)) . (12)

In deriving Eq. (12) we have substituted for the pion interpolating field q) (x) in Eq. (7) the divergence of the
axial-vector current by the relation

8 "A'„(x) = (E,/v 2 )m, 'q)'(x) . (13)

Ordinarily one would expect the second term on the right-hand side of Eq. (12) to vanish in the q-0 limit.
But in the cases when I or Ms is equal to the mass of the intermediate state that can be inserted between
A/(x) and Hv(0), the contributions from these intermediate states to the above term do not vanish in the
q-0 limit. In fact, this limit is ambiguous, and a careful calculation of the limit shows that it has pre-
cisely the same form as

Iimu&(P')[It', &II](K', +y, K;)u (P) .
So they cancel exactly in Eq. (13) and we get the results

p pe srl/2

Ns(N)N, (e-ees', S=e'=O)e.(2)=—(
' '

(
&Ns(P')I(N!(e„=O), 22.'"(O))IN.&2)),

2 p pe 2/2
Ns&(s')2. N. ( ~ ', = '=ses).2&22) = —2( ' '

&Ns(N) ((Nl(*. = 2), )ee'(2)) (N (2)) .

(14)

(15)

E/' is, of course, the axial charge (j = 1, 2, 3).
In the case of nondegenerate intermediate-state masses, the derivation of Eqs. (14}and (15) is trivial.

In fact, another way to arrive at the same result, in the case of degenerate intermediate states, is to pre-
tend there is a small mass difference e between the intermediate state and the external state N or Ns,
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and take the limit c-0 only after the q-0 limit is taken. This will make the second terms on both sides
of Eq. (12) vanish and we will get Eqs. (14) and (15) as before. Now we make use of Eqs. (1) and (2) to eval-
uate the matrix elements on the right-hand sides of Eqs. (14) and (15).

Following Okubo, "we now assume once-subtracted dispersion relations for the functions II, and II, in
the variable s, keeping t, q', and h' zero. p' and p" are, of course, kept on the mass shell. We do not
inquire here into the validity of the dispersion relations. This is taken to be one of the assumptions of the
model considered. Choosing the subtraction point at the soft-pion limit, we write"

S= H, (s = M„', t = qa =a' = 0}

(M„'-Ms') "Im, ,H, (s', =q'=It'=0)ds'

P = H, (s =M„' t = q' =k' = 0)

(M„'-Ms') Im, .H, (s', t=q'=It'=0)ds'
=H~(s=Ms~, t=q =11 =0 + " ' (, '

2)(, 2)

III. CALCULATION OF THE DISPERSION INTEGRALS

The intermediate states in the s and u channels will contribute to the above dispersion integrals. Also,
only intermediate states with baryon number I, and odd half-integral angular momentum, can contribute
111 tllese clla111181s. It ca11 be showll (pl'oof given 111 Appelldlx) 'tllat

(the contribution of a spin--, single-baryon intermediate state to the once-subtracted dispersion inte-
grats of H, and H„with subtraction point at the soft-pion limit) = (the difference in the contributions of
the corresponding pole diagram with physical pion four-momentum and zero pion four-momentum).

In general, it can also be shown that the above-equality does not hold for spin- —, and higher-spin single-
baryon intermediate states (see Appendix). Thus, if we include only the contribution to the dispersion inte-
gral of baryons belonging to the nucleon octet, our results should be identical with those obtained by KP,6

except for the different value of f» used by us.
As explained in the Introduction, we will calculate the dispersion integral by saturating it by the —,

nucleon octet, the 2 decuplet of b'(1236), and the 2 SUS singlet. I'0(1405).
We deal with the broken SU, symmetry in our calculations in the spirit of Kp (see Introduction). Thus,

SU3 symmetry is assumed for the strong coupling of psuedoscalar mesons and the weak coupling of the P.C.
spurion to the nucleon octet and to the system of the nucleon octet and the —,

' decuplet baryons. Most of the
effects of SU3 breaking are assumed to be taken into account by using physical masses and a nonzero value
for the matrix element (Bz~X~ '~B', ).

The SU, -symmetric psegdovectox coupling of the pseudoscalar-meson octet with the nucleon octet is giv-
en by

" X1= —(1 —a)Tr([B,yqy, B]S"P)+nTr(/B, y„y,B}S"P) .
t 26

B, B, and P are the usual (3 x3) SU, matrices" of the octet baryons, antibaryons, and pseudoscalar meson
fields, respectively. From pion-nucleon scattering data, the coupling constant

G2/4v = 14.5.
The SU3 parameter a, denoting the fraction of d-type coup ling, can be determined from the SU, anal ysis of
semileptonic weak decays of hyperons, if we assume the generalized Goldberger-Treiman relations [Sec.
V, Eg. (53)].

The strong coupling of the pseudoscalar-meson octet with the nucleon octet and the —,
' decuplet is taken to

be

(21)

T' " (i,j,k, I= 1, 2, 3) is a completely symmetric SUS tensor, "which represents the decuplet particle f181ds,
except for normalization factors. . The B', are, for example, the elements of the (3x3) SU, matrix B of oc-
tet antibaryon fields. Using the experimental value~
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I'(h, ++ -Pv') = 120 MeV,

we get

IG /m I= 11 ~

The effective Hamiltonian for the Fo(1405)Z» interaction is

KI = GF*g f( Yo Z w + H.c.

Using the experimental value~

1(F*,- Z») =40Nlev,

we obtain

~G,*„,~ =0.35.

(22)

(23)

(24)

(25)

(25)

Under octet dominance and SUS symmetry' the coupling of the P.C. spurion to the nucleon octet is defined
in terms of two parameters D and E:

( p p~ 1/2
(»)'(M'M' &&.(p')I3C~' (0) I& (P))=M. (P')[Dd. ~ + f&f.ed& (P) (27)

I,M,M~

where d„,„and. f,., are Gell-Mann's" SU, coefficients. Similarly, the two-body coupling of the P.C. spu-
rion to the nucleon octet and the ~" decuplet baryons is given in terms of a parameter g, by the effective
Hamiltonian

(23)

The coupling of the P.C. spurion to the F,(1405) and neutron is defined in terms of a parameter b„rg.

&n(P')I3ep' ' (o) IF0(P)&= 2, ",—" &.(f ')&.r*w, sr*(P) (29)

Since F, is an SU, singlet, it is clear that only the octet part of ~ will contribute to the above matrix ele-
ment, whatever may be its primary nature.

By T invariance, the coupling constants G, Gz&/m„, G ~zr„D, E, g„and f» are real.
Using the above assumptions, the final expressions for 8- and P-wave amplitudes are given in terms of

the unknown parameters D, E, g„and b„~*. As typical expressions, we give the decay amplitudes of Z
0

S(Z -nm ):= — (D-E)-+f» —(Mr, -M„) "~ ~ +G'f„(1 —a)(2a- )™
4m, '

, (Mq M„) ~ -~G ~,(Mr*, +M„)(Mr'1 +My)

N ~w

1 (GF3gw)2 (Mg -M»)
fE

(Mrg -Mg) (M»3-M„) '

1 f» (Mq+M„) W2 G~ (Mq+M„)(M~+M„)

1 (M+M) 1 (M +M„)
2M„(M, -M„) ~yg

( 2M„(M„-M„)

1 Gg) (Mr~ +ME)(Mr+M») (Mq+M„)
gyp~' m M *' "& " roE' "r3(M»*+M„)(Mr*-M~) ' (31)

In Eqs. (30) and (31) the Srst term on the right-hand side is the soft-pion limit or the subtraction con-
stant, while the rest of the expression is the dispersion-integral correction, coming from the various in-
termediate states. The dispersion-integral correction for the 8-wave amplitudes as well as the soft-pion
limit of the P wave amplitu-des are proportional to f»
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IV. ESTIMATE OF I FROM THE E, m'n DECAY RATE

Consider the decay

K01(p»)-1/'(p, )+» (p ).
The matrix element for this process can be written

1 1
001(v+(p+)v (p )1&2' '(0)IK1(p»})i.=

(2 )9/2 /8po pop0%1/2 M (32)

where M is the relativistically invariant decay amplitude. As before, we can reduce either one of the pions
1/ or 1/ in the final state using Lehmann-Symanzik-Zimmermann (LSZ) techniques, and consider this ma-
trix element when either of the pions is off the mass shell and the requirement of energy-momentum con-
servation is relaxed. Reducing m',

p. v. 1 1&"+'*d'&(& (p )IT4.+(»)~"'(0)jlK'1(p»)) =
i2 9/2 8 0 0 0)1/2

The left-hand side of Eq. (33) can be treated as the matrix element of the reaction

K', (P»)+S(h) 1/'(P-, )+1/ (P ),
where S(h) is a massless spurion with four-momentum h. T is a function of s, t, u, and p,',

s=(p»+h)'=(p, +p )',
t = (P» —P,)' = (P —h)',

u=(p, -p )'=(p, h)'.

When h -0 and p,'- m, ', we get back the physical decay whose amplitude is M. That is,

(33)

(34a)

(34b}

(34c)

(35)

If we make the approximation that the change in T in going from u= p, =0 to u= p,' =m„' is negligible (on
account of the smallness of m„' on the hadronic scale),

M=T(s=m»2, t=m, ', u=O, P,'=0).
The soft-pion limit (P, -O) is given by

lim T= T(s =m,', t=m»', u=O, P,2=0) .
~0

(36)

Now we write a once-subtracted dispersion relation for T in the variable s, keeping m=0 and p, =0, and
choosing the subtraction point at the soft-pion limit, i.e.,

M= T(s=m 2, t=m22, u=0, p+2 ——0)

m„'-m, ' " Im T(s', =0,p,' =0)ds'
(38)

The intermediate states in the s and t channels will contribute to the above dispersion integral. We satu-
rate it by the intermediate states of the 1 vector meson p, of the 0' scalar mesons»(750 MeV)"" and
o(1080 MeV)"'" in the s channel, and those of 1 K and 0' »(1080 MeV)" "in the t channel. The matrix
element of X between any of the above intermediate states and K1(p») or 1/ (p }is calculated by assuming
that this vertex satisfies an unsubtracted dispersion relation in the relevant variable A, , and that the dis-
persion integral is saturated by the lowest-mass state, which in this case is the K-meson state. The next
higher state is a (K+21/) state, whose contribution is assumed to be negligible at the point h'=0 compared
to that of the single K-meson state. So all the matrix elements of K~ between two single-particle states are
proportional to the parameter f» t defined by Eq. (3)] times a strong vertex involving the two particles and
a K meson.

Using Eq. (33), the soft-pion limit (p, -0) is

T(»=m.', u=0, p,'=0) =(2»)'(4p»p')"~ (» (p ) I[SC"'(0), & (0)]V(p»))l.=. (39)

The matrix element on the right-hand side of Eq. (39) is a function T(u, p '=m, ') of u=(p» —p )'. We want
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to evaluate it at u=0. If s is reduced in this matrix element and the p -0 limit is taken, we get (using
PCAC)

( = ', p '=o)=(2 )"~2P' . &OI[[X"(0),& (0)],&; (0)]IK',(P )&

= (2s) 42P (01[[~'(0), Z' (0)1,Z' (o)] IK', (Pz)) (41)

Equation (41) follows from Eq. (40) because of Eqs. (1) and (2). Equation (42) follows from Eq. (41) because
of Eq. (3). If we write a once-subtracted dispersion relation for T(u, p '=0) in the variable u, keeping p
=0 and choosing the subtraction point at u= mz [so that the subtraction constant is given by Eq. (42)], we

can find ~(u = 0,p ' = 0) by calculating the dispersion integral. ~(u = 0, p ' = 0) should be close to
v(u=O, p ' =m,'} required to evaluate Eq. (39). The contribution of the lowest-mass single-particle inter-
mediate state, namely, that of a possible 0' e(1080 MeV) to the dispersion integral; is found to be negligi-
bly small, unless the value" of the matrix element (0~[~ (0},E,' (0)]~s'(p )) i«»eas»ably»rge.
neglecting this dispersion integral, we write the approximate expression for I, in the limit of P, =0, as

m~T(s=m, ', f=m„', u=o, p,'=0)

1(G~r.) (mr -m. } 1 (G.r.) (mz ™.) (43)

Equation (43) is the approximate expression for T
in the limit P+' = 0 and keeping P ' on the mass
shell. Since pions are bosons, we should symme-
trize between n', and m and so we should also cal-
culate T in the limit P 2=0, keeping P+' on the mass
shell, and take the mean of these two expressions
as representing the approximate value of M. It is
found that these two limits are the same and thus
Eq. (43) indeed represents approximately the phys-
ical value of M.

The coupling constants, G„„G«, G~«, etc.
in Eq. (43) are defined by the effective Hamiltonian
densities,

X;"= G,„„(owv)-,

X,'"= G,„„s(r-'.v),
X~"'= G„„,(K vs) -v+H. c. ,

X, r'= iG~r, [s"s-K ms "K] ~ ~K-„*+H.c.

(44}

In Eq. (43), the first term on the right-hand side
represents approximately the subtraction constant
and the other terms are the dispersion-integral
corrections in going from

T(s=m, ', t=mz, u=0, p,'=0)

to

T(s=mss, t=m, ', u=O, P,'=0}.
In order to evaluate them, we should know the vari-
ous coupling constants G~~q Ggg~ q

etc. Ggkg~ ls

known from the known width", I'(K*-Kv) = 50 MeV.
The scalar mesons are not yet completely well es-
tablished, although their existence now seems to be
fairly certain. The existence of anI=0, s=0, sca-
lar meson e23".25 around 750 MeV, and I=1, s=0,
scalar meson 7t', around 1000 MeV, and an I-O,
s =0, scalar meson a'3'6 a.round 1000 MeV seems
to be most certain. %e also assume the existence
of an I= &, strangeness-carrying scalar meson a
around 1080 MeV. Its existence is supported by a
phase-shift analysis" of Km 8-wave scattering and

a study"" of Kl, decays using current algebra and
once-subtracted dispersion relations. Vfe take m,
=750 Mev"" m —- 1070 Mev"" m = 1016
MeV ~.26 and m, , = 1000 MeV 27,2s Vfe assume I
=400 MeV, '4'" F(o) =80 MeV "'"and F(K K1T)

= 200 MeV. 28'27 In order to satisfy the Gell-Mann-
Qkubo mass formula with mixing, we should take
8 —60' and then, fitting the above widths with an

SU~ analysis, we find '

Gene' +2 3

Gird +1+2 y

G,„,~+0.3,
GoIf K

G.i~ =+1 76-

Vfith these values for the coupling constants of sca-
lar mesons, we find that the dispersion-integral
correction is of the same sign and has approxi-
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mately the same magnitude as the soft-pion value.
Vfe find

M = 11.5f»/v 2 .
Now, fitting with the decay rate"

I'(K', -w'w }=1.85x10" sec ',
we get'

f»=+0.5x10 ' BeV.

(46)

(48)

If we had neglected the dispersion-integral correc-
tion, we would have obtained

f»=alx10-' BeV. (48)

For the numerical estimate of the hyperon decay
a.mplitudes [given in Eqs. (30) and (31) and their
analogs], we use o.=0.6 given by the SU, Cabibbo
analysis" of hyperon semileptonic weak decays.
For the parity-violating spurion parameter f», we
take the positive value" given by Eq. (48). The rel-
ative sign of 6 and E„needed for the numerical es-
timate is given by the Goldberger-Treiman rela-
tion" connecting G, F„and g„/g» of the neutron
P decay. Then there are eight independent ampli-
tudes (only eight because the ~b I~ = —', property of
36w is already built into the model) in terms of four
unknown parameters D, E, g„and b&~0*. Vfe are
able to get a good fitting. A possible good fitting

The bulk of the contribution to the dispersion inte-
gral, because of the comparatively lower masses
and larger widths involved, comes from e and K
mesons. In Eq. (43) the contribution from e is
about -3.7 f»/W2 (with the c parameters we have
used) and the K* contribution is about -3f»/W2,
while the combined contribution of o and a mesons
is only about +1f»/W2 Becau.se of this, the precise
values of 0- and a-meson parameters have only lit-
tle effect on the value of f». The crucial thing, be-
sides the K* meson, which affects the value of f»,
is the existence of a low-mass I=0 scalar meson
with a large width. It is also interesting to observe
that the contributions of e and K* are of the same
slgIl.

It should also be mentioned that once-subtracted
dispersion relations were Grst used by Okubo,
Marshak, s' and Mathur in connection with K,- 2m

decays. However, there are important differ-
ences" in the calculation of the dispersion integral,
and in particular they have not included the contri-
butions of scalar mesons. They concluded" that
the dispersion-integral correction in going from
P =0 to P„'=0 is only of the order of 20/0 of the
soft-pion limit, whereas we find it is of the order
of 100%.

V. NUMERICAL ESTIMATE OF HYPERON DECAY
AMPLITUDES

is given in Table I. The agreement with experi-
ment" is within (20-30)%.

Several remarks are now in order about Table I:
(a) First, it is to be emphasized that with the new

value of f», we will get violent disagreement with

experimental values if we retain the contribution of
only the nucleon octet to the dispersion integral.
Apart from the fact that in this case we can not at-
tain a good fitting of P-wave amplitudes, we can
not satisfy the Lee-Sugawara triangular relation for
S waves and the experimentally satisfied relation
S(Z'-nw') =0. In this case, S(Z'-nw')x10'=0. 16,
comparable to other S-wave amplitudes.

(b) With the values of D and E obtained from the
fitting of S-wave amplitudes, we have to assume

g2 = 2 0&10 6 BeV ' to obtain a good fitting of
P(A-Pw ) and P(. -Aw ) With. this value of g„
it is seen that the coupling of the P.C. spurion to
the decuplet-octet baryon system is about five times
stronger than that of the P.V. spurion. Now, if we
want to fit the amplitude P(Z'- nw'), which is very
large, and the amplitude P(Z - nw ), which is near-
ly zero, we have to assume a rather large value
for 5„„*(5„»+= 0.7 x 10 ' BeV), the coupling con-
stant of the P.C. spurion to the Y*,n system. It is
interesting to note that the Y*„which contributes
only to Z'- nm' and Z - nm, is responsible for the
vanishing of P(Z -nw ) and the large value of
P(Z'-nw'). The fitted value of b„»,* suggests that
the coupling of the P.C. spurion. to the Yon system
is about 20 times stronger than that of the P.V.
spurion (assumed to be given by the K, tadpole
mechanism). Probably, we should interpret the
contribution from Y*, as an effective contribution,
coming from all the SU, singlet Y*,'s including the
higher-mass Y*,'s [Y~o(1670) etc.].

(c) With the present value of f», the dispersion-
integral corrections to both S- and P-wave ampli-
tudes are considerable, as seen from Table I. The
individual contributions to S-wave amplitudes (ex-
cept for the soft-pion limit) do not satisfy the Lee-
Sugawara (LS) relation even approximately, but the
total dispersion-integral correction satisfies the
LS relation approximately. Since the current-com-
mutator terms satisfy the LS relation exactly, the
total S-wave amplitudes satisfy the relation approx-
imately, within 20/0. For the P-wave amplitudes,
none of the individual contributions satisfies the
LS relation exactly, but the total contribution, be-
cause of the special values of D, E, and g, we have
chosen, satisfies the relation approximately within
about 30/0.

(d} Finally, it should be noted that if we had as-
sumed an SUS-symmetric pseudoscalar coupling
for the interaction of the nucleon octet with the
pseudoscalar-meson octet, we would not have been
able to get as good a fitting as we had obtained in
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VI. CONCLUDING REMARKS

(a) In the above analysis we assumed SU, sym-
metry for those couplings which do not vanish in
the symmetry limit. In this connection it is to be
mentioned that there may be some justification for
assuming SU, -symmetric pseudoveetor couplings
fox' the 8'B'P' interaction.

From an analysis'9 of the semileptonic hyperon
decays, and also by certain broken-SU, -symmetry
calculations, "it has been found that the matrix
elements of the axial-vector current between two
baryons of the nucleon octet satisfy the SU, -sym-
metric relations, to a good approximation. Now,
if the axial-vector coupling constant g~~' is defined
by

p pi )x/2
(P(p') I &I, (0) I o(p)& (»)'~

(e'-&) 0

=g,"'(0)u (p'b„r, u.(p)

and the strong-coupling constant Gs ' by

X~~' =+iG s„,Ns(x) y, y„N„(x)s"y, (x),

we get, using the generalized PCAC, the general-
ized Goldberger-Treiman relation

gniG Bc(i y gg (58)

Equation (58) suggests that if SU, symmetry is good
for relating gs ', it is also good for relating G&,
with the same d/f ratio. With pseudoscalar cou-
pling, Eq. (58) will be changed into

Gs„; = —(M„+M8)g~s '. (54)

If we use physical masses for the baryons there is,
of course, considerable difference between assum-
ing SUS symmetry for g~~' and G@„&. In deriving
Eq. (53), besides using the well-tested PCAC for
pions, we assumed PCAC for kaons. Even though,
in general the aecux'acy of PCAC fox' kaons ls not
known, there are indications" that it may be a good

the pseudovector case. Apart from the fact that the
over-all fitting is worse, we can not satisfy the
Lee-Sugawara relation for S waves. In this case
we find

S(A- pv )+ 2S(= - Av )
~3S(z'- pvo)

The discrepancy is because, in this case, the total
dispersion-integral corrections to the S-wave am-
plitudes do not satisfy the LS relation even approx-
imately. Also, we find S(Z'-nv') to be larger than
the value found in the pseudovector-coupling case.

approximation (in this case), correct to within
about 30%.

The coupling constants fox' the interaction among
the nucleon octet, the —,

' decuplet baryons, and the
pions can be determined from the known decay
rates of the decuplet resonances. It is found that
SUS symmetry is a good approximationsa here (with-
in 15%) except for the coupling constant G.*.„, for
which there may be a deviation of more than 50%
from the SU, -symmetry value. Regarding the
above coupling constants involving kaons, we can-
not say anything from the decay rates since none of
these resonances decays into a final state contain-
ing the kaon because of energy conservation. We
simply hope that SUS symmetry is a good approxi-
mation there. It is encouraging to note that if we
make a calculation using the experimental value of
G-. +-, and the SU, -symmetric values for all other
coupling constants (this affects only the " - Aw

decay), we can get even a slightly better over-all
fit of the decay amplitudes, with approximately the
same values for the parameters.

(b) It is to be noted that the octet dominance of
the matrix element of 3CN, between octet and de-
cuplet baryon states is necessary, especially to
explain the ~A I~ = -', rules in P-wave " and A de-
cays, since for these amplitudes the contribution
from the decuplet intermediate states to the dis-
persion integral is very considerable.

A comment also has to be made regarding the
I&II = 2 rules in If decays. Using once-subtracted
dispersion relations and current algebra for K- 2m' decays, we find that the soft-pion limit and
the dispersion-integral correction have the ~AI[
= —,

' property, even if the primary X~ has a ~A I j
= —,

part in it. The ~AI~ = —,
' property of the dispersion-

integral correction comes about because we assume
the K, tadpole mechanism for the matrix elements
of 80I' '. Since by current algebra and PCAC, Z- Sm decays can be related to E- 2m decays, and
since in this case the soft-pion approximation is
good,"the above model of K-2m decays success-
fully explains the ~AI~ = —', rules in all nonleptonic
E decays.

(c) It is to be mentioned that there is an ambigu-
ity of a sign in the value of fs obtained from the
E,-2v decay rate, as seen from Eq. (48). We
choose the positive value because with the negative
value the fitting of the hyperon decay amplitudes is
much worse.

(d) ConcePt of "unisersaf P.C. sPurv'on. " With the
fitted values of D and E we find D/E= -0.42. The
parameter D"/E", which is the ratio of d-type to
f -type coupling of the medium-strong SU, -breaking
spurion to the octet baryons, is D"/Eu= -0.3.4'

The near equality of the two ratios may tempt one
to assign the parity-conserving weak Hamiltonian
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to the same octet as the medium-strong SU~-break-
ing Hamiltonian, the so-called concept" of "univer-
sal P.C. spurion. " But this is not possible in our
scheme, as can be seen by comparing D/D" with
D'/D'" D'. is the strength of the coupling of the
P.C. spurion to the Km system and D'" is the
strength of the coupling of the medium-strong SU, -
breaking spurion to the pseudoscalar-meson octet.
If the concept of universal P.C. spurion is correct,
D/D" should be equal to D'/D'", But we find, from
our analysis of K-2m decay and hyperon decays,
that D/D"= -0.2x 10 ', whereas D'/D'"=+0. 6x10 6.

This directly invalidates the concept of universal
P.C. spurion, which is a nice thing because, if the
above concept were correct, there would have been
no~' parity-conserving weak nonleptonic decays. It
is to be mentioned that some other authors" have
concluded that D/D" =D'/D™because of an incom-
plete analysis of hyperon and K- 2m decays, which,
of course, is a disastrous result.

(e) We assumed the current-current theory only
to the extent that Eqs. (1) and (2) held and that K

.transformed like X, and not A, It should be empha-
sized that if we assumed that X~' ' transformed
like A.„we would not have been able to get a good
fitting of the S-wave amplitudes. In particular, in
that case, the Lee-Sugawara relation for S waves
can be satisfied only with D =0 and then S(Z - nw )
will be too small (nearly zero}. This is an argu-
ment in favor of the current-current theory. On the
other hand, the current-current theory predicts, in
the SU~-symmetry limit, vanishing matrix elements
of X~' ' between K, and 27t and between two nucleon-
octet baryons. But in reality the K,- 2m amplitude
is not zero, and when we connect these two matrix
elements through dispersion relations and current
algebra, we predict a rather large value for
(&g&~' ~H~) comparable to (BgX~c (8',), the
latter being not zero in the SU, limit. So, in the
current-current theory, we should account~2 for an
unusually large amount of symmetry breaking in
the matrix elements of X

%e have demonstrated here that the consistent
use of once-subtracted dispersion relations and

current algebra to the nonleptonic weak decays of
hyperons and K-2m decays gives a satisfactory
explanation of all the nonleptonlc weak decays (ex-
cept the 0 decays). In particular, the subtra. cted
dispersion integrals in the case of hyperon decays
seem to be saturated by the nucleon octet, the —',

decuplet, . and F~o's only. The & -decuplet contribu-
tion to the dispersion integral is especially neces-
sary to achieve the vanishing of S(Z'- nm'} and the
Lee-Sugawara relation for S waves. Although the
success of the model does not prove the validity of
the model (especially in view of the fact that there
are four parameters in the theory), it encourages

hope in the correctness of the assumptions we have
made.

There are also certain difficult questions to be
answered. The most important are why H, and H,
obey dispersion relations with only one subtraction
and if so, why the subtracted dispersion integral is
saturated by only the intermediate states we have
taken into account, especially in view of the fact
that there are so many baryon resonances. Okubo~
has shown that II, and II, will, in general, require
only one subtraction if we assume Begge asymptot-
ics for the hyperon+ spurion- hyperon+pion reac-
tion amplitudes. It is interesting to speculate
whether the Begge picture can be pushed further
and the finite-energy sum rules can be used to cal-
culate the high-energy part of the dispersion inte-
gral, and to show that indeed the high-energy con-
tribution is small. Such investigations are current-
ly in progress and we hope to report on them in the
near fUture.

ACKNOWLEDGMENT

The author would like to thank Professor Jogesh
Pati of the University of Maryland for criticism
and discussions.

R;(s=M, ') R;(s =M~*)
AH, (O.D.I.)—

I fx I ™8 (Al)

where i = 1, 2. The difference in values of the cor-
responding Feynman pole diagrams (F.P.D.) for
H, (i = 1, 2) with physical pion four-momentum and
zero pion four-momentum is

AH&(F. P.D.) = R;(s =M ') R, (s =Ms')
(A2}

It is clear that Eqs. (Al) and (A2) give the same

In this Appendix we prove two things:
(1}The contribution of the spin- —, single-baryon

intermediate state to the once-subtracted disper-
sion integrals (in the s variable) of the function

H, (s, t=0) or H, (s, t=0) [defined by Eq. (8)], with

the subtraction point at the soft-pion limit, equals
the difference in values of the corresponding Feyn-
man pole diagrams with physical pion four-momen-
tum and zero pion four-momentum.

(2) The statement in (1) is not, in general, true
for spin--, and higher-spin single-baryon interme-
diate states.

Consider the once-subtracted dispersion integrals
for H, and H, defined by Eqs. (16) and (1V). If R, (s)
is the residue function corresponding to the inter-
mediate state of mass Ml, the contributions to the
once-subtracted dispersion integrals (O.D.L) can
be written
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values if A;(s) is a constant or of the form R, (s)
=A, +B;s, where A; and B; are independent of s.
If it is a quadratic or higher-degree function of s,
the two values differ.

Next ere shower that for & single-baryon interme-
diate states B,(s) is a linear function of s, and for
~' single-baryon intermediate states it is a, qua-
dratic function of s. For higher-spin intermediate
states, 8;(s) will be of higher degree in s.

Consider Eq. (8). Using the Dirac equation, we
get

(s —u)G,
2(M~+M») '

(s —u)G2

2(M„-M, )
'

The residue functions for the poles of E; and G,
(t = 1, 2) coming from spin--,' single-baryon interme-
diate states are constants. For spin- —', single-bary-
on intermediate states the residue functions of I';
and 6; will be quadratic functions in s, if we take
the propagation function for spin- —,

'
pa, rticles as

/I+M~
sp (Pl) 2 B'AV 3' Ypyll

I -s
2PIg~Iv + PIP~v PIv+P
3MI'

This can be easily checked by an explicit calcula-
tion.

*Part of the work was done while the author was at the
University of Maryland.
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It seems to be clear now that there is something

wrong with the calculation of the KÃ7rm vertex in Refs, 6
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mass-shell vertex where the four-momentum of one of
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tadpole diagram) is set equal to zero using ~ as an
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