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where Q is the decay Q value.
4For large e+ we have, from (3.6) and {3.8), the re-

sult
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We discuss some of the theoretical arguments for the existence in Compton scattering of
right-signatured fixed poles with polynomial residues. We show that if one could "switch
off" the strong interactions, then a fixed pole with residue linear in q2 (the photon mass
squared) would be necessary for the consistency of the fixed-q dispersion relation for v T2
(whose absorptive part vW'2 is measured in inelastic electroproduction). We show that if the
above conjecture is correct, then there must be some energy dependence in vW2 over and
above the conventional leading Regge form (Pomeranchukon plus f-A2). Evidence is present-
ed for the presence of such "nonleading behavior" in a similar process. In addition we show

why the on-shell 0'/pe (yp) could be compatible with the neglect of such a nonleading term.
We find that a fixed pole with polynomial residue and the correct q2 —0 Thomson limit can
be accommodated by the present data on vW2 at large q . With the above assumptions on the
fixed-pole behavior, we predict the high-energy behavior of vtV2 and find that asymptotically
it must fall to a value substantially less than its present maximum magnitude.

I. INTRODUCTION

The amplitude for forward scattering of off-mass-shell photons on spin-averaged nucleons can be writ-
ten in terms of

41K + gyp Tj Pp 2 Q p Pp 2 gp 2
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which defines the structure functions T»,(v, q') whose absorptive parts are W, , Here P„, q„are the mo-
menta of the nucleon and photon, respectively, v=P q/M and M is the nucleon mass.

In traditional Regge language T2 is considered to be described in terms of the Pomeranchukon &, and
ordinary exchange-degenerate Regge trajectories f, A, with intercepts at t= 0 of about -', . However, as is
well known, there may also be a right-signatured fixed pole at 8= 0 which contributes to the real part of
T,.' For such a situation the following sum rule holds'.

1+4, ' G»»'(q')+4, G„'(q') .+, d»»vWg(», q') — Q p»(q')v"» 'dv
cfg&0

(1.2)

where v T„=(2M»»» +m„'+q')/2M (q' &0 spacelike), and where fj', ~(q') is the residue of the fixed pole. Dam-
ashek and Qilman and also Dominguem, Ferro Fontan, and Suaya' have separately examined this relation
at q2=0 assuming that the proton's total photoabsorption cross section is vrell described at high energies
by only a Pomeranchukon- and f-A, -type term, and concluded that such a 4= 0 fixed pole exists in the on-
mass-shell Compton amplitude. It is therefore not improbable that there is a Z=O fixed pole in the off-
mass-shell amplitude, i.e., that R~(q')»»0.

Were we to take the limit of E»l. (1.2) as q'- ~ and suppose that » W,(», q') -E,(»d, ~) in this domain, ' with
&o = 2M v/q', then the following sum rule would result:

[Ef(»d, ~) Py»-( }&@"» ']d»d=wM lim B~(q')/q'= R~wM—
0 q2~ »e

(I», n subscripts and superscripts will refer to proton and neutron, respectively; whereas the combination
p»» will refer to proton-neutron difference data), where

y»(~) -=lim p, (q')(q'/2M)"» '

and the Born term is assumed to be negligible in the large-q2 limit. Empirically the data' appear to show
that to a good approximation vW»,'(v, q') has become a function of the single variable»»» even for values of
q' greater than about 1.5 (GeV/c)'. For such values of q', the Born term in (1.2) is negligible in size, and
so one might then write (1.3) to a good approximation even for q' in the range 1.5 c q' ~ ~ (neglecting also
the small q' dependence in»0 threshold). Thus to the extent that one believes that Ef(»d, q'), or at least the
combination of integrals in (1.2), has in fact become independent of q' by q'= l.5 (GeV/c)', one can write
R~(q') =q'R~, i.e., B~(q') must be (nearly) linear in q' for the entire range 1.5 ~q' ~ ~.

Without committing ourselves as to whether or not ~2(&o, q') has in fact become a function of only &a for
q' o l.5 (GeV/c)', we can still examine (1.2) in that range assuming that the»»W, "scaling" data' are those
@ppropriate for at least one value of q2 for which both the Born term and the errors invoked by approxi-
mating the true & threshold by unity are negligible.

In evaluating the residue of the fixed pole B~(q')/q'-B~ in the range 1.5 &q' ~~, we will for convenience
refer to E»I. (1.4), below, in which (and in what follows) E»2(&o) is specifically taken to be the "scaling" data
of Ref. 5 and the y, are the Regge residues appropriate to this data:

[Ef(&o) -p y»»»0']d»d = R~wM . (1.4)

It~ in (1.4) could be either positive, negative, or zero. However, returning to the sum rule (1.2) and con-
sidering the limit q2 0 while noting that

lim vW, (v, q')/q'=g(v)/4w'c»,
@2~0

with o(») the total photoabsorption cross section for on-shell phot'ons of energy», we obtain

M ooI+, o(» }d» gp»(0-)»» 'd» =wM lim It,(q')/q',27 Q 0 02~0
TH e) ~0

where p~„ is the threshold for pion production and
the 1 on the left-hand side results from the Born
term. The authors in Ref. 3 found that the left-
hand side of (1.6) is consistent with unity and so
we shall assume that it is indeed 1. Hence we de-
duce that

lim B~(q')/q' = 1/Mw,

which implies that for small q', ft (q'}= q'41 +0(q4),
where 8~= 1/Mw.

At this stage there is no reason to suppose that
A~= 41~ or that terms of O(q') are not present in
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R~(q') near q'=0. Indeed if one assumes that the
data for Fm~(&u) have already (ur& 12, say) attained
a maximum value and that Ff (&u) is asymptotically
falling off to ~=~ with an A. +B~ '~' behavior, 6

then it is clear that the left-hand side of (1.4) is
negative and that R~& 0. This implies that R~(q')
at q2 = 0 and qm = 1.5 (q - ~) have opposite signs.
In Ref. 7 the sum rule (1.2) was tested directly
for fixed q' of 1.5 (GeV/c)' and, with the assump-
tion that the v (+=2Mv/q') behavior was of the
form a+5 p '~, the fixed-pole residue was indeed
shown to have an opposite sign to that found in on-
shell scattering. This would imply that the fixed-
pole residue changes sign between q'=0 and q'
= 1.5 (GeV/c)2, and scaling by q' = 1.5 would say
that at this point the residue has become nearly
proportional to q'. Whereas such a state of af-
fairs is, in principle, not impossible, a dynamical
origin for such a perverse behavior is difficult
to imagine.

Theoretical arguments have been made' which

suggest that the residue of the fixed pole may be
a polynomial in q'. However some of the argu-
ments of Ref. 8 would fail in the presence of fixed
poles in photoproduction amplitudes (as has been
pointed out in Refs. 1 and 9, it appears that
charged-pion photoproduction over a broad range
of t, has an energy dependence from 2 to 16 GeV,
which is compatible with fixed J=O poles playing
the dominant role in the t channel). However, the
interesting observation was made in Ref. 1, and
reiterated by Harari, 'o that, in the absence of
strong interactions and to lowest order in n, one
would expect only the Thomson term to survive in

(1.6), so that

R,(q')
lim

q2 0 q2 Mw
(1.7)

This argument can be extended to all values of q'."
If we "turn off" the strong interactions in (1.2), we

expect that G„=gGs = 1 for all q' with p = 1 (there
being no anomalous moment to this order in o.)
This procedure would then require R (q') =q'/wM
for all q' in the absence of strong interactions. If
the fixed pole is purely electromagnetic in origin,
then this would be true even in the presence of
strong interactions.

In any event, restricting the residue to be a
polynomial in (1.7) and using the fact that the lim-
it in (1.3) must be finite as q'- ~, we are forced
to conclude that

(1.9)

If it is the case that the behavior of Fm~(~) for
w ~ 12 is simply an asymptotic decay of form A
+B/v u&, then the sum rule (1.9) is not satisfied
and the residue of the fixed pole cannot be a poly-
nomial in q'. Conversely, if the residue is to be
a polynomial in q, then the functional form of

Ef(~) for ~& 12 must be more complicated than
the above. At present it is not possible to say
which of these alternatives is nature's choice. We
show in this paper that the latter situation, as
represented by (1.9), is a viable possibility. In
particular, we will find that an effective trajec-
tory of intercept &- ——', contributing to F22(&) en-
ables one to satisfy (1.9) and that there is evi-
dence elsewhere, namely in pp and pp scattering,
for the importance of such a term. '

We put additional constraints on such a trajec-
tory's contribution to F,(&u) by examining its role
in the difference of proton and neutron data, F2~(&u)

—E2"(&o), and by demanding that
(I) F~(&) —F,"(~) satisfy the well-known quark

charge sum rule, "and

(2) the neutron fixed-pole residue R„(defined
analogously to R ) be one of three fixed numbers
0, —'„or 1. An attractive choice might be zero
at q' = 0 which would imply that R„(q') = 0 for all
q' if R„(q') is a polynomial. "

The resulting universal curves for Ff(&u) are
then considered.

For comparison to the assumption that F22'(&u)

has, in fact, scaled in the data of Ref. 5, we ex-
amine an alternative viewpoint, namely, we con-
sider in Appendix C one of the possibilities pro-
posed by suri and Yennie. " They propose that the

vW, data presently available might not be close to
the scaling limit but that F, (vW, minus a speci-
fied vector-dominance contribution which is dif-
fractive in nature) might be. That is to say that
in (1.4), Ff(&u) and y,. separately possess impor-
tant q' dependence. Nonetheless, the polynomial-
residue assumption still demands that the inte-
grated combination in (1.4) does not. The familiar
vs(up, q ) data and their Ff(&o) "data" are plotted
in Figs. 1 and 2, respectively. The e- ——,

' contrib-
ution plays a very important role regardless of
what one believes the scaling function to be. It
remains impossible to obtain a positive or zero
proton fixed pole in either of the scaling functions
F, or F, without it.

R =N. = I/Ms, (1 8) II. THE NONLEADING TRAJECTORY

which is the result obtained immediately in the
above argument. The sum rule (1.4) would then

become

In this section we will establish the importance
'of a nonleading trajectory' of intercept n(0) near
——,

' in a process similar to y-p scattering. In par-
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FIG, 1. Data for vS'2 plotted against the reciprocal of ~(=2M'/q ) assuming R(=0'z/Oz) =0. The solid curve for co& 12

(x & 0.08) is the curve 0.12+0.462+ ~~2+4.02~ ~f2. The dashed curve below v =12 (above x =0.08) is an arbitrary hand-
dravm curv'e through the data which encloses an area (I&) of about 3.38 between m =1 and m =12.

ticular, we will look at c„,(pp) +o„,(pp) =Z r,
mhieh is related by the optical theorem to an am-
plitude mith the same crossing properties and pre-
sumably the same leading Regge contributions as
the corresponding amplitude for o „,(yp).

Both pp and pp scattering may be considered to
have contributions from a Pomeranchuk-type
term, a p-&u-f-A, trajectory term, and other non-
leading terms. In particular, a possible model
for nonleading terms might be that of Regge cuts
for mhieh there mould be an gg eut, an &gal cut,
and so forth, mith intercepts 0, -~, ... . Duality
and exchange degeneracy put additional constraints
on these terms; for example, the single Regge
contribution to pp scattering must be purely real,

which for a p-&u-f-A, intercep. t of —', constrains the
single Regge contribution in pp to be purely imag-
inary. Moreover, duality requires that the single
Regge exchange yield a positive imaginary con-
tribution to pp, mhieh in turn tells us that the sin-
gle Regge exchange contribution to pp is real and
negative. The resulting approximate multi-Regge-
eut phases in the formard direction are given in
Table I." It is apparent that in such a model Z ~
(which is proportional to 1/v times an amplitude)
might be adequately described by"

where the 1/v imaginary contribution from v„,(PP)
' and o„,(pp) have cancelled in the sum gr since

F~(~) 0.3

I I i I Wm+~~.

0 O. I 02 03 0.4 0.5 0.6 0.7 O.Q 0.9 I .0
x = q~/2M'

plo. 2. The nondiffractive contribution to vtV2 in the suri- Yennie model (Ref. 15). The variable x = 1/cv. The so]jd
curve is the solution of Table VIII vrith A, =0, 3E =0.56, &&——2.01. The dashed curve is hand-drawn through the data
below m =12 (above x =0.08).
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TABLE I. Approximate multi-Hegge-cut phases in
the for ward direction.

Pomeranchukon

1
2

.they have opposite signs but the same magnitude.
To explore the validity of the hypothesis of an

effective trajectory we have examined Z ~ in the
I'egloll 2.00 «( pleb «50 GeV/c (llsillg R slllooth ex-
trapolation of the pp data above 25 GeV/c. ' We
have attempted to fit Z~ with the form

2a+5/v v + c/v'. (2.2)

I20

O
IOO
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LLI
O
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20
I I I I

I.O I.2 l.4 l.6 l.e 2.0
powER d

FIG. 3. Plot of X~ versus d for fits to the pp +PP total
cross-section data (Fig. 4) with form 76.7+b~ ~/+c~ "
for P i~b 2.75 08V/c.

Taking 1I to kle 38.85 mb (fl'0111 'the PP dRta) we

determine the best values of Q and q for various
values of d and plot the resulting X of the fits in
Fig. 3.

There is a clear minimum in the X' curve at
d-1.5. For a different value of g, say g=38.6,
the best value of d mas found to be about 1.45. For
any magnitude of g between 38 and 39 the same
general features emerge; namely, a term c/v" is
required with d between 1.3 and 1.7. A value of
a larger than 39 is manifestly inconsistent with
the trend of the higher-energy pp cross sections
unless there is some significant leading Hegge
contributions with negative imaginary part (such
an object would be inconsistent with present the-
oretical ideas of duality, etc.).

The low-energy cutoff used in making the above
fits was p» of 2.75 GeV/c. In Table ii we show the
effect of varying the low-energy cutoff in the data
fitting. At first sight it appears that the higher
cutoffs give better y' per degree of freedom, lead-
ing to higher-power behaviors for our additional
nonleading object. Homever, this is not really
the case because these "better fits" do not extra- TABLE II. Variation of the minimum g~ and power for

the additional object with the low-ener~ cutoffs. The
"increasing goodness" of the X

~ with higher cutoffs is
misleading since the resulting fits do not extrapolate
well in the low'er P»b region. The table shows a definite
jump in y2 at p»b = 2.7 GeV/c indicative of additional
structure (e.g. , resonant or threshold effects). e =38.35.

Plab cutoff Degrees of freedom min p d at min g

2.6
2.65
2-7
2.75
2.8
2.85
2.95
3.15

28
27
26
25
24
23
21
17

54
49
47
28.3
26
23
16.2
10.3

1.35
1.4
1.4
1.5
1.5
1.6
1.7
1,9

polate at aQ well into the lower p&+ region. Our
intent is to show that there is nonleading behavior
in Z~, and therefore, we are looking for a term
that is less significant at high energies due to its
I/I ' behavior. Therefore, in order to allow such
a term to manifest itself, one should look for as
low a cutoff as possible while avoiding threshold
and/or resonance regions. Table II shows that
one can reach a cutoff as low as 2.75 GeV/c be-
fore the solutions become unstable due to the near-
by presence of the threshold region. [Certainly
there is no evidence of a need for a 1/I -type be-
havior, so that if nonleading terms are generated
by multi-Regge iteration, the large In(v/vo) ap-
proximation must be largely. valid. ]

Therefore, at the very least, we see that there
is definitely go~ething in Z ~ over and above the
naive 2a+5/Wv leading behavior, and that it very
probably has a I/u i' dependence.

To exhibit the quality of the parametrization
(2.2) of Zr, we plot in Fig. 4 the solution with the
minimum g2 with

g = 38.35, 5 = 41.3, g = 121.1,
where v ls in GeV and g z ls in mb. The curve in
Fig. 4 is seen to be extremely faithful to the data
points. Further consideration of the effects of
nonleading contributions such as we have investi-
gated here in PP and pp will be discussed else-
where.

Thus it seems that a nonleading term of the form
1/p~, with d in the region of 1.5, could be of im-
portance in a process such as yp scattering to
which it should also couple. Such a term should
also RppeRI ill (T| I(K P) +9 lot (K p) Rlld Rlso 0' l&g(II p)
+g„,(II p). Unfortunately, resonance effects at
low energies in these processes are more impor-
tant than in pp and pp so that nonleading contribu-
tions such as we discussed become obscured.
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F= (x -4)/10(x —1), (3.3)

I40

I30

I 20

I IO—
I-~ IOO-

90

80

70
I I I I I I I I I

0 5 I 0 15 20 25 30 35 40 45 50

PLAI (GeV/C)

FIG. 4. Z~ =0'ting(pp) +Oto f(pp) from 2.75 to 50 GeV/c
incident laboratory momentum. The data are compiled
from Ref. 16. The solid curve is a best fit to the data
given by 76.7+ 41.3v ~/ + 121.2 v '5~. The insert is an
enlarged version of the region 2.75 ~ p&~~ 3.5 GeV/c.
(Z~ is in mb, v is in GeV, and other quantities are in
appropriate units. )

1 = I~((()*) -A(d* —6B~+*+C~/(d —1)(d*(~ '~

&~((u*) -=Ff((d)d(d .
1

(3.4)

The second sum rule assumes the validity of the
quark-model result"

and so for F= 1, we have x= —', (F is the antisym-
metric octet coupling coefficient defined so that
F+D=1).

If we believed our 1/(d" object to be a triple Reg-
ge cut then d would be approximately —,'. Support
for such an intercept was found in Sec. II." The
effective x of the exchanged object would then be
(—,')'= —', which corresponds to F-0.5, in the ab-
sence of coupled channels. Coupled channels
might tend to increase the value of g.

In addition to the constraints (3.1) and (3.2), we
invoke two sum rules. The first relates to the
fixed pole [Eq. (1.9)]. With the asymptotic form
(3.1), we obtain from (1.9)"

III. NONLEADING BEHAVIOR
IN ELECTROPRODUCTION

In this section we wish to consider the effect of
an additional nonleading term of the form C~/(d~

in the asymptotic behavior of Fm~((d) for (d & some
In Sec. I we pointed out that F,( )(dfor &u & 12

cannot be simply A+B/W&u if one is to obtain a
non-negative fixed-pole residue in virtual Comp-
ton scattering. The addition of such a nonleading
term makes it quite easy to obtain a positive fixed-
pole residue and the problem becomes one of ap-
plying sensible constraints to restrict its con-
tribution. With this in mind we make use of the
inelastic e-p scattering data and the inelastic
e-p- and em- difference data for 1 c &u ~ &u* ((d*
we take to be 12 in this paper'~), by demanding
that any curve representing the asymptotic be-
havior of the scaling function F,((d) shall be con-
sistent with the known data at (d = ~* and above.
Hence, we require

(3.5)

Using (3.2) for (() & (d* and substituting into (3.5)
yields

ff~„((d*)+2B((o*) ' '+Cp(1 —x)/d(u*'= —,', (3.6)

where

d(d
B~„((o*)-=—[Ff((u) —F,"((o)]

CtP

can be computed from the known data' (see Fig. 5).
Hereafter, when referring to Eqs. (3.1) and (3.2),
we assume them to be written for cu = co*. %e take
I~((()"}= 3.32 and F&((d*) = 0.35 for (d*= 12.

Finally we write the equation for the residue,
B„(q'), of the fixed pole in the electron-neutron
inelastic scaling function, Fg ((d):

Z =»m"'q'
q2~ oo

and

E,'((d) =A+ SB/W~+ C~/(d (3.1)
= I~((d*) I,„(u&*) -A-&u*

4B( g)1 2+ C /(d I) g 1 (3.7)

F2((o) F2"((d) = B/v &u+ (c—~ —c„)/(o', (3 2)
where

for & ~ ~*, where A and 8 are the coupling
strengths of the Pomeranchukon and the f-A, tra-
jectory to the virtual photon. %e have assumed
pure F coupling for the f A, trajec-tory in writing
(3.1}and (3.2), this assumption being supported
by the on-shell data" and favored by exchange de-
generacy and universality arguments. %'e write
C„=xC~, where x is related to the effective I' val-
ue of the nonleading term by

l~„(td ) f[E~(v) —F,"(td))dw. =
1

If one believes that the charge of the particle de-
termines the fixed-pole residue then one should
find &„=0. There are, however, other "reason-
able" possibilities. " Hence we also explore the
possibility of the values „= —', and g„=1.

Unfortunately there is considerable leeway in
the proton-neutron difference experimental data.
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FIG. 5. Data for (&Wp'0' " -vW" """) plotted against &. The two hand-drawn curves are included in order to in-
dicate the relationships between the magnitudes of H~, I~, F ~&", and the data. The curve labeled (1) has I&„—-1.11, H&„

0 23 +PA 0 08 Curve (2) has I 0 85 + 0 ]7 +Pal 0 0

lt is obvious from (3.6) and (3.2) (evaluated at ~")
that Ff "(m") and H~„(m*) determine the quantities
B and C,(1-x). However the experimental error
bars for I'~~" are quite large. It is easily possible
to imagine that H~„(Ref. 12) might be as small
as 0.13 or as large as 0.23 with similar sorts of
variation allowed for I~„and E~". Vfe have thus
investigated the solutions as a function of H~„(&u*),
I~„(&u*), and Et "(&u*) within the possible extremes
of variation. Once C~(1 —x) and B have been deter-
mined, we may use Egs. (3.1) and (3.4) to deter-
mine C~ (and hence the effective x) and A.

In Tables III-VI we list the values of A. , 8, and

C~, which result from a sampling of values of II~„,
E~", and I~„(all assumed evaluated for &u*= 12)
all within the extremes of the neutron-proton data.
Each table corresponds to a different choice fox
the neutxon and proton pole residue. In Appendix
A we discuss the sensitivity of the results ob-
tained to the value of d as well as the trends ex-
hibited in the tables, and explain in more detail
the criteria for choosing the preferred solutions
which we shall present shortly. Basic to the
choice of solutions is the observation that II~„,
I'~", and 1&„are not really independent quantities,
e.g. , if one draws reasonable curves through the
error baxs, one obtains the following typical cor-
relations corresponding to the two curves in
Fig. 5:

Iq „ Ii2

0.17 0.85 0.06

0.23 1.11 0.08

We note that in Tables III-VI there are no solu-
tions with H, „(ra*)&0.18 for a proton residue H, = 1;
and It~= 0 allow us only to reach H~„(~*)=0.17.
Thus if one believes in our version of the px'oton

fixed pole and in the constraints we impose, then
the neutron fixed pole is "reasonable" in size only
so long as ~"(~) lies above the central data-point
values shown in Fig. 5.

The necessity for stretching the p-n data arises
from the presence of the quaxk charge sum rule
as a constraint. To illustrate the effect of alter-
ing the quark charge sum rule from a value of —,

'

to, say, 0.28 (which is not to say that any theory
predicts 0.28, this number was chosen merely
for purposes of illustration) we exhibit in Figs. 6
and 7 the quantities A. , B, C~, and g„as a function
of H&„[P~'" and I~„are assumed to vary linearly
with H~„(see figure captions)i. lt will be noticed
that a solution with g„=0, for example, is obtain-
able with A and B &0 for either case, but that the
magnitude of H&„required is far more reasonable
in the latter case. Thus, if future experiments
show that p-n-difference data are smaller than
we have allowed for here, it will still be possible
to retain polynomial residues for both neutron and
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FPn
2 Ipn

TABLE III. Rp =1, R„=O (neutron residue proportional
to charge). Hp„, F~&", and Ip„refer to the values at v =12
of H»(co*) etc. The table gives the values of A. , B, Cp, . F,
I&» Hp„, and F2 which are solutions to the constraint
equations of Sec. III with the indicated choices for Rp and

R„. Values of Hp„and Ep2" with their corresponding A, B,
Cp, Ip„, and F, satisfying the constraint equations, are
not given if they fall outside of reasonable limits on the
p-n data.

Cp Hp„ Ipn

0.04 0.2235 4.85 0.1775 0.1 1.03
0,181 0.095 1.14

1.085
1.24

0.05 0.2145 4.74 0.181
0.184
.0.187

0.1
0.095
0.09

0.9
1.02
1.15

1.0
1,13
1,33

TABLE IV. Rp =1, R„=3 (quark-model possibility).
Format as in Table III.

0.09 0.179 4.32 0.194 0.1 1.08
0.1975 0.095 1.21

0.75
0.824

0.06 0.206 4.64 0.1875
0.191~
0.194

0.095
0.09
0.085

0.904
1.02
1.15

1.04
1.19
1.41

0.1 0.171 4.225 0.1975
0.2005
0.204

0.1
0,095
0.09

0.97
1.09
1.2

0.705
0.77
0.853

0.07 0.197 4.54 0.194"
0 1975a
0.201

0.09
0.085
0.08

0.909
1.023
1.14

1.09
1.27
1,51

0.11 0.162 4.115

0.12 0.154 4.02

0.13 0.1455 3.915

0.14 0.1365 3.81

0.15 0.128 3.7

0.201
0.204
0.2075
0.211

0.211~
0.214
0.2175

0.2175'
0.22j.~

0.224

0.224b

0.2275
0.231

0.231
0.234

0.1
0.095
0.09
0.085

0.844
0.976
1.09
1.21

0.658
0.72
0.79
0.88

0.09 0.97
0.085 1.096
0.08 1.21

0.735
0.816
0.913

0.085
0.08
0.075

0.08
0.075
0.07

0.97
1.09
1.22

0.976
1.09
1.204

0.758
0.84
0.956

0.779
0.875
0.99

0.075 0.964 0.8
0.07 1.21 1.9

0.08 0.1885 4.435 0.201
0.204
0.2075

0.085
0.08
0.075

0.9 1.145
1.03 ' 1.35
1.14 1.66

0.09 0.18 4.33 0.2075"
0.211~
0.214

0.08
0.075
0.07

0.91
1.02
1.14

1.21
1.45
1.81

0.1 0.171 4.22 0.214
0.21758
0.221

0.075 0.909
0.07 1.023
0.065 1.1.4

1.29
1.58
2.05

0.11 0.162 4.12 0,221
0.224
0.2275

0.07
0.065
0.06

0.9
1.02
1.14

1.39
1.73
2.37

0.12 0,154 4,02 0.2275 0.065 0.904 1.51
0.231 0.06 1,02 1.94

A "preferred" solution.
"A possible but unlikely combination of Hp„, FP2",

and Ip„.

proton fixed poles so long as one is willing to mod-
ify the —,

' in the quark charge sum rule. (See Ap-
pendix 8 for further discussion of the difficulty in
satisfying this sum rule in general. ) Of course,
the precise asymptotic form for Ff(~) would be
changed.

It should also be noted from the tables tha. t for
F (effective) to be &1, we must believe the value
of p„ to be 0 and that Rp= 1. Thus the only situa-

'A "preferred" solution.
A possible but unlikely combination of Hp„, Fp2",

and Ip„.

tion in which the -solution E values correspond to
those likely for a triple Regge cut even with a rea-
sonable number of coupled channels mixed in
would seem to be the case &„=0, gp= 1. Nonethe-
less we will continue to allow the other possibili-
ties.

For each of the four cases we pick the preferred
solution with the lowest Hp„. These are given
below:

(1) ft, =1,

(2) ft, =l,
(3)-Z, =1,

(4) ft, =Q,

R„=O:

8 = —'2
py 3 ~

Z =0.

F2&(&g)) = 0.12+0.462(gp i + 4.02(g

Ff((u) =0.06+0.616(o i +4.64(g)

F&((g) = Q,05+ Q 645(g ii2+ 4 75~ s/2

Ff(u)) =0.07+0.663(o '~'+3.67(u '~2,

IIp„=0.21;

IIp„=0.19;

II,„=0.195;

H, „=0.19.

There is some evidence that Ff(co) would like to be
as high as 0.25 or so in the vicinity of & = 25. The
values of F~(25) for the four cases are given be-
low where the errors are estimated by taking into
account the possibility of using other preferred

solutions:

(1) Ff(25) = 0.245+ 0.015,
(2) Ff(25) = 0.221 + 0.015,
(3) Ff(25) = 0.217 + 0.015,
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TABLE V. Q& =]., g„=l (isoscalar fixed pole).
Format as in Table IG,

TABLE VI. 8& =0, B„=O (no fixed poles). Format as
in Table IG.

A J3

0.02 0.24 5.05

0.03 0.231 4.95

0.04 0.222 4.85

0.174
0.1775

0.1775
0.181"
0.184

0.181
0.184'
0.1875
0.191

0.095
0.09

0.096
0.09
0.086

0.096
0.09
0.085
0.08

1.04
1.18

0.94
1.06
1.17

0.81
0.93
1.06
1.17

1.52
1.9
1.38
1.65
2.06

1,245
1.46
1.81
2.36

A 8 tp H„
0.05 0.239 3.88 0.1715

0.176
0.178

0.06 0.23 3.71 0.178
0.1815
0.185

0.07 0.221 3.67 0.186
0.188
0.1915

0.1
0.095
0.09

0.095
0.09
0.085

0.09
0.085
0.08

Q.91 1.0
1.025 1.17
1.14 1.36

0.9 1.05
1.03 1.26
1.15

0.9 1.11
1.025 1.35
1.15 1.75

0.05 0.215 4.75

0.06 0.206 4.64

0.07 0.197 4.535

0.1875
0.191
0.194'
0.1975

0.194
0.1976
0.201
0.204

0.204'
0 2076a

0.09
0.085
0.08
0.075

0.085
0.08
0.075
0.07

0.075
0.07

0.815
0.93
1.05
1,175

0.815
0.935
1.05
1.17

0.93
1.055

1.32
1.58
2.00
2.72

1.4
1.74
2.25
3.25

1.91
2.61

0.09 0.18 4.33 0.214 0.07 0.813 1.82
0.2175 0.065 0.935 2.5
0.221 0.06 1.05 4.0

0.08 0.1888 4435 0.2075 0.075 0.815 1.66
0.211 0.07 0.93 2.15
0.214 0.065 1.05 3.1

0.08 0.213 3.67 0.1916
0.195
0.198

0.09 0.204 3.46 0.198
0.201
0.205

0.10 0 195 3.36 0.205b
0.208
0.212

O.ll 0.187 3.26 0.212
0.215
0.218

0.12 0.178 3.15 0.218
0.22b

0.13 0.170 3.06 0.221
0.225

0.085
0.08
0.075

0.08
0.075
0.07

0.91 1.19
1.03 1.48
1.15 2.0

0.91 1.28
1.03 1.66
1.15 2.33

0.075
0.07
0.065

0.07
0.065
0.06

0.91 1.4
1.08 1.88
1.15 2.93

0.91 1.56
2.23

,1.15 4.0

0,065 0.79 1.47
0.06 0.91 2.1

0.065 0.91 1.77
0,06 1.03 2.76

0.10 0.171 4.225 Q,221 0.065 0.815 2.06
0.224 0.06 0.93 3.0

'A "preferred" solution.
A possible but unlikely combination of H&„, I"~&",

and Ip„.

(4) Z'(25) = 0.232 + 0.015.

It is clear that situation (1) is to be preferred on
this basis. Certainly this aspect of the model mill
be tested in the not-too-distant future. If the da-
ta should refuse to fall, then the model as pre-
sented here is mrong. It mould then have to be
true that (assuming a positive residue for the pro-
ton fixed pole still) Regge behavior has not yet
begun as low as + of 12 [e.g. , an extensive "guasi-
elastic peak" may be present or equivalently the
behavior of E,(&u) down to ~ of 12 may not be rep-
resentable by a simple three-power fit, i.e., addi-
tional daughters or cuts would need inclusion]. We
plot solution (1) on top of the ~2 data in Fig. 1.

1V. CONCLUSIONS AND DISCUSSION

We have shown that inclusion of an effective tra-
jectory in the description of the off-shell deep-
inelastic proton scaling function Ef(u&) makes it
possible for the fixed pole in vT, to have a poly-

'A "preferred" solution.
A possible but unlikely combination of H», Il~&",

' and I&„.

nomial residue mith the on-shell magnitude found
in Refs. (2). Evidence for such an effective tra-
jectory in the crossing-even pp+pp scattering
amplitude mas presented. It mas clear, homever,
that other fixed-pole residues mere also possible.
Interestingly enough me discovered that it mas
possible to have a polynomial residue for the pro-
ton fixed pole and simultaneously satisfy the pro-
ton-neutron difference quark charge sum rule,
and in addition, to have a polynomial residue for
the fixed pole in the vT, for the neutron (if for in-
stance at q'=0 the pole is not present, as might
be indicated by the Thomson limit). As was also
discussed, relaxation of the quark charge sum
rule makes it easier, in the sense that the E,"
data need not be stretched to their limits, to sat-
isfy the other constraints if the —,

' of Eg. (2.5) is
reduced. Conversely, it is harder or nearly im-
possible to satisfy the other constraints if the
quark charge sum rule is increased to 1. Por the
case with all constraints present and +=0, ft~=l,
we obtained a solution for the univeral pf(&o) curve
of
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FIG. 8. For various values of II» )the area under the
pxoton-neutron difference curve up to e*= 12 (see Fig. 5)j
ere shower the solutions forA, B, and C&, defined in (3.1),
which will yield a Axed pole in the px'oton data w'ith resi-
due+ j., and vrhich satisfy the p-I diffex'ence constraints.
The magnitude of the fixed pole in the neutron data, for
a given H&„, is also show'n (g„). The demand that both
A and B axe non-negative xestricts solutions to lie be-
tween the taro cross-hatched vertical lines. Thus 0&„
must be at least 0.18 if the quark charge sum rule has a
value of $. EP~and I» were taken to vary linearly from
0.06 and 0.94, xespectively, as H&„varies from 0.18.

FIG, 7, As in Fig. 6, but showing the effect of changing
the value of the quaxkchaxge sum x'ule, Eq. (3.5), - from
3 to 0.28. Note that theA~0, B~0 region has shifted
to lowex values of H&„as compaxed to Fig. 6.

the leading Regge term is considerably altex'ed in
the process. We use in what follows a specific
ansatz for determining this mass. The Regge scal-
ing assumption says a-AN, b -SBN{q'/2M}'~',
c-C~N(q'/2M)' ' for large q'. lf in fact the q'-0
limits were properly given by the following form
fox' v@2'.

P'((u) =0.12+0.462') 'i'+4.02(u 'it, (4.1)

for' QP & QP+2 %Ilich at an 4P of 25 has fallen to about
0.25. For the solution to be correct the proton-
neutron difference Ef"(&o) must actually be towards
the outer edges of the error bare of the present
data so long as we demand that the quark charge
sum rule (=-,'}be satisfied. Thus higher ~ data or
more accurate proton-neutron data will be able
to test the consistency of the theoxetica3, quark
charge sum rule value of —,

' with our other hypoth-
eses.

It is also interesting to note the implications of
(4.1) for on-shell Compton scattering. The cur-
rent best fit to the world data with p & 2 GeV with
a form Q+5v gives 0 -100 pb, 1)P-62 pb
{GeV)'E' (clearly these values would not be greatly
altered 1f a stlMEE cv term were allowed) lt.
is clear that a very small mass must enter the
pxoblem, in some fashion, in going from the q~=0
limit to the lax'ge q' region, since the relative
x'atios of the Pomeranchukon to the coefficient of

VIV~= 2 2 A+
E
—+

+tB V~

with ~ = 2M v/(q'+lE'), then we will clearly also
obtain the correct q~- ~ limit by the above ex-
pression (4.2). This form allows us to obtain an
expression for the high-energy behavior of g(v)
at q'=0 using the facts that

o(v}=4@o.W,/v at q3=0 (4.8)

0.12 A
d

A (2M)'i' 100
0.462 $8 gg gg 62 ' (4.5)

and hence, gg= 0.22 GeV. Further,

c(q'= 0) = C,N(2IE*/2M)3~2= 14.

which follows from the vanishing of the longitudin-
al cross section in this limit. The known values
for A. , 9, and g, 5 give
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A = 0.17, g = 0.113, Cp= 3.42, (4.6)

which was obtained with the —,
' in the quark charge

sum rule replaced by 0.28. This solution gives

Since N= 100/0. 12, and finally, since N = 4v'u/m',
we have that m'= 0.134 GeV'.

The implication of the above is that u = 100 in
the scaling data corresponds to v = 1005/'/2M
=2.59 in GeV. Therefore, we predict that the scal-
ing curve at u = 100 will be shaped like the on-
shell data curve at v= 2.59, i.e., the same rela-
tive contributions from the three terms will be
present at these values of u and p. Thus at p
= 1.68 GeV the contribution from the effective tra-
jectory to the on-shell cross section might be as
much as 5 p.b. This would require only a very
small adjustment in the parameters a and 5 for
the Damashek-Gilman analysis. With a = 100,
b =62, and the above value of c, we find g ~ (v
= 1.68) = 154 pb. They require that the Regge fit
correspond to the low-energy data at v = 1.68 with
a value of g ~(1.68) = 152 pb. Such a minor ad-
justment results in no change in their results as
we have explicity verified. It might be argued
that the small value of m which we obtain, which
implies that scaling is good to about 90% above
q' =1 (GeV/c)', was to some extent assumed, in
that we assumed F,(e) had already scaled at &@ =12
and since the data points we used there came from
relatively small q' measurements. Nonetheless,
if the data as we assumed them hold up for large
q', then an early onset of scaling is strongly in-
dicated by the above considerations which sug-
gested that the onset is characterized by a very
small mass.

One could go even further, however, and as-
sume that our ansatz is correct not only as a
means for going from the q = 0 region to the q

~ region, but also as an interpolating formula.
One should then find that ~vW, is a universal func-
tion of the variable &u (and that scaling would be
best seen by plotting everything as a function of
this variable), were it not for the fact that m +5g.
It may, however, be that this, inequality is only a
result of the inaccuracies of this work.

In fact, if we look at solutions obtained by modi-
fying the quark charge sum rule, in particular the
one obta, ined in the exa.mple given in Sec. III (ft„
= 0), we find that it is possible to obtain a solution
for whj. ch m = gg = 0.44 Qe V. This solution is as
follows:

an Ef(25) = 0.264, which is perhaps more likely to
be consistent with the future data at that point.
We feel that this is a more likely solution than the
previous one which yielded such a very small val-
ue for . As we have seen requiring the above
sort of value in the quark charge sum rule is far
more consistent with the present p-n difference
data (see also Appendix B).

The variable co was, of course, found from con-
siderations involving the large p region. In going
to small p we might instead consider a variable
W = (2Mv+M')/(q'+5g') the new analog of the older
~' of Bloom and Gilman. " Such a suggestion has
independently been made by Rittenberg and Rubin-
stein" on the basis of very different considera-
tions. They also come to the conclusion that the
mass + is quite small.

An indication that the masses m and 5g must be
quite small is seen in the large-w small-q' data
of Ref. 5. At q =m our ansatz would imply that
the value of vW, should have risen to 50% of its
q'- ~ value. This is in fact supported by the data
of Ref. 5 (see Fig. I I of that reference) if one as-
sumes the limiting value to be of the order of 0.25
to 0.3 for the two higher & bins. A substantially
larger value of m', combined with the known val-
ues of pS', at smaller q', would require a final
asymptotic value considerably higher than the 0.25
to 0.3 ran. ge, or else a more complicated inter-
polating ansatz. We remind the reader that the
small value of m' in our analysis is directly a re-
sult of the relatively small contribution of the
Pomeranchukon to vS; in the scaling region.

In the above discussion we have implicity as-
sumed that the data of Ref. 5 are indeed truly rep-
resentative of the q'- ~ (scaling) limit. Should it
turn out that this is not the case (see, e.g. , Ap-
pendix C), much of what we have said in this sec-
tion would need to be reconsidered. However, it
remains true in general that fixed poles with poly-
nomial residues are possible if, and only if, the
co dependence of vS; for & ~ 12 contains contribu-
tions additional to the usual leading Regge behav-
ior.
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APPENDIX A

In Tables III-VI we listed the values of A. , 8, C~ which result from a sampling of values of I „, 8 „, and
F2~" all assumed evaluated for +*=12 within the extremes of the neutron-proton-difference data, for the
various neutron pole residues and proton pole residues that we consider. Changing the value of d has ].ittle
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effect on these results unless 4 approaches unity, in which case, as referred to previously, equivalent
solutions are obtained for slightly smaller values of H~„, I~„, and E~~", i.e., for this smaller value of d it
is not necessary to push the /~2" data to the limits of the error bars. The. allowed range of A, and hence,
B and C~, etc. , is not greatly altered by changing d. It is apparent that there is no lack of solutions pro-
vided one is liberal with the p-n difference data.

We discuss here in detail the trends exhibited in the Tables and the preferred choices for correlated val-
ues of II&„, F~", and E~„. To do so we first rearrange the equations of Sec. III into the following more con-
venient format:

& = [(d -1)/d] j[Ff(~*)—28(~*) ' '1/(d —1) - [It, -&, + 68(~*)""]/~*),
Bx(2 -1/d)((o*) 'i'= —,

' -H, „((u*)—F,'"((u*)/d,

C~= (u)*)~[(d —1)/d](Ff((u*) —28((u*) ' '+[8~ -I~+ 68((u*)" ']/u)*),

g,(1-~)x(2-1/d)(~*)-'=2'�"{~*)+H,„(~') --,',
where, again,

FP n(+ 4) —FP(+ 0) Fn(~ g) FP n

Qi g ~~ des
I~„((u*)= d(oF,'"(u)) and H~„((u*) = = Ff"((o)—,-

I

(A1)

(A2)

(AS)

(A4)

and g& is the magnitude of the proton's fixed pole.
Equation (S.v) for the neutron fixed-pole residue
B„can be rearranged to give I&„(v*) as a function
of A, B, C» and x for a given value of g„.

%e first note that there are no solutions for
H~„(&o*) &0.18 when It~= 1. That is, if one believes
in our version of the proton fixed pole, then the
neutron fixed pole is only reasonable in size so
long as the Ff "(&u) proton-neutron difference lies
above the central data point va1ues shown in Fig.
5. %e note that relaxing the constraint that the
proton pole be +1, e.g. , allowing it to be zero, al-
lows us to obtain solutions with H~„(&o*) as low as
0.17. If the data should eventually force one to
accept a maximum value for H~„(~*) which is less
than 0.17 then one would be forced to accept a neg-
ative pole residue for the proton, or alternatively,
if one's prejudices demanded a non-negative pro-
ton pole, then one could allow additional structure
in the higher u data or further, relax certain of
our constraints —i.e., the quark sum rule.

Second, we note that for a' fixed value of I&„(u&*),
we can increase H~„(~~) only if F2~"(v*) simultan-
eously falls. Since I~„ is only bounded, there is
in actuality some leeway but the general trend re-
mains valid. Thus, the boundedness of I~„allows
us to say that reasonable solutions can only fall
in the ranges tabulated -high jI&„ is inconsistent
with too low a value of J~2" outside of the regions
given, and for given values of H~„and J"~2", I~„
ean certainly only lie in the ranges which we give.
Too high a value of Ff" (i.e., &0.1) we have also
excluded as being manifestly inconsistent with the
data. In actual fact, most of the solutions which
we tabulate are not all that reasonable and only
certain combinations correspond to acceptably

shaped P-n difference curves for low e. These
particular solutions have been marked in the tables.
Of course, there is a continuum of unlisted solu-
tions with values of H~„, E~2", and I~„ in the imme-
diate vicinities of the particular ones which we
have recorded in our tables.

It is obvious that a given value of 8 can be ob-
tained for a variety of combinations of H~„and E2~"

[Eq. (A2)], so long as H~„and Ff" are inversely
correlated. Once 8 has been determined, A. and

C~ follow for given values of the proton pole and
proton data [Eqs. (A1) and (AS)]. Demanding a
higher value for A. clearly requires a lower value
of 8 [Eq. (Al)], and a lower value of 8 only re-
sults if the combination of H, „+F2~"/d increases
[Eq. (A2)]. This explains the general trends for
increasing H~„with increasing A. (One must of
course keep in mind that we restrict E2~" to be
&0.1.) The overlap results from allowing Ft" to
vary within its allowed range.

For a given proton fixed pole once A, B, C&, and
g have all been determined, it only becomes a
question of whether I,„(which is the only remain-
ing variable determining 8„) also lies within an
acceptable range. This is the final limitation on
the range of solutions aeeepted by us and given
in the tables.

Graphically the residue of the fixed pole in ei-
ther Ff(&g) or F2"(e) is determined by the quantity
X+ F-Z in Fig. 8 where the data. are to be taken
either as E2" or J 2~ and the dashed curve repre-
sents the sum 4+ 28/v~~ or A+ SB/W&o, respec-
tively. The proton data, however, are fixed, i.e.,
I~ is fixed. At most we ean imagine that I&„can
alter by about S0%, which would represent a
change in the neutron I„(=[I~-j~„]) of about 10—%.
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Fq (u))

l2

2M@
q2

FIG. 8. The solid curve represents the scaling func-
tion F2(co). The dashed curve represents the low-cu

extrapolation of the asymptotic "Regge" formA+ (23)

&&Bc@ (3 forE~2, 2 forE&). The magnitude of the fixed
pole is given by the combination of areas X+Y-Z.

This immediately tells us that requiring a signifi-
cant increase in g„will necessitate a decrease
in the value of the area under A+ 28/W&u, while re-
taining the same area under A+ SB/Wru, which is
equivalent to keeping the proton pole fixed. Since
A and B are both &0, the only way to do this is to
decrease A. ; recall that A. and B are correlated in
such a way that A. decreasing causes 8 to increase
[Eq. (Al)]. Where there is an overlap in the A,
B, C~ solutions between two different g„values,
it occurs as a result of the adjustments possible
in the p-n difference data. If the same values of
A. , B, C~ are consistent with two values of R„, it
is seen from Tables III, IV, and V that the II~„
corresponding to this solution is smaller, the
smaller the value of R„, and hence F~" is larger.
This is understood again by a graphical argument.
Again, fixing I~„, for a given value of A, B, C~
the difference X-g in Fig. 8 under the neutron
curve is fixed (recall that I~ is always fixed and

that I„=I~-I~„). Thus the only difference in the
neutron fixed pole is that resulting from the area
L', which is larger, the higher the value F2"(&o*)

is. For a fixed-proton curve, a lower E2~" is need-
ed to give a higher E2"; thus the higher the R„val-
ue required, the lower E~" wants to be. The I „
fluctuation for a given 8, of about 30%, in not cap-
able alone of changing this correlation.

We wish to reiterate that we have been assuming
in the preceding discussion that the proton data
for u & u&*= 12 are well determined, i.e. , that I~(v*)
and Ff(~~) are as we have given them. Decreas-
ing I~(&o*) while keeping Ff(~+) fixed will cause a
given solution (i.e., II „, Ff ", and I „ fixed} to
change as follows: F (effective) and C~ increase
while A decreases (A and C~ are inversely corre-
lated since B is fixed by the p-n difference [Eq.
(A2)] and Fm~(&u*) remains fixed [Eq. (3.1)]}. The
fact that C~ must increase can be seen from Eq.
(AS). Consequently A will decrease. Conversely

it follows that if I~(~~) were to increase, then so
will the value of A (again, holding the p-n solution
unaltered). Similarly from (A1) and (AS) it is
clear that if I~ is held fixed while E, increases
then A and C~ will increase, so the u &12 curve
will be somewhat higher than previously, in parti-
cular the value F2~(25) will be slightly greater than
0.25.

APPENDIX B

We make a few comments here on the role of
the quark charge sum rule in a Regge-type analy-
sis of the p-n difference data. In the main body
of the paper we discovered that for a three-pole
Regge model of the high + points, it is not possi-
ble to satisfy this sum rule unless the p-n differ-
ence data are larger than it presently appears to
be. These same remarks apply in the case of a
"conventional" two-pole model [Eqs. (3.1) and
(3.2} with C~= 0]. In this event the sum rule be-
comes

~* d(o F',"((u)
3 2 t

1

and it is clear that this can only be satisfied if
the data are pushed to their maximum values.
Note that here, as before, increasing u*doesn't
really help very much unless E~" has some non-
smooth falloff, e.g. , a rise and then a smooth as-
ymptotic "Regge" fall.

Cp Ipn

0.01

0.00

0.171

0.162

2.98 0.201 0.095 1.09 0.57
0.204 0.09 1.21 0.63

2.87 0.204 0.095 0.97 0.53
0.207 0.09 1.1 0.58
0.211 0.085 1.21 - 0.64

0.01 0.154 2.77 0.207
0.211~
0.214
0.217

0.095 0.85
0.09 0.97
0.085 1.09
0.08 1.22

0.49
0.54
0.59
0.665

0.02 0 045 2 67 0 217 0 085 0 98 0 55
0.221 0.08 1.09 0.60
0.224 0.075 1.2 0.68

0.003 0.136 2.56 0 224b 0 08 0 97 0 55
0.227 0.075 1.1 0.62

0.004 0.128 2.46 0.227
0.231

0.08 0.86 0.51
0.075 0.97 0.56

'A "preferred" sot,ution.
A possible but unlikely combination of H», E~&',

and Ep~,

TABLE VII. R& -—1, R„=O. The input assumes the scal-
ing function to be that obtained by suri and Yennie after
their vector-dominance subtraction. Format as in Table
III.
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These problems are totally independent of the
considerations involving the residues of the fixed
poles. Thus, if in fact the eventual p-n data re-
strict us to small H~„, then it is clear that the
quark charge sum rule must "fall," or alternative-
ly, there must be some unusual structure in the
higher w regions of the p-n difference data.

APPENDIX C

We recall now the second possibility mentioned
in Sec. I, namely, that the scaling function is not
the full F2~(u) but rather a subtracted Ff(+) (which
we called +2~ ~ as suggested by suri and Yennie. "

In Fig. 1 we exhibited the observed vW, data and
in Fig. 2 we showed the resulting "data" for I',
= (vW, vec—tor-dominance contribution). suri and
Yennie propose that F, is the object which might
already be scaling and that for q'& some q~„ the
vector-dominance contribution is negligible, but
that this region has not yet been reached. We can
then write Eq. (1.3}with F, replaced by F, for
q'& q' „and use the F, of Fig. 2 in the sum rule
under the assumption that I", is already scaling.

In Tables VG and VIII we give the corresponding
+~=1 and &„=0, &~= 0 and +„=0 solution possi-
bilities as they would occur in our scheme (we
took Ff =0.21 and I~=2.72 at +*=12). Quite clear-
ly, if their model is correct, we would predict
that most if not all of the Pomeranchukon has been

TABLE VIII. 8& =0, R„=O. Solutions are for the suri-
Yennie subtraction case (see also Table VII.) Format
as in Table III.

FPn
2

0.00 0.187

+ 0.01 0.178

2.01 0.208 0.075 0.79 0.79
0.211 0.07 0.91 1.0
0.214 0.065 1.03 1.4

1.90 0..215 0.07 0.79 0.84
0.218 0.065 0.91 1.1

~A "preferred" solution.
"A possible but unlikely combination of H&„, F~&",

and Ip„.

subtracted by their vector-dominance subtraction.
The true scaling function would contain very little
constant component. Unfortunately it is still not
possible to decide on any basis whether the vec-
tor-dominance subtraction has removed the fixed
pole or not. Both &~=1 and R~= 0 seem equally
viable possibilities within our framework. Chang-
ing the quark sum rule would (as before} result
in some modification of these results. In particu-
lar the 0.28 value in this sum rule would allow
some additional Pomeranchuk contribution to re-
main in F~.

—0.01 0.195 2.11 0.205 0.075 0.91 0.92
0.208 0.07 1.02 1.2
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