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The octet baryon AI = 1 mass shifts, kaon electromagnetic mass shift, and g 3x decay
amplitude are all correlated in the framework of the linear SU (3) 0 model. It is shown how
this model provides a natural realization of the "tadpole" idea of Coleman and Glashow. An
attempt is made to resolve the long-standing mystery associated with the g 37r process, and
the rare mode g' 3m is also calculated. Finally, it is shown that the chiral-symmetry-
breaking and isospin-nonconserving coefficients in the Lagrangian have the same order of
magnitude.

I. INTRODUCTION

In this paper, we study AI=1 electromagnetic
effects in the linear SU(3) a model of pseudoscalar
and scalar'mesons. The formalism to be used
was developed in several previous papers' ' for
the purpose of studying chiral-symmetry breaking
and SU(3) breaking in this model. However, we
are attempting to make the present paper self-
contained enough that the reader may get the gen-
eral idea without constantly having to refer back.

We shall limit the mesons in the model to the
spin-0 ones to avoid the usual maze of alternatives
that present themselves when many additional kinds
of particles are treated together with symmetry
breaking. It was found that in the isospin limit
with the simplest "[(3,3~) +(3*,3)]" type of sym-
metry-breaking term, ' the present model gave
quite a reasonable amount of the mass spectrum.
Here we shall see that the model is able to corre-
late successfully the baryon electromagnetic mass
shifts with the kaon electromagnetic mass shift
and the q-3& decay process. Furthermore, the
mass of the isovector scalar meson is constrained
(from electromagnetic considerations) to be around
a physically reasonable value. It turns out, in.ad-
dition, that the fit to the mass spectrum requires
the coefficient in the Lagrangian which violates
isospin invariance to be of the same order of mag-
nitude as the chiral-symmetry-breaking coeffi-

cient. This might indicate a fundamental connec-
tion between electromagnetism and chiral-sym-
metry breaking. '

Before going on to the formalism, we shall brief-
ly discuss the historical background. In the prob-
lem of electromagnetic mass splittings and asso-
ciated second-order processes (such as q-sv), it
has been recognized that it is necessary to treat
the AI=1 and AI=2 effects separately. From a
dispersion-theory viewpoint, as pointed out by
Harari' and others, this amounts to a statement
that we can calculate the EI= 2 processes by ordi-
nary Feynman diagrams involving photon exchange,
since the amplitudes for these processes satisfy un-
subtraeted dispersion relations, implying that high-
energy contributions can be safely neglected. On
the other hand, the b,I=1 processes are said to
satisfy subtracted dispersion relations so that a
knowledge of the subtraction constant (which does
not come from the lowest-order Feynman diagram)
is required. This general argument is borne out
by the fact that the 4I=2 &'-+ mass difference
has been calculated successfully from essentially
second-order perturbation theory by many workers. 7

On the other hand, all the XI=1 mass differences
and the bI=1 q-3& processes have not been ex-
plained by analogous calculations.

One way to explain the 4I=1 mass differences
is to use the "tadpole" approach of Coleman and
Glashow. By postulating scalar mesons having
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nonzero vacuum expectation values, they were
able to correlate neatly the octet-baryon electro-
magnetic mass differences with the kaon electro-
magnetic mass shift. The apparent drawback to
their model is that the scalar mesons were intro-
duced on a rather ad hoc basis.

Slightly more recently it has become apparent
that the (essentially equivalent) "current-algebra"
or "phenomenological-Lagrangian" approaches to
strong interactions, which are based on a chiral
SU(3) xSU(3) symmetry, are successful in explain-
ing a fairly large body of low-energy phenomena.
It is noteworthy that rather broad scalar mesons
(some of which have nonzero vacuum expectation
values) are intrinsically contained~ in these models.
Thus it would seem that the same type of model
which gives all the well-known (and not so well-
known) "current-algebra" results should also pro-
vide an explicit realization of the "tadpole" mech-
anism and explain the hI= 1 electromagnetic effects.
In what follows we attempt to substantiate this
claim.

Even though the basic mechanism is similar to
that of Coleman and Glashow, the actual details of
the calculation, as might be expected, are very
different. From a physical viewpoint it may be
helpful to think of the present model in the follow-
ing terms: In order to apply electromagnetic per-
turbation theory it is necessary to find the stable
ground state of the system under consideration.
However, the electromagnetic interaction plays a
part in establishing the ground state. This mani-
fests itself in the appearance of an effective "tad-
pole" -type interaction.

A brief review of the model and a discussion of
the symmetry properties of the ground state is
~ven in Sec. II. Section III contains the treatment
of the spin-zero-meson and octet-baryon electro-
magnetic mass splittings. In Sec. IV it is shown
that g-3& can be explained in the present model,
while an analogous treatment for the rare mode
g'-3& is presented in Sec. V.

H. MODEL LAGRANGIAN

We start from the following well-known Lagran-
gian density of the linear SU(3) o model:

g = 'Tr(B~ Qs~ Q) ———'Tr(spS Bp
—S) —Vo —Vgp,

(2.1)

where Q and S are, respectively, the 3x3 matrices
of pseudoscalar and scalar fields Vp is the most
general nonderivative chiral invariant and V» is
a symmetry-breaking term which will be taken to
include the second-order effects of electromag-
netism as well as the so-called "medium-strong"
effects.

In the treatment of (2.1), it is essential to take
account of symmetry breaking in the vacuum or
ground state. This can be conveniently handled

by a technique analogous to the introduction of
normal coordinates in small-oscillation theory.
An extensive discussion has been given, for ex-
ample, in our previous papers. It is necessary
to introduce as parameters in the theory the three
vacuum expectation values:

n, =(S;), (a =1, 2, 3) . (2.2)

Then, the breakdown of symmetry arises not only
from explicit terms in V» but also from nonzero
values of the o, Furthermore, the ground state
is required to satisfy a "minimum" condition

0 + SB p

which leads to the three equations

n, [V, +2V2n, 2+3V~n, ~]+6 ' 2 s V4=-2

(a = 1, 2, 3), (2.3)

(a)

FIG. 1. Diagrams for electromagnetic perturbations.

where the V, are the coefficients (sV~/sI, )„ the I,
being the four independent chiral invariants which
can be made from Q and S [see Eq. (22) of paper I].

As an explicit symmetry-breaking term we shall,
as before, use the expression

SB
= (&lSl+&2 2++3+3)+ d 4'i4'2+ drills+ ' ' '

~

(2.4)

The three coefficients A, are analogous to the
quark "masses" in Gell-Mann's quark model. 4 It
seems fair to expect that the origin of the differ-
ence between A, and A, is due to a (second-order)
electromagnetic "tadpole" diagram [see Fig. 1(a.)].
However, it is not necessary for us to specify the
origin of the A, in order to proceed with the cal-
culation. We only mention that a number of au-
thors" "have recently proposed interesting specu-
lations on this matter.

The quantities d„and d» are expected to repre-
sent contributions to the charged pion and charged
kaon masses from Feynman diagrams of the "self-
energy" type [see Fig. 1(b)]. These have been esti-
mated by many workers. It is found' that d„essen-
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tially explains the entire n'-m' mass difference
and is therefore

d —O.O69, (2.5)

in units of squared m masses. For d~ the value"

(2.6)d~= 0.15,

in squared a' mass units [corresponding to
(IC'-X3) )f „„~2.8 MeV], is generally agreed
upon. This quantity has the zvrong sign to explain
the K'-E' mass difference by itself.

We will first show that the ground state of our
model must violate SU(2) invariance. With the
symmetry-breaking term of (2.4) the first two
equations of (2.3) become

ance of the ground state (n, = n, = n, ). In our mod-
el this assumption is inconsistent. However, it is
allowed if forms of V3() different from (2.4) are
adopted (see Ref. 11 of paper III).

The masses of the pseudoscalar mesons and
some of the scalar mesons in this model can be
computed from chiral symmetry alone. This was
done in paper II. For the convenience of the
reader we reproduce the results here. [The
pseudoscalar nonet is designated by (w, K, q, q')
and the scalar nonet by (e, z, o, c'). The particle
symbol will also stand for its mass. ] Then

'=2( ' ' f+d„,1+e2

n3[V3+2V3(n~) +3V3(n3) ]+6n3n3V4=A3,
(2.7)

n, [V,+ 2 V,(n, )'+ 3V,(n, )4] + 6n,n, V4 =A, .

Subtracting these two gives

(n, —n, )[V, +2V,(n, '+n, '+n,n, )

" 'I+d
(n g +n3)

Z'=2/ (A +A

(2.9)

+ 3V3(n3 +n3 +n3 n3 +n3 n3+n3 ng)

-6V4n, ]=A, -A, .
(2.8)

Thus if o.,=e, we must have A.,=A, if the V, 's are
all finite. In other words, when V» contains an
intrinsic symmetry-breaking term such that
A, wA„ the ground state of this model cannot be
SU(2)-invariant unless we take a limit of the theo-
ry in which the V, 's become infinite. In a similar
way we see that in the SU(2) limit, the ground
state cannot be SU(3)-invariant. We remark that
most previous work has assumed the SU(3) invari-

2~
A, -A3
Qi —Q2

3 2 1 A3
n1 n3)

(A, -A31
Q2 —Q3

(2.1O)

Finally, the squared masses of the m', g, and q'
particles are given by the roots of the secular
equation of the following matrix whose (ab) ele-
ment is (S3V,/SP;SP,'),:

r2A3/n3 —12V4n3n3/n i

-12V4n3

-12V4e2

-12V4a3

2A, /n, —12V4n, n, /n,

-12V o.,

-12V4e2

-12V4ni

2a, ia, —11Va,a, ia ]
(2.11)

III. ELECTROMAGNETIC MASS DIFFERENCES AND MIXINGS

The comparison of (2.9), (2.10), and (2.11)with experiment was done in paper I for the isospin-invariant
limit (n, =n, and A, A, ). Here we will allow n, en, and A, AA3; the basic assumption in this approach
will be that solutions are only slightly different from the ones in the isospin-invariant case. Thus devia-
tions from isospin invariance will be treated to first order. Actually, this was already done in paper II;
here we will reach similar conclusions to paper II by a much simpler and clearer method and, in addition,
extract more information from the system.

In order to diagonalize the matrix (2.11) we write the physical v3, 3}, and q' fields as the most general
linear combinations of the fields (t)', , p3, p33which differ only to first order from the appropriate combina-
tions in the isospin-invariant limit [Eq. (3.13) of paper III]. Thus we write"

-(l)"'+g,1+( ia( i)a (,()') (4')-~
(l)'"y, +b -&2a (I)3

(-,')"'(,+a iab ) (4l)
(3 1)
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where P, is the w0q mixing angle, g, is the w0q' mixing angle, and

a=(xl)"'(sine, + W2 cose,),

b = (xl)"'(cose0 —vY sine2),
(3.2)

e2 being the q-q' mixing angle. P, and $2 are quantities of first order.
It is convenient to give the matrix elements of the mass matrix (2.11) in terms of the quantities just intro-

duced, and the squared masses of the physical particles m„q, and g'. We have, by transforming the mass
matrix with the matrix of (3.1),

B2 P
=w0 (2+&2plb+&2p a2} +q (b v2 —baal)+q' (a —W2ap2),

41 41 0

(
B2

= w0 (2 —v 2 ill, b —&2 $2a} +q (b + v 2 bg, ) +q' (a + W2arfr2),
2 2 0

(
B2 P'

= 2a'q'+ 2b'g"
e42s4'22 0

B2+ =-—'m +5 g +u q'
eyley2 2 0

2
= w0'(-g, a+ $2b)+q'(-v 2 ab+ g,a)+lI"(&2ab —(2b},

B2 P'
= w0'(g, a - y2b) + 1I'(-vYab - ill,a) + q "(v 2 ab+ y2b} .

s4'2642 0

(3.3)

Equating (3.3) and (2.11) permits identification of the symmetry-breaking parameters in terms of "physical"
quantities.

The formulas (3.1)-(3.3) also hold for mixing in the (e0, o, o') system when we make the replacements

e2- e, , b-b', 14-X2 (3.4)

Now let us assume that a, —o., and A, -A, are objects of first order, and express electromagnetic quanti-
ties in terms of them. For the "tadpole" part of the kaon mass shift 5E, which is defined by subtracting
the self-energy contribution d» from the physical difference K,' —K0', we have from (2,9)

5K~ —= K —K —d~

, [(n2 —n, ) [2'(A, +A, ) +A,]+ (A, -A,)[-'2(a, + o.2) + a2] ],
&~, + ~,'j«, + ~,&

(3.5}

where no approximation has as yet been made. Assuming that A. y AL2 is negligible compared to A3 and that
o., —a2 is negligible compared to u2 enables us to write (3.5) as

6K2 = „[(n2—o.,)(A, +A2)+ (A, -A2)(n, + n2)].
owl+ CW2)

Using the formulas for z+' and K+', we can put this in the compact form

bK2
' 1 2 ( 2 K2)
a(I+W) (3.6) (3.8)

where o, is the value of a, in the isospin limit and

W =+3 a. (3.'I)

We have omitted the charge indices from e2 and K
on the right-hand side of (3.6) because these ob-
jects may evidently be evaluated in the isospin
limit.

It is presumably of only formal interest to note
that the analogous formula to (3.6} for the "tadpole"
part of the a mass shift is

To evaluate the "tadpole" part of the pion mass
shift we first note from (3.3) that

B gB Qg p B 2B 2 p B gB

Substituting the matrix elements from (2.11}into
this gives

-6~4&a,
gp &o,,-~& + +

QgQ2 Ag Q2
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which may be combined with the expression for m+'

in (2.9) to reach the desired result

5n -m+ —
mo -d,

2

(24 V4&~ + E —7f )
4QgQ2

(3.9)

where no approximation has been made. We see
from (3.9) that to first order in n, —o.„

6R' =0. (3.10)

Thus, in this model, all the w'-m' mass splitting is
due to the ordinary self-energy diagrams. This
agrees nicely with the many successful calculations
on this basis. Equation (3.10) is, of course, not
really surprising, since the "tadpole" electromag-
netic perturbation is a pure ~I =1 object which can
not contribute to the m'-m mass difference to first
order since it must have negative G parity. From
the same general argument we may conclude that
the "tadpole" part of the c+-e' mass difference, 5c',
also vanishes. [This may be explicitly verified by
using Eqs. (25), (26), and (22') of paper I.]

The v'q and w'q' mixing angles $, and $, may also
be computed in terms of A, -A, and a, —a,. To do
this we first calculate

8 g8 j 8 28 2 p

from both (2.11) and (3.3), i.e.,

2 ~-~ -12@a

8 8 8 8

This gives

12 V,(n, —o.,}= -2v, '(aP, —bP, ) + 2q'age, —2q "bgs.

(3.12)

Solving (3.11) and (3.12) simultaneously and keep-
ing terms of first order in n, —a, and A, -A, gives
the final results

'~ [v' —e'+2a(vYbW —a)(q" -q')],

(3.13)

[2 —~ +2b(W2nW +b)(q' —q )].

Now all the electromagnetic "tadpole" contribu-
tions and pseudoscalar electromagnetic mixings
have been expressed in terms of A, -A2 and e, —n2.

= 2v 2 v,'(by, +ay, ) —2v 2 q'bg, —2v 2 q "aP,

(3.11)

and do the same for

Z+ —Z
n, —n, =a(W —1) (3.14)

where the particle symbol denotes the mass and
wherein we have, for convenience of writing, used
the experimentally accurate Coleman-Glashow
formula. ' Numerically, (3.13) yields

n, —(y, = -0.0075go, (3.15)

since 8'=1.7 and a= —,'m mass units. "
We shall adopt (3.15) for the purpose of making

further numerical estimates. Then, once the value
of A y A2 is specified, all the electromagnetic pa-
rameters above are known. Equation (2.10) shows
that choosing a value of A, -A, is [assuming (3.15)
to hold] the same as choosing the value of the e'
(isovector particle) mass. It is rather amusing
that this "strong" mass comes out to be the ratio
of two "electromagnetic" quantities in the present
model. Unfortunately, the experimental existence
of such a particle is not well established. There
is some evidence" for the so-called 5(962) (c,'
= 50.6v,'}, but this is a narrow resonance and
(see paper III} the e in the present model is prob-
ably rather broad (although modifications of the
model may change this).

In any event we shall proceed by choosing dif-
ferent values of e+' and computing the correspond-
ing values of all the other parameters. These are
shown in Table I. The values of the electromag-
netic mixing angles g, and g, are useful in connec-
tion with other electromagnetic processes like g
-3m decay while the values of GAP are just of aca-
demic interest.

The predictions of present interest are in the
columns for 6K' and A, -A, . For comparison we

The only objects which could not be so expressed
were the woo and e'o' mixing angles g, and X, [see
Eq. (3.4)]. The reason for this is that, as noted in

papers I and III, chiral symmetry alone does not
relate the parameters of the (e'oo') mass matrix
to other quantities.

Before studying the above equations we note that
more information can be obtained from the baryon
electromagnetic mass splittings. Previous analy-
ses'" have shown that the self-energy-type dia-
grams give relatively small contributions compared
to "tadpole"-type diagrams for the baryons. To get
an idea of what is happening we shall make the sim-
plifying assumption that all baryon masses arise
from the "tadpole" mechanism. In the present con-
text this means that all octet baryon masses should
arise from a nonderivative chill-invariant baryon-
meson interaction. In the Appendix of paper II we
noted that the simplest chiral-invariant interaction
which explains all eight different octet masses
leads to the relation
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TABLE I. Electromagnetic parameters for o,
&
—(12= 0 0075 7I"p and different values of E+ .

2
C+

(xp2 units)
Ag -A2

(~p' units)
Q

«2

(mp2 units)
5K

(xp2 units)

50.8

80.5

100

200

—0.093

—0.19

-0.30

-0.37

-0.75

—0.52

+0.025

+0.66

+1.08

+3.21

2.2x10 3

9.3x]0 3

1.7x10 ~

2.3x 1p

5.0x10 2

-3.2x10 3

3.7x10 ~

6.1x10-'

1.8 x1p-'

-0.063

—0.21

—0.37

—0.48

—1.03

note that the experimental kaon mass shift is
K+ —Ko =6K +dz —--0.22mo . It is amusing to note
that if we identify the e with the 6(962), the entire
kaon mass shift can be explained from the "tadpole"
contribution alone. However, this may be just a
coincidence. Another possibility would be to
choose the nontadpole part from Eq. (2.6}. Then
the e mass would be 1210 MeV (e,'= 80.5'').

Still another possibility would be to assume the
e to be a particle of even higher mass. Then it
would be necessary to have a relatively large pos-
itive d~ to compensate for the large negative value
of M'. We should stress that the calculations"
leading to (2.6) are somewhat model dependent so
(2.6} should probably not be accepted without ques-
tion.

One amusing point which may potentially have
deep significance is that for all the interesting
values of e,' the magnitude ~A, -A,

~
is always

numerically comparable with —,'(A, +A, ) (=-,'o.'w, '
=-,'v, '). This was one of the main conclusions of
paper II. In our formulas above we neglected
jA, -A,

~
compared with A, (which is valid since

A, = 8.3vo') but never compared with 2(A, +A, ).
Thus, this result does not impair the validity of
our approach. Since ~A, -A,

~
is a measure of the

strength of the "electromagnetic" part of Vss while

2 ~A, +A,
~

is a measure of the chiral-SU(2) xSU(2)-
breaking part of Vs» this may indicate a close
connection between electromagnetism and the
breaking of chiral symmetry. However, we shall
not speculate any further in the present paper.

standpoint of an effective Hamiltonian, a scalar-
density electromagnetic perturbation. It is easy
to see' that such a term gives the right spectrum
shape when treated by the usual current-algebra
techniques. However, the decay rate comes out
to be considerably smaller" than the experimental
value. We shall calculate the "tadpole" contribu-
tion in our model. " It will be noted that the model
intrinsically contains a sufficient number of param-
eters to fit the experimental spectrum shape and
decay rate. By taking a formal limit where the
scalar masses go to infinity, the amplitude will be
seen to reduce to the "current-algebra" one which
gives the right spectrum shape but a decay rate
smaller than the experimental value.

One may ask the question as to whether in pick-
ing up the tadpole contribution we are really intro-
ducing a basically new nonminimal electromagnetic
interaction in nature. We feel (but cannot prove at
present) that the tadpole actually arises from the
usual minimal electromagnetic interaction among
the unPhysical scalar-meson fields. We cannot do
perturbation theory with respect to the unphysical
fields because they represent excitations around
an unstable ground state or vacuum. In order to
do perturbation theory it is necessary to define
the physical fields (see paper IH) which correspond

IV. @~3' DECAY

To explain g-3m decay by either the current-
algebra or phenomenological-Lagrangian tech-
nique has been regarded as a major puzzle. In
this section we will give a possible solution of the
puzzle.

It was noted by Sutherland" that the nontadpole
contribution to this decay vanishes in the soft-pion
limit. It is reasonable to neglect this type of con-
tribution for physical pions too. Hence we are left
with the "tadpole" kind of terms, or, from the

)EN

g+

FIG. 2. Diagrams'for q 3x decay. EM denotes an
effective electromagnetic vertex.
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to excitations about the physical ground state as a
zero point. The condition insuring the stability of
the physical ground state is just Eq. (2.3). The
crucial point is that the electromagnetic inter-
action of usual type goes into establishing the phys-
ical ground state (through the fact that A, xA, ).
All the usual calculations, including the one of
Sutherland, "deal with additional electromagnetic
perturbations around the physical ground state,
which already contains the effects of electromag-
netism in our model (i.e., tadpoles). However, it
should be stressed that the origin of the tadpole is
irrelevant to the present work.

The actual computation is fairly straightforward.

The relevant Feynman diagrams for g- w'w ~' are
shown ln Fig. 2. Note that there are no diagrams
with direct m'g, ~ o, etc. , transitions. This is
because we have diagonalized the (w'gg'} system
by (3.1) and the (6 0'0'} system by an equation anal-

.ogous to (3.1) using the replacements given in
(3.4). The Q' and some of the Sgg (effective)
electromagnetic vertices can be related to other
electromagnetic parameters of the model by using
the chiral symmetry of V, in (2.1). Explicit for-
mulas for doing this are given in paper III. We
write the strong and electromagnetic Lagrangians
which contribute to g - 3m below:

-Z„„„&(q-3w) g„„qw Z+-,'g ow ~ w+-,'g, „,o'w w,

-&pM(q-3w) =f,„„ow'q+f, ~&'w'q+f;'„', (~'w'w-+e w'w'-)+f', " e'w'w +f'4'qw'w w'.

(4.1)

(4.2}

In (4.1) the isospin notation was used. The "strong" coupling constants, g„„,g, and g, „„, are given in
Eq. (4.7) of paper III. The electromagnetic couplings f „and f, ,„are not related to other things by chiral
symmetry while the others are

f",~ =—(y,b+y, a)(e'- w'),(+)
(4.3)

f, =—(Xx&' 2+3&')(~' —w') (4.4)

(4 6)

To see how (4.3) is derived, as an example, we note that f,"~ can be written as

ss'sw'ay', ~ aw' ss's4;a4'

The quantities sg/sn can be calculated from (3.1), while the quantities

(
$8+

8s;ay 8g},
can be related to e' and w by the generalized "Goldberger-Treiman" formula (4.2) of paper III. Equations
(4.4) and (4.5) are derived similarly.

Using the interactions of (4.1) and (4.2) we compute the T amplitude for g- w'w wo to be

Ql 0 -7F 0 o"- w'
T(g -w' w w'} = f „ 1——

0 —'g —1P + 2 gGPO cK oI2 g2 p+ 2 q~ j

+—.(X,&'+X.c')(~'-n') 1-
& . . 2

+—.(0,&+4.s)

(4.6)

Equation (4.6) was evaluated in the rest system of the q meson. The energies of the plus, minus, and
neutral pions are denoted by ~„~, and ~,.

It is interesting to write (4.6} for the case (as actually seems to hold} where the scalar-meson squared
masses e2, o, and o' are large compared to m' and g':
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(4.7)

We immediately notice that the spectrum is pre-
dicted to be of the form (1 —2+,/q). It has been
previously observed" that this spectrum shape is
in very good agreement with the experimental"
one.

From (4.7) we can easily see why the "current-
algebra" calculation gave the right spectrum
shape but too small a decay rate. It was pointed
out by Weinberg" that the prescription for getting
the "current-algebra" results from the 5-model
results is to let the scalar masses go to infinity.
In this limit the f, and f, ,„ terms in (4.7) van-
ish since these coupling constants are not related
to other objects by generalized Goldberger-Trei-
man relations and hence remain finite. We shall
Also impose the prescription of setting the electro-
magnetic scalar mixing angles X, and X, to zero as
we let the scalar masses become indefinitely large
in order to get the "current-algebra" formula.
Then (4.7) becomes

b 2 2600—,(g,b+ g,a) q' 1—

I'„z (q- w'w-w') =605+150 eV. (4 9)

We could explain the experimental rate in the
"current-algebra" limit if we were willing to ac-
cept a sizeable value of d~, but this would imply
that the ordinary method" of estimating the self-
energy diagrams leading to (2.6) is drastically
wrong.

In the present model, of course, it is not neces-
sary to go to the "current-algebra" limit. Since
(4.7) shows that the spectrum shape is correctly
predicted for all choices of parameters there are
many ways of fitting the decay rate. To make an
estimate we shall consider a simple model where
f„„=f,„„=0. The experimental amplitude is

T (q w+w w ) =+0,98(1 —2(uo/q). (4.10)

If (2.6) is adopted we find from Table I that bg, + ag,
=0.92x10 '. Then, in order to fit (4.10), we must
have for the combination of e o and e a' mixing
angles

Using (3.13) and (3.6) we may finally express the
amplitude in the "current-algebra" limit as

-2.8 x 10-'
'X~+' ~=,4 6x&O- (4.11)

0) ( .+ W)
i

'g

12 vYo.'

(4.8)

where we have set a=(—', )' ' and 5=(—,')' ', corre-
sponding to negligible qq' mixing (see paper III).
From (4.8) the numerical width" in eV is given by
I' = 450(5K')', where 5K' is expressed in w,

' units.
When 5K' = -0.22wo' (corresponding to all the kaon
mass splitting coming from the "tadpole" ), F= 21
eV, while for 5K'= —0.37wo' [corresponding to the
choice (2.6)), I'= 62 eV. Both of these values are
considerably smaller than the experimental" one:

where the upper value corresponds to the plus sign
in (4.10) and the lower value corresponds to the
minus sign. Numerically, (4.11) is about three to
four times the magnitude of the analogous combi-
nations of the mop and mop' mixing angles. This
may not be unreasonable since Table I shows'4 that
the "tadpole" part of the a-squared mass shift is
about three times the kaon-squared mass shift for
large c,'.

Finally, we remark that if one adopts scale
invaxiance as a good symmetry for Vo in (2.1), re-
lations between X, and y, and f„„andf, „„may be
obtained. Using formulas (6.3) and (6.7) of paper
III we find

(e' —o') (&52' —Wa')X, + (P- o")(W2a'+W&')y, = (4.12)

I

f,„„(v2 b' —Wa')+ f...„(v 2 a'+ Wb')+ g,~ ' '+(v 2 O' —Wa')X, + (W2a'+Wb')X, =0. (4.13)

V. q'~37| DECAY

The main decay mode of the q'(960} meson is the strong process q'-q2w. Because the Q value of this
decay is very low the width is quite small and competing eIectromagnetic modes may be observable.

The computation of q'- w'm-m' in the present model is entirely analogous to the work in Sec. IV. Thus
we just state the final result:
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+ 0 b 0' —7 Q (T"- 1PT(q'-w'w w')= —f„„ 1 —, , + f—, ,„. 1—

lt' 2
+—.(Xlb'+ X.a')(~'-q") I I-,
+—,(y,b+q, a) (2e'-q"- w') —(e' —w')(e'-q"), +

CX E —'g —1P + 2'g CO+ 6 —'g —7T + 2g (d

(5 1)

In the limit where a, a", and e2 are large compared with w' and q", each term in (5.1) by itself yields
the characteristic spectrum shape

1 —2400 'g (5.2)

However, since q" is large, the approximation of neglecting it may not be very good for finite values of
a, cr'~, and e'. Then it is more accurate to use the formula (5.1).

It may be of some interest to make a ve~y crude estimate of the g'- 3m rate. In the approximation where
the scalar masses are large and only the (g,b+ Pea) and (X,b'+ X~a') terms are retained, Eqs. (4.'1) and (5.1)
yield

T(q'- w'w w') a q' '( 2~, 2&o,
-'

r(q-w'w-w') b q
(5.3)

Denoting the Q values of these decays by Q(q') and Q(q) and using the nonrelativistic phase-space formula*'
gives, finally,

r(q' w'w -w') =-— — ' ' r(q w'w -w')-
q -Q(q)

= 0.1 Mev.

In (5.4) terms of order &u, have been neglected for simplicity.
The above result should only be interpreted as an order-of-magnitude estimate. The experimental"

uPPex limit is

r(q'- w'w-w')

r(q'- ail}

(5 4)

Taking the (poorly determined) total width to be 10 MeV would give an upper limit of about 0. 5 MeV which
is consistent with our estimate. Further experimental investigation of this mode would be highly desirable.

*Work supported by the U. S. Atomic Energy Commis-
sion.
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We discuss some of the theoretical arguments for the existence in Compton scattering of
right-signatured fixed poles with polynomial residues. We show that if one could "switch
off" the strong interactions, then a fixed pole with residue linear in q2 (the photon mass
squared) would be necessary for the consistency of the fixed-q dispersion relation for v T2
(whose absorptive part vW'2 is measured in inelastic electroproduction). We show that if the
above conjecture is correct, then there must be some energy dependence in vW2 over and
above the conventional leading Regge form (Pomeranchukon plus f-A2). Evidence is present-
ed for the presence of such "nonleading behavior" in a similar process. In addition we show

why the on-shell 0'/pe (yp) could be compatible with the neglect of such a nonleading term.
We find that a fixed pole with polynomial residue and the correct q2 —0 Thomson limit can
be accommodated by the present data on vW2 at large q . With the above assumptions on the
fixed-pole behavior, we predict the high-energy behavior of vtV2 and find that asymptotically
it must fall to a value substantially less than its present maximum magnitude.

I. INTRODUCTION

The amplitude for forward scattering of off-mass-shell photons on spin-averaged nucleons can be writ-
ten in terms of

41K + gyp Tj Pp 2 Q p Pp 2 gp 2


