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FIG. 2. Model phase shifts for the T=0 and 2'=2
8 waves.

relations are sensitive to enex gies higher than
those fox' which oui parametrrlzatlon can be ex-
pected to remain good.

I.O

This dependence on high-energy contributions
means that the model we have presented cannot
provide an accurate dynamical description of low-
energy pion scattering. However, the amplitudes
which appear from the model do have all of the
qualitative features found in low-energy pion
scattering, and we feel that this is evidence for
the validity of the basic idea, that of a strictly
low-energy bootstrap which is insensitive to the
pion mass and which is driven by the current-
algebra slope at zero energy.

To illustrate the nature of the amplitudes in our
models we pl esent ln Fige 2 the ~ =0 Rnd 2 8-wave
phase shifts that correspond to the solution with
the inclusion of the f' contribution. We now take
account of the pion mass by computing the phase
from that of Eg. (3) and use the values I,'.
= (0.755)', I,' = -(0.685)' that correspond to the
shift 8= v+2m, '. We have not included a graph of
oux' I'-wave phRse shift 81nce it wRS g1ven ln our
previous paper' and agrees very well with experi-
ment if the physical p mass is used.
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New exact bounds for derivatives of X&3 decay form factors f~(t) are obtained„provided
that &({)), the propagator of the divergence of the strangeness-changing current at zero mo-
mentoln, is known. Several estimates of 4(0) are discussed, along with their experimental
ilnplicat&ons.

I. EXACT INEQUALITIES

Recently, some exact upper bounds for K„decay
parametex's have been obtained by several au-
thors, ' ' if L (0), the propagator of the divergence
of the strangeness-changing current at zex'o mo-
mentum, is known. These bounds give rather
stringent conditions on the decay parameters if we
estimate 6(0) from the SW(3) model of Gell-Mann,
Oakes, and Benner and of Glashow and W'einberg. '

The purpose of this note is twofold. First, we
wi11 obtain new improved bounds for these quanti-
ties. Secondly, we will attempt to calculate 6(0)
j,n as model independent a way as possible. As we
shal]. see in Sec. II, the resulting inequalities are
stringent enough to test the chiral SW(3) theory.
In this section, we will state some simple mathe-
matical theorems which will be usefu1 in our anal-
ysis.

Let E($) be a real analytic function of a complex
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variable $ with a cut on the real axis to ~ $ ~~. The
reality condition implies

F"(h*) = F($)

in this cut plane. Because of this, E(t) is real for
real valueS of $ less than t,. Suppose now that the
following integral over the cut satisfies an lneguRl-
ity

B=2 '-+2,
j= j.

D =4+ a,P, (1+P,)-'+1 a' 4a,

where Pz is defined by

tl, = (t. —t,)"(t. —t)-".

{6b)

0()

dtmt I't '+I, (~)
g

where n)(t) is a given non-negative function of t.
Then, we can ask whether we can obtain some
bounds on E(t), E'(t), and F"(t) for values of t less
than to. The answer is affirmative, and we find the
following inequalities for t& t,:

(3)

4[1+(B+2)'] lE(t) P + l16(t —t )'F"(t) +DF(t) l'

=4I'~'[1+ (a+3)'],

(4)

where A, B, and B are determined as functionals
of N)(t) in the Appendix. For many physical applica-
tions, it is sufficient to consider a simple form for
»v(t), given by

u)(t)=ND[t —t&] ~ (t& «to),

We remark that Eq. (3) immediately leads to the
special case

lE(t) l
« IA (t & t,) .

This formula, together with the explicit form
Eq. (6a), reproduces exactly the result given by
Drell, Finn, and Hearn, e who derived it from Mei-
man's method. ' Equation (3) also contains results
of Refs. 1 and 3 as special cases. To see this, we
take the minimum of the left-hand side of Eq. (3)
w1tll I'espec't 'to E(t). 81nce it is a slnlple quadx'atlc
form in E(t), the solution is easily found to be

4(t, —t)]E'(t) l
«A I {1+8')'I' (t& ta) .

This is exactly the same as the result obtained in
1. Analogously, taking the minimum of Eq. (4) with
respect to E(t), we find

16(t, —t)'lF" (t) l
«2A I [1+ (@+2)'+ —.'D2]'I2

where N, t~, and o., are real constants satisfying
N ~ 0 and to ~ t&. In that case, A. , B, and D are
computed to be

A =[4N(t, - t)]-"'D (t, - t)- ('(~1+P,)-"~, (6a)
j=l

%'e can easily check that this inequality can also be
obtained by the method of I.

To apply these theorems to the K» problem, we
consider the propagator

where V~» "~(x) is the strangeness-changing vector current responsible for K'- vo/7) decays.
Defining the spectral weight p(m') by

p(m')= —,'{Rv)'g l(ols„v'„' "'(0)lN) l'6'"(p„-k) (k'=-m'),
n

we may express b,(-q') in Lehmann-Kfllen form:

b, (-q') = dt p(t)
t+g

provided that the integral converges.
Now, as li and Pagels noted, the positivity of p(t) implies

t)(t) -64„.t '(t-t.)"'(t-t,)"'ID(t)l' (t&t,),3

where to and t, are given by

t, =(mr+m, )', t, =(m» -m, )'.
Also, in Eq. (14) D(t) is expressed as

D(t}=(mr'-m„')f, (t)+tf (t),

(13)

(16)



where the K» decay form factors f, (t) are defined by

{~'(P')Il"„' '"(0)IA'{f)) = -(k)"'(4P P'I") '"[(P +P')f (f)+(0 -P')f (t)] (I'I)

with t= -(P -P')'. The physical value of t is restricted to a region below the cut at t, : m)2 «t «t„m, being
the lepton mass. Notice that D(t) is a real analytic function of f with a cut on the real axis (to «t «~) since
f, (f) satisfies the same condition.

Let us now identify E(t) in our theorem with D(t) and choose I/(t) to be

(t)=, t ("")(t —to)'/'{t —t )'/'
64m2

where n is an arbitxary positive number. Setting

(18)

(19)

our inequalities then imply for t& t,

iD(t) i «Z,

4(t t) (/ )1) 8 (t t )1/2 H 2 I/3

D(t) (t )' '+ (t —f)'" (t, t,)'~'+ (t, —t)'/' D(f)
(20b)

where K= AI is simply given by

If 4„ is calculable, then these inequalities provide upper bounds for the physically observable quantities
D(t) and D'(t) (/& to). Conversely, if D(t) and D'(t) (t & to) are experimentally known, then Eqs. (20) impose
a lower bound on 4„which must be satisfied in any theoretical model. In this note we adopt the former
view. In particular, we will consider only the case in which we set n= 1 and t=o. Since Eqs. (13) and (19)
imply ((,= L(0), we find that Eqs. (20) lead to

(f, (0)(- M, (22a

ma-m2 2 ~ X/2

4m, m. '/ --"I= 18[-'vx{0)]'/'(m '-m ')-' 1+
~E m'

where X, and $ are defined as usual by

(22b)

(22c)

(23)

where the prime denotes a derivative. Also, we can derive an inequality involving f, "(0), b«we will not
do so here.

As we will see in Sec. 11, we can estimate 4(0) in several ways and thus make these inequalities experi-
mentally testable.

II. EVALUATION OF A(0)

First, integrating Eq. (11) by parts, we find that
4(0) can be rewritten as an equal-time commuta-
tor y

~(0) f~ *(ol~(* -=&'*.)()".'"'(~),.&.)".""'b)llo) .

(24)

Hence, we can calculate 4(0) for any theory which
gives some information on this quantity. One nota-.
ble example is the chiral model ' of Gell-Mann,
Oakes, and Renner and of Glashow and %'einberg,

in which the Hamiltonian density is specified as

H(x) = H, (x)+c,S,(x)+e,S, (x) .
In the above, Ho(x) is the SW(3)-invariant part,
while S„(x) (a =0, I, .. . , 8) represents the scalar
portion of the (3, 3*) (I) (3*,3) representation of the
SW(3) group. It is convenient to set

t.= {oIs„(0)lo) (a=0, 8)

and to define
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Moreover, consider the integral ID'(0) —0.181 & 0.07 (35)

A 8
——-i d x 0 BqAp & ~vAps 0), 0 28a

for a, P=0, 1, 2, . . . , 8. Then, as has been noted
elsewhere, ' we obtain

A» = y(1+ a)(1+5),

A« ——y(1 —2 a) (1 —~ b),

A88 =y(1 —a — 5+3ab),

~44 = 4y~b,

where we have set

&(0) = I'«,

(28b)

(29)

in conformity with the notation of Eq. (28). The
positivity of the Hilbert space implies that we have

or equivalently

0.12 «(+12.3A. «0.30. (36)

-0.12 & t & 0.06 (X, = 0.02),

-0.24 & $ & -0.06 (a, =0.03),

-0.61 & $ & -0.43 (A., =0.06) .
(37)

It is interesting to remark that Eq. (35) suggests
D'(0) =0.18. This fact is in rough accord with the
Dashen-Weinstein sum rule'

Although the upper bound in Eq. (36) is essentially
the same as the one obtained earlier, '' the more
interesting lower bound is greatly improved. For
values of X+ equal to 0.02, 0.03, and 0.06, this
gives

(30) D'(o) = '[frlf. )-—(f./fr)1+ o(eo') . (38)

The resulting restrictions on the values of a, b,
and y have been analyzed in Ref. 8.

Before going into details, we simply remark that

$, and hence b are likely to be small numbers if the
vacuum is nearly SU(3)-invariant, as is customarily
assumed. Also, ordinarily the smallness of the
pion mass is interpreted as an indication that the
Hamiltonian is nearly SW(2)-invariant. The latter
assumption implies that the parameter a must be
approximately -1. Indeed, on the basis of such a
philosophy, we made an estimate'

a = -0.89, b = -0.10-.,

y = 5.05m, 2f 2, fr/f = 1.08,

which gives

(31)

[~(0))' '=101~.f..

If this value of b, (0) is used, then Eq. (22a) leads to

If, (0)l 1.01,

Analogously, we can estimate an upper bound for
the second-order derivative D"(0) by means of
Eq. (4); we obtain

0.006 & m, 'D" (0) & 0.018 . (39)

Hence, if f,"(0)=0, as is commonly assumed, then
we must have

a=-0.89, b=-0.15, y= 5.3m 2f,2, fr/f

0.003 «A, $ «0.011.
Our result mentioned above depends critically on

the value of b. (0) calculated in Eq. (32). Hence, it
will be interesting to see whether we can find other
ways of estimating b(0). First, we notice that the
estimate in Eq. (32) was obtained from the mass
formulas for m, ', m~', and m„', derived in Ref. 8.
If we give up the mass formula for m„' and, in-
stead, use K (kappa) dominance for V«and assume
the validity of asymptotic SW(2) symmetry, we can
compute"

as has been already noted. " This is reasonable
in view of the well-known Ademollo-Gatto theorem
which states which gives

(40)

f+ (o) = 1+ o(&,'), f (o) = o(e.) (33}

Also, this bound on f+ (0) is consistent with the es-
timate fr/f, = 1.08, given in Eq. (31), since exper-
imentally we know that

frlf. f, (0)-1 28. (34)

Indeed, if we accept both Eqs. (31) and (34), we

discover that f, (0) -0.85.
Similarly, the standard soft-pion theorem is con-

sistent with our inequality, as has been noted in I.
Next, let us consider Eq. (22b). With f, (0)=0.85,

we calculate

[4(0)]' ~=1.26m, f„ f+(0) =0.88. (41)

If we use this new value, the previous inequalities
change only slightly.

However, a far more troublesome question con-
cerns the validity of the estimate a= -0.89. Re-
cently Cheng and Dashen" re~evaluated the old cal-
culation ~of von Hippel and Kim and reached the
conclusion that, in contrast to the currently ac-
cepted idea, SW(2) is perhaps not such a good sym-
metry. If this conclusion is accepted, then either
the chiral SW(3) theory is incorrect or the value of
a must be near the SU(3} point a =0 rather than the
SW(2) point a= -l. In the first instance, we have
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&(&(0) -[(&.)'/' —(& )"]')=-', r'( —~)' (42)

Since the right-hand side of Eq. (42) is non-nega-
tive, we must have either

[&(0)]"&I(& )" (& )"I (43)

to abandon entirely our estimate of 6(0), and we

must find some other means to calculate A(0). We
shall come back to this problem at the end of this
paper. Given the second alternative, we can no
longer use our estimate Eq. (32). However, within
the framework of our Hamiltonian Eq. (25), we can
make a rather model-independent estimate of the
upper bounds of b, (0) as follows. From Eq. (28), it
is possible to obtain an identity:

(b.(0) —[(A )' '+(A«)' ']']

-0.35 & $ &0.29 (X, =0.02),

-0.49 & $ &0.15 (X, =0.03),
-0.83 & $ & -0.20 (X, =0.06),

(50)

which is still useful. So far, the experimental de-
termination of ( and A., appears to be subject to
large uncertainties. " We may remark that our
bounds, Eq. (47) and hence Eq. (49), are perhaps
optimal within the framework of the conventional
theory. For example, using ~ dominance for V~,
Qlashow and Weinberg' derive a relation

f /f. f, (0)=2f.'[f.'+f '-f.'] '=1.28.

Qn the basis of this formula, Weinberg suggests'

g„/f J =0.58, m„&670 MeV,

which leads to

[~(0)]1/2 ) (A )1/2+ (+ )1/2 (44) [a(0)]'/' &1.96m, f, . (51)

[a(0)]'/' & (-,')'/'(m» f« rn„ f,}. - (47)

It should be emphasized that in deriving this in-
equality we need not assume «dominance [Eq. (46}]
for V«. Equation (47) enables us to compute

[6(0)]'/' & 2.11m,f„for f, (0) =0.85

[4(0)]'/' 2.27&m, f, for f, (0)=0.90.
Unfortunately, these values are a bit large (by a
factor of 2) in comparison to the value in Eq. (32).
Consequently, the bounds for D'(0) and D"(0) take
the slightly weakened form

-0.10 & (+12.3X, &0.53,
-0.007 &m„'D" (0) &0.033

in practice for both cases.
Nevertheless, this gives

(49)

W'e note in passing that, if we saturate A33 A44,
and V44 with only pion, kaon, and K intermediate
states, respectively, then we find

(45)

as well as
(46)

In this approximation, Eqs. (43) and (44) exactly
reproduce inequalities found by Glashow and Wein-
berg. ' Also, in the terminology of Ref. 8, the va-
lidity of Eq. (43) is restricted to the domains (II)-
(III) and (IV) while the inequality Eq. (44) is satis-
fied in the remaining regions (I), (V), (VI), and
(VII).

At any rate, we reject Eq. (44) since it is incon-
sistent with the ordinary SU(3) limit. " Then, we
can find an upper limit on b, (0) if the right-hand
side of Eq. (43) is known. We can use the pole-
dominance approximation for A» and A,~ [Eq. (45)]
to obtain

On the other hand, Brandt and Preparata, "who
advocate a small value for a, find

a= -0.2, f«/f, =1.20.

However, unfortunately, the value of 5 is not ex-
plicitly given in their paper. Nevertheless, if we
use the pion- and kaon-dominance approximation,
Eq. (45), then we compute

5= -0.89, [6(0)]'/'= 1.50m, f, . (52)

f„G, o+«= [(f«/f, ) —I](m „'-m«') .
Assuming m„=1100 MeV, I'(«-X«)=300 MeV, and
f«/f, = 1.20, we compute

[a(0)]' '=1.60m, f, (54)

from this formula.
All these results suggest that [h(0)]' ' may be a

bit larger than the value in Eq. (32) but perhaps
smaller than the number in Eq. (48). If we use the
median value, [A (0)]'/' = 1.50 m „f, and f, (0) = 0.90,
then our inequalities become

Both estimates, Eqs. (51) and (52), are still better
than Eq. (48). Notice that the roles of a and 5 are
practically interchanged in the latter case.

So far all calculations have been performed with-
in the framework of the chiral SW(3) Hamiltonian
model, Eq. (25). We can make some estimates of
b, (0), independent of any specific form assumed for
the Hamiltonian. For example, if we assume the
validity of asymptotic SU(6)~ symmetry, we find"

[b,(0)]'/'=1.02m, f„ f«/f „=1,07, (53)

where we assumed the z mass m„= 1100 MeV. This
value is extremely near the first estimate, Eq. (32).
Similarly, on the basis of asymptotic SW(3) sym-
metry, Matsuda and Oneda" derive a formula
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If, (0)l-l »,
0.03 & $+12.3A., &0.40,
-0.002 &m, 'D" (0) &0.029.

(55)

Finally, as another application of our method,
let us consider the electromagnetic form factor of
the pion.

Defining

d'xe"" 0 j x, j, 0), 0 = dt, ~„, ——q q,
t0

(56)

where j~(x) is the hadronic electromagnetic current, and t, =4m, ', we know that"

p(t) ~ f-' '(f —t,)' ~'
( E, (t)~' (f ~ f )

1
48m2 0 (5V)

E, (t) is the pion electromagnetic form factor normalized to E,(0) =1. Then, as noted in I, we find for t& 1,

1/2 n+ 1/2
~E, (t)~ &M=—2 3v dft "p(t) (to —t) "-' ~ 1+

t t —t
0 0

where n is a non-negative number. We find also the following inequality for the derivative:

E„(t) (t,)'~'+ (t, —t)'~' E (t)

(58)

(59)

This is a generalization of the inequality given by
Cooper and Pagels. " An especially interesting
case is obtained when we set t= 0. Also, we note
that it is likely that both f dtt 'p(t) and f, dt t '
x p(f) are divergent; on the other hand f, dt t 'p(t)
should be finite, as has been emphasizeJ by Drell,
Finn, and Hearn. ' Therefore, we set n=3. Also,
we evaluate f, dtt 'p(t) by the p dominance. When

0
we set

(oI j„(o)lp (h)) = (2hP') "e„(h)Gp, (so)

the present experimental data for the decay rate of
p —ee suggest the approximate validity" of the
familiar Kawarabayashi-Suzuki-Riazuddin-Faya-
zuddin relation G~ = m~ f„which we shall use
here. Then we find that Eqs. (58) and (59) give the
numerical result

~E, (0)~ 9.ss,

-5.0 &m, 'E, '(0) & 11.0. (61)

The first relation is trivially satisfied since E,(0)
= 1. The second relation gives

-5.0 - (r, )'/(r )' 11.0, (62)

where (r, ) is the actual electromagnetic radius of
the pion and (r~) is that radius computed by means
of the p-dominance model for F,(t) If we demand.

(r,)' ~ 0, then Eq. (62) gives an upper bound for
the radius which is slightly larger than the p-domi-
nance model. We may remark that we could have
used an experimentally measurable cross section
for electron-positron annihilations in the evalua-
tion of J; dt t 'p(t). However, in view of the large

0

I

cross section for p production, our approximation
will be sufficient. At any rate, it should be empha-
sized that our use of the p dominance is only for
two-point functions but not for three-point func-
tions. Perhaps the approximation is better for the
former, although it could be worse for the latter.

However, even for the former, the p dominance
is incompatible with Eqs. (58) and (59) for an arbi-
trary large value of n. This is understandable
since, as n- ~, the low-mass region will be more
important in the evaluation of the integral f, dt t "
x p(t). This is the reason why we adopted n=3 as
the possible lowest value, where the integral may
converge.
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APPENDIX

Here we shall prove inequalities used in the text.
Although this can be done by the method used in I,
we present a simpler proof.

Let h(z) be analytic inside the unit circle, and,
moreover, suppose that h(z) belongs to the class
II', i.e. , it satisfies

2%

de/ h(ye") J' & M & ~
277 0

for all 0 &y & 1. Then, we must have the inequali-
ties
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Ih(o) I' I',
lh(o) I'+ lh'(o) I' & I',
lh(o) I2+ lh'(o) I2+ -'Ih" (o) I'- I'

where I is defined by

1
- X/2

I= — d8lh(e' )I
27T ~

(A 1)
(A2)

(AS)

(A4)

Thus, we can apply" our theorem, Eqs. (1), (2),
and (S) to obtain

If (0}I' - I'&', (A 10)

If(o) I'+ lf'(o)+ Bf(o) I' & I'w', (Al 1)

lf(o) I'+ lf (o)+ Bf(o) I'+ —,'lf" (o)+2B f'(0)+ cf(0) I'

I2+2

Of course, the validity of Eq. (AS) automatically
implies the validity of Eqs. (Al) and (A2), but we

wrote the three expressions separately for conve-
nience. The proof of these equations is simple.
Suppose first that h(z) is a polynomial in z, i.e.,

h(z) =a, +a,z+a,z'+ ~ ~ ~ +a„z".

Then, an elementary calculation gives

where A, B, and C are defined by

2 7r

A =exp —— d0lnR' 0
4m

27r

B= — d8e ' lnW(8),2' 0

(A12)

(A1S)

1 d8lh(e*')I'= laol'+ la, l'+" + Ia. l',
0

with

a =—h&"&(0).
1

n

l~("')I'= w(8) (A6)

almost everywhere on the unit circle.
Hence if f(z) is analytic for Izl &1 and is such

that its boundary value exists almost everywhere"
and the integral

= 1
— x/2

I = — d0$' 0 e' (A7)

is finite, then the product function

h(z) = f(z)V (z)

belongs to the class H' with the condition

(AS)

2' 2 7r

I = — d8lh(e")I'= — d8W(8)If(e")I'.
2m 2r

(A9)

Therefore, for this case, the validity of Eqs. (1),
(2), and (S) is obvious. But since all polynomials
form a dense set in the space of II', the inequal-
ities are also valid for all functions h(z) belonging
to the class II'. If we wish, we can give a more
stringent inequality involving higher derivatives,
but this is not necessary for the present purpose.

Let W(8) (0 &8 &2rr) be a given non-negative sum-
mable function of 0 on the unit circle. Moreover,
we assume that lnW(8) is also summable. Then a
function defined by

1 2& e&e+z
rp(z) = exp — d8, e lnW(8)4m, e'~ -z

belongs to II', and, in addition, it is outer. Also,
it satisfies"

C= — d8e " lnW(8)+B'.
7T

Q

If we wish to derive an inequality involving only

f '(0), then we have to take a minimum with respect
to f (0).on the left-hand side of Eq. (All). This is
easily done since it is a quadratic form in f (0). In
this way, we obtain

lf (o)I &Is[I+ IBI']'~2. (A14)

More generally, if y is an arbitrary real number,
and if we want to derive a bound for f'(0)+y f (0),
then a similar method gives

If '(0) +y f (0) I
- 1&[1+IB —y I'1". (A15)

(A16)

D = C —2B(B——', y)

1 d8e " lnW(8) —B'+yB.
0

In deriving this formula, we assumed for simplic-
ity that B and C are real; this is certainly correct
if W(2rr —8) = W(8), as in our applications. Finally,
taking a minimum with respect to f (0} in Eq. (16),
we find

If"(0)+y f'(0)l a2IA[1+(B——'y) + 'D ]'—
(A17}

This result exactly agrees with the inequality ob-
tained in I. Conversely, we can derive Eq. (A11)
from Eq. (A15) as follows. We can take, respec-
tively, the minimum and maximum of the upper
and lower bounds for f'(0) with respect to y in

Eq. (A15). After a simple calculation, this ap-
proach leads to Eq. (All).

Analogously, we can obtain a bound for the com-
bination f"(0)+y f'(0) by taking a minimum with

respect to f'(0) in Eq. (A12):

If"(0) +yf '(o)+Df (o) I'+ 4 [1+(B- 2 y}']
I f(o) I'

& 4 I '8'[ I + (B——,
' y)'],
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This formula can also be derived by the method of
(I).

In deriving these formulas, we have assumed that
W(8) is summable. In some applications, it hap-
pens that W(8) may have singularities at 8=0 and
8=m. In that case, w'e set

f(~)=E-(t),

we find then

(A22)

(t —t,)I~'=I'(t, -a)'~'(I+Z)(I Z)-', (A19)

where a is an arbitrary real point satisfying the
condition a& I,. Under this transformation, it is
easy to see that the upper and low'er cuts in the t
plane are mapped, respectively, into lower and

upper semicircles of the unit circle, ~z~ =1. Also,
the three points t = ~, a, and t, are mapped into
z= 1, 0, and -1, respectively. On the boundary,
we set ~=e", then

t = t, + (t, —a)cot'(-,'8) (t ~ t, & a) . (A20)

For a given non-negative weight function zv(t), de-
fined on the cut t= to, we set

W(8) = (f —t,)I~'(t, —a) I~'(t —a) W (t) . (A21)

Slmliariy deflIliIlg f(8) by

f(&)=(1-&) (I+&)'f(~),

W(8) =W(8)(2sin-,'8)'"(2cos-,'8)'~

for some positive numbers II and p. If W(8) be-
comes summable for some choices of o. and P,
then we use W(8) and f (z) instead of W(8) and f(z)
and take the minimum with respect to the allow-
able ranges of o. and P. However, this procedure
does not, in general, affect the final result, as we
see from results of I; we will not go into the de-
tails of this case.

In real applications, we consider an analytic
function E(t), which is analytic everywhere except
for a cut on the real axis (t, ~t&~). In that case,
we reduce the problem to the previous one with the

mapping

where we assumed that E(t) is real, i.e. ,

E*(t*)= E(t) .
Moreover, we note the formulas

J d8ln [1+A.
' tan' —,'8] =4II In(1+ X),

(A24)

we can easily calculate integrals A. , 8, and D as in
the text.

Also, we notice

f(0) =E(a),

f '(0) = -4(t, —II)E'(a),

f"(0)-4f'(0) =16(f.—u)'E" (s).
(A26)

Hence we choose y = -4 in EIIs. (A16) and (A17).
Then, our formulas give upper bounds for E(a),
E'(a), and E"(a). Replacing a by t, these expres-
sions reproduce the results quoted in the text.

It should be emphasized that our bounds are opti-
mal. Given no further information about D(&), it is
easy to show that the bounds can be saturated and
hence they are the best bounds within the con-
straints given.

f 2 7)'

d8e-2Ieln[1+X'tan'-', 8j =4IIA(1+X) '

for a non-negative number A. . Then, for the special
choice
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The octet baryon AI = 1 mass shifts, kaon electromagnetic mass shift, and g 3x decay
amplitude are all correlated in the framework of the linear SU (3) 0 model. It is shown how
this model provides a natural realization of the "tadpole" idea of Coleman and Glashow. An
attempt is made to resolve the long-standing mystery associated with the g 37r process, and
the rare mode g' 3m is also calculated. Finally, it is shown that the chiral-symmetry-
breaking and isospin-nonconserving coefficients in the Lagrangian have the same order of
magnitude.

I. INTRODUCTION

In this paper, we study AI=1 electromagnetic
effects in the linear SU(3) a model of pseudoscalar
and scalar'mesons. The formalism to be used
was developed in several previous papers' ' for
the purpose of studying chiral-symmetry breaking
and SU(3) breaking in this model. However, we
are attempting to make the present paper self-
contained enough that the reader may get the gen-
eral idea without constantly having to refer back.

We shall limit the mesons in the model to the
spin-0 ones to avoid the usual maze of alternatives
that present themselves when many additional kinds
of particles are treated together with symmetry
breaking. It was found that in the isospin limit
with the simplest "[(3,3~) +(3*,3)]" type of sym-
metry-breaking term, ' the present model gave
quite a reasonable amount of the mass spectrum.
Here we shall see that the model is able to corre-
late successfully the baryon electromagnetic mass
shifts with the kaon electromagnetic mass shift
and the q-3& decay process. Furthermore, the
mass of the isovector scalar meson is constrained
(from electromagnetic considerations) to be around
a physically reasonable value. It turns out, in.ad-
dition, that the fit to the mass spectrum requires
the coefficient in the Lagrangian which violates
isospin invariance to be of the same order of mag-
nitude as the chiral-symmetry-breaking coeffi-

cient. This might indicate a fundamental connec-
tion between electromagnetism and chiral-sym-
metry breaking. '

Before going on to the formalism, we shall brief-
ly discuss the historical background. In the prob-
lem of electromagnetic mass splittings and asso-
ciated second-order processes (such as q-sv), it
has been recognized that it is necessary to treat
the AI=1 and AI=2 effects separately. From a
dispersion-theory viewpoint, as pointed out by
Harari' and others, this amounts to a statement
that we can calculate the EI= 2 processes by ordi-
nary Feynman diagrams involving photon exchange,
since the amplitudes for these processes satisfy un-
subtraeted dispersion relations, implying that high-
energy contributions can be safely neglected. On
the other hand, the b,I=1 processes are said to
satisfy subtracted dispersion relations so that a
knowledge of the subtraction constant (which does
not come from the lowest-order Feynman diagram)
is required. This general argument is borne out
by the fact that the 4I=2 &'-+ mass difference
has been calculated successfully from essentially
second-order perturbation theory by many workers. 7

On the other hand, all the XI=1 mass differences
and the bI=1 q-3& processes have not been ex-
plained by analogous calculations.

One way to explain the 4I=1 mass differences
is to use the "tadpole" approach of Coleman and
Glashow. By postulating scalar mesons having


