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Simple one-parameter forms for the S and P graves of pion scattering that obey current-
algebra constraints and allow for a resonance are constructed. The parameters are com-
pletely determined by solving self-consistently three subtracted forms, rd dispersion relations
in a region up to 1 GeV. Resonances for the p and & are produced v6th the mass scale set by
the pion decay constant, but the exotic" ~ =2 ~ wave is nonresonant.

Some time Rgo we px'oposed R simple one-pa-
rameter extrapolation of Weinberg's current-
Rlgebra pion scattering amplitude that is consis-
tent vrith elastic unitarity. The essential idea is
that the satisfaction of current-algebra constraints
with the minimal momentum dependence to account
for a possible resonant state provides a good ap-
proximation for the amplitude over a deride energy
range, pexhaps up to j. 66V. The parametric fox'm

thRt %'8 used col responds to the lnflnlte sum of
"bubble" gx aphs vrith vertex functions having the
lovrest possible order of momentum dependence.
This form automatically relates the p v6dth to its
mass and the curx ent-algebra constx aints, and
gives a result' in excellent agreement arith ex-
periment. Our result has also been used' to ex-
plain the shape of the p as observed in e+e an-
nihilation. Here we extend the one-parameter form
to the I= 0 and 2 8 vraves as vrell as the T =1 I'
'wave, and detel mi86 Rll three pRrRInetel 8 by Solv-
ing self-consistently three forward dispersion re-
1Rtlons iQ R x'eglon up to 1 Gev Vfe find thRt lt is
the pion decay constant 4mE, =1.2 08V that sets the
mass scale, not the pion mass. This is in accord
vrith the notion of partial conservation of axial-
vector current (PCAC), which asserts that it is a
good approximation to neglect the pion mass. It
Inay also have some connection vnth broken dilation
invariance; for if the commutatox of the axial
charge with its divergences gives Rn isoscalar
field o, then F„={c)and this isoscalar field may
be connected vrith the trace of the energy-momen-
tum tensox',

Current algebra determines' the first two terms
of the expansion of the pion amplitude in plovers of
the squared center-of-mass energy 8. The cor-
responding 7=0 and 2 8-wave and the T = j. I'-vive
amplitudes are given' by

Elastic unitarity 18 obeyed Without spurious Sin-
gularities in the left half- plane if @re verite the
partial-wave amplitude Rs

Af~ —so~

~(CA)

( )
. t 8-402)( Sl™+(8-4m~)
F 8 2m.

Here we choose 8» to be the position of the zero
of the current-algebra amplitude so that they are
fitted at these points, and ere have arranged the
form so that M~ is the resonance mass. %6 shall
neglect the pion mass fox' the most pRx't ln our
vrork and use the very simple form vrhich is the
zero-mass limit of (2):

(2w) 't~(s)=c~s ', +c~sln((, (j

It follows from crossing symmetry that the com-
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binations of forward scattering amplitudes T&,

TO Tt 4 Tl +Tan

are even in v=s-2m, ', while

X, =27, -5r, +37,

(6a)

is odd in v. Hence we have the subtracted forward
dispersion relations which, in the zero pion mass
11m1t, are

w,.w=w, .e) ".*J' "„

2v ",Imr, (v')
V V

(7a)

Since these dispersion relations converge well at
infinity, we assume that the entire forward ampli-
tude can be approximated by the 8- and I'-wave
amplitudes given by Eq. (4): T, =f„T,= t„and
T, = 3t, (the factor 3 is 2l+ 1). In this way we ob-
tain constraints on the partial-wave amplitudes
that convey the conditions of crossing symmetry
and analyticity. These constraints are imposed
only in the physical region, the region where our
pRl ametrlzatlon ls valid~ not 1Q Rn unphyslcR1
region where the analytic continuation of an ap-
proximation that is good in the physical region
can give a large error.

The dispersion integrals can be evaluated an-
alytically by writing

5v + 3' —v + v ln (6)

which has the correct threshold behavior and gives
an f' resonance of mass M~ and width I'~. We use
M~=1.2 GeV and I'z/Mf =—',. The quality of the
solution and its sensitivity to changes in the pa-
rameters are not appreciably changed from the
previous case. However, the masses are now
raised by about 25% with the new values M,'
=(0.'I30)', M, '=(0.690)', M,'=-(0.710)'. Thus our

4
C,

noteworthy that the sign of the slope of the current-
algebra amplitudes at zero energy is sufficient to
determine that there be resonances in the T = 0
and 7 = j. amplitudes and not in the exotic T = 2 am-
plitude. We are intrigued by the near equality of
all the masses that appear in the solution, M,'
= M, '=-M, '. Perhaps there is some underlying
symmetry which accounts for this.

In Fig. 1(b) we show the solution to a similar
calculation in which, in order to estimate the sen-
sitivity of our method to high-energy contributions,
we have added to (2v) 'T, a D-wave amplitude

ImT(v') =—[T(v'+ t's) —
T. (v' —t&)],2i

opening up the contour, and using Cauchy's for-
mula. The explicit poles in the integrands produce
T(v) and T(-v). In addition, the amplitudes of Eq.
(4) have poles on the negative real axis whose con-
tribution we take into account.

We show in Fig. 1(a) the percentage by which the
various partial-wave amplitudes evaluated from
the dispersion relations (I) differ from their input
values (4) for the best set of input parameters
that we could find: M,'= (0.555)', M, '= (0.560)',
M,' = -(0.565)' GeVs. We note that the dispersion
relations are well satisfied out to an energy of
about 1 GeV. A change of 1(F/o in any combination
of the masses Inakes the agreement worse by about
a factor of 2; a change of 20ck makes it worse by
at least another factor of 2. Thus, the self-con-
sistency requirements give a,reasonably stringent
determination of the three masses. The phase
shifts corresponding to this so1ution show a narrow
(T = 1, J = 1) p resonance and a broad (T = 0, 4 = 0)
0 resonance with both at about the same mass; the
small negative (T = 2, J = 0) phase requires the
absence of "exotic" states. A11 of these features
are consistent with experiment although the values
of our masses are too small. In particular, it is
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FIG. 1. Percentage error in our solution, (T&o"' —Tz'")/
~Tr"~, as a function of the center-of-mass energy vt t.
The dashed, broken-dashed, and solid lines give the
error for the T =0, 1, and 2 amplitudes, respectively.
The graph in (a) shows the solution for the pure boot-
strap including only 8 and 2' waves; the graph (b) shows
the solution when the f D wave is included with fixed
paraIneter S.
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FIG. 2. Model phase shifts for the T=0 and 2'=2
8 waves.

relations are sensitive to enex gies higher than
those fox' which oui parametrrlzatlon can be ex-
pected to remain good.

I.O

This dependence on high-energy contributions
means that the model we have presented cannot
provide an accurate dynamical description of low-
energy pion scattering. However, the amplitudes
which appear from the model do have all of the
qualitative features found in low-energy pion
scattering, and we feel that this is evidence for
the validity of the basic idea, that of a strictly
low-energy bootstrap which is insensitive to the
pion mass and which is driven by the current-
algebra slope at zero energy.

To illustrate the nature of the amplitudes in our
models we pl esent ln Fige 2 the ~ =0 Rnd 2 8-wave
phase shifts that correspond to the solution with
the inclusion of the f' contribution. We now take
account of the pion mass by computing the phase
from that of Eg. (3) and use the values I,'.
= (0.755)', I,' = -(0.685)' that correspond to the
shift 8= v+2m, '. We have not included a graph of
oux' I'-wave phRse shift 81nce it wRS g1ven ln our
previous paper' and agrees very well with experi-
ment if the physical p mass is used.
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New exact bounds for derivatives of X&3 decay form factors f~(t) are obtained„provided
that &({)), the propagator of the divergence of the strangeness-changing current at zero mo-
mentoln, is known. Several estimates of 4(0) are discussed, along with their experimental
ilnplicat&ons.

I. EXACT INEQUALITIES

Recently, some exact upper bounds for K„decay
parametex's have been obtained by several au-
thors, ' ' if L (0), the propagator of the divergence
of the strangeness-changing current at zex'o mo-
mentum, is known. These bounds give rather
stringent conditions on the decay parameters if we
estimate 6(0) from the SW(3) model of Gell-Mann,
Oakes, and Benner and of Glashow and W'einberg. '

The purpose of this note is twofold. First, we
wi11 obtain new improved bounds for these quanti-
ties. Secondly, we will attempt to calculate 6(0)
j,n as model independent a way as possible. As we
shal]. see in Sec. II, the resulting inequalities are
stringent enough to test the chiral SW(3) theory.
In this section, we will state some simple mathe-
matical theorems which will be usefu1 in our anal-
ysis.

Let E($) be a real analytic function of a complex


