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Using finite-energy sum rules for the reactions K n ~ A and ~+n-%+A, we determine
the effective "pole" parameters of the K* and K**Regge trajectories from a knowledge of
the low-energy resonances and their couplings. The resonance parameters and the 0 /(8+I')
ratio for the 2 baryon octet are varied somewhat to test the sensitivity of the high-energy
predictions; ~ octet couplings within the range of values found empirically in other x'eac-
tions are preferred in our solution. We find that the s-channel resonances in X n —7f A do
add in such a way as to produce predominantly real amplitudes at high energies as predicted
by duality diagrams. We find, however, that these predictions are not satisfied exactly.
Although the phases of both A ' and Jt are small and independent of t for ) t

~
& 0.5 (Gev/c)t,

the residues of the even- and odd-signature Regge poles are closely exchange-degenerate
only for the B amplitudes, and not for the A' amplitudes, thereby allowing an appreciable
polarization for E n —Tf A as is observed experimentally. The Regge-pole parameters
determined from the sum rules give a good fit to the reaction X n r A over a wide range
of energies, whexeas they are unable to fit ~+n K A at intermediate enex'gies. Comparison
of the resonance contributions to E I x A and x n K A shows that "peripheral" x'eso-
nances dominate the sum rules in the first reaction, while "nonperipheral" states are im-
portant in the second. By supposing that "peripheral" resonances are dual to the leading
Regge singularities in the t channel, while "nonperipheral" resonances are dual to lower-
lying singularities, we are led to a rationale of why the simple model of two effective Regge
poles is adequate for E n-~ A even at intermediate energies, but inadequate there for
x+ n E'+A.

I. INTRODUCTION

The duality diagrams introduced by Harari' and
Rosner' conveniently illustrate the ramifications
of duality and the absence of quark-model "exotic"
states. Processes with planar duality diagrams
suppoSedly have high-energy amplitudes with im-
aginary parts and t-dependent phases, whereas
reactions with nonplanar diagrams have purely
real amplitudes at high energy. Rosner explicitly
states that his derivation of the duality diagrams
from SU(3) couplings applies only to the nonf lip
amplitude (A') of (0, s ) scattering, and requires
purely f coupling of the vector mesons, and
purely d coupling of the tensor mesons to the

pseudoscalar mesons. Harari, on the other hand,
conjectures that whenever a diagram is nonplanar
all the corresponding helicity amplitudes should be
purely real at high energies. Thus Harari predicts
that whenever the duality diagram for a reaction is
nonplanar the polarization should vanish at high
energy. One such process is K n- m A, whose
three duality diagrams are shown in Fig. 1. Al-
though the quantum numbers allow resonances in
all three channels, the s-t diagram, relevant for
near-forward scattering at high s, is nonplanar.
Following Harari's conjecture that both the non-
flip (4') and flip (B) amplitudes are real, we
should expect no high-energy polarization. How-
ever, experiments at 3.0 and 4.5 GeV/c show a
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large positive polarization for 0 & ~t( &1.5 GeV/c. s 4

In an effort to understand the origins of this appar-
ent failure of duality diagrams and also the break-
ing of exchange degeneracy (EXD) for the reaction
If u 7l A and its line-reversed partner s u K A

already emphasized by Lai and Louie, ' we present
here an analysis of these inelastic processes in
terms of finite-energy sum rules (FESR). indepen-
dent of these specific motives, we wish to elucidate
the properties of hypercharge exchange in the t
'channel and to test the usefulness of FESR for
inelastic reactions.

It is well known that the FESR are unable to dis-
tinguish among the various high-energy models.
Hence one must, know or assume what the model is
at high enex gies. Then FESR -can help determine
parameters inside that framework. We adopt a
conventional high-ener gy model consisting of hvo
Regge "poles" in the t channel [see Fig. 1(d)], the
E"(890) with negative signature and the K**(1420)
with positive signature. The Regge "poles" are to
be understood as effective. poles into which the
effects of branch cuts have been absorbed. We use
the FESR to determine the residues of the two
Regge poles and hence determine the high-energy
behavior of the amplitudes A' and B. This leads to
predictions of the differential cross section and
polarization at high energy for the reaction K n- m A and the "line-reversed" x eaction n'n-K'A.

We start in Sec. II by giving a detailed di.seussion
of use of FESR in the inelastic reaction K n-m A.
We define and discuss the use of signatured ampli-
tudes and the necessity of daughter trajectories.
We also present a discussion of the narrow-reso-
nance approximation and questions concerning the

resonances or poles below threshold and arbitrari-
ness in their parameters. In Sec. III we exhibit
and discuss the FESR results for the high-energy
observables of K n- m A, the status of EXD for
the K* and K* exchanges and the associated real-
ity of the amplitudes for K n-m A, the EXD of the
direct-channel F =0, I=1 Z resonances, the
failure of the model at intermediate energies for
w 6~K A~ RQd possible reRsons for lf„A sum-
mary is given in Sec. IV.

The reader who is interested only in the results
can begin with See. II0 and Fig. 5 and proceed to
Sec. IV.

II. APPLICATION OF FESR TO THE REACTION
E n~n A

A. Sum-Rule Formalism, Crossing versus Signature, High-Energy
Observable s

We employ integer-moment FESR of the standard
formp

r
Vy Vj

dv v"1m''"(v, t) = dv v" lmE", ,'y (v, t),

where E~'~(v, t) is an appropriate reaction ampli-
tude whose asymptotic form E~,',~z (v, t) is assumed
to represent the amplitude for jv~& v, . The integer
n is even (odd) for amplitudes that are odd (even)
under v -ve

The notation for the kinematics of the reaction,
K I-m A, and the crossed reaction, m+n-K'A,
is shown in Fig. 2. The amplitudes to be used in
the FESR (2.1) are constructed from the invariant
amplitudes A and B which enter the Feynman am-
plitude for the two reactions

(p', e'; p, e)

= U~(p ')[-A(s, t, u)+ ~iy (q+ q')B(s, t, u)] U„(p),

K

)~;

K S

(b)

K (S90), K (}PPO)

(p', F;p, v)

= r7, (p')[-X( t,us)+,'~y (q+q')B(u, t, s)]tJ„(p).

Note that A and B correspond to the process K n
-w A, andX and B to m+n-K+A, and also that
q'= -q, q.= -q'. The scale of % is defined by the
differential cross-section formula

do , (sn~',

where P is the center-of-mass momentum in the
initial state, and a sum over final spins and an
Rvel Rge over initial splns ls understood. Using
the crossing behavior of SR,

FIG. 1. Duality diagrams for X n x A: (a) Non-
planar s-t duality diagram; (b) and (c) planar s-u and
u-f, diagrams; (d) t-channel Regge exchanges.

*(p, -~';p', -e) =~(p', w'; p, ~),
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A*(u, t, s)=A(s, t, u),

Bz'(u, t, s) = -B(s, t, u).

In terms of the variables v=(s —u)/4m and t, and
with the real analytic property of A and B, the
crossing conditions are

A(v+is, t) =A(-v-ie, t),

B(v+ zz, t) = -B(-v —ic, t).

(2.2a)

(2.2b)

A'(v, t) = 1-,, A(v, t)+, vB(v, t)
t 2m

1 (m' —m)(p, "—p')
2 (m+ m')'

Similarly,

A'(v, t) = 1-,, A (v, t)+,vB(v, t)
t — ™

1 (m' —m)(}z" —p.')
(m+ m')'

For forward elastic scattering the above equation
for A' reduces to A'=A+vB, which is the same
amplitude as defined by Singh. ' The crossing be-
havior of A' is easily seen to be

(P,', E,'
+

K (pl El

In the following we drop the i~ with the understand-
ing that the physical regions for the two reactions
are as indicated in Fig. 3.

Since we are dealing with Regge trajectories in
the t channel, we introduce the t-channel helicity
nonQip and flip amplitudes, respectively,

(m+ m'}'A'(v, t)
++ ' [t —(m+m')']' ' '

(v t) [P(v, t)]' 'B(v, t)
[t —(m+ m')']'~'

where p(v, t) =4tp, 'q, z sin'8, is the Kibble function.
The amplitude A' is expressed in terms of A and B
as follows:

X'(v, t) =A'(-v, t). (2.3)

Amplitudes with even or odd behavior under v--v
may be formed in an obvious way:

A '"(v, t)= z[A'(v, t)+A'(-v, t)]

= a[A'(v, t)+ A'(v, t)],

B (v, t) = z[B(v, t)+ B(-v, t)]

= z[B(v, t)+ B(v, t)],

(2.4a)

(2.4b)

B&'&(z„ t) = 2[B(z„ t) + B(-z„ t)]

= —zg(2J+1) ', ~, [P~'(z, )+P~'(-z, )],
1

J J+1 '/

and are even or odd under z, --z, . The connection
bet;ween z, and the kinematic variables,

4p, p,'z, = 4mv+ (p" —p,')(m" —m')/t,

shows that z, - -g, is the same as v- —p for pro-
cesses in which p,

'= p. or m'=m (or both), but not
the same for the general inelastic process. This
complication for arbitrary masses is just one
aspect of the problems encountered in describing
such processes in terms of Regge exchanges. It
is well known that Freedman and Wang' assured
power-law behavior at all t values and Mandelstam

where the final expressions result from use of the
crossing relations (2.2b) and (2.3).

In using finite-energy sum rules it is customary
to assume that at high energies s the amplitudes
are dominated by certain Regge trajectories (or at
least effective Regge trajectories) of definite sig-
nature in the t channel. For elastic scattering,
amplitudes with even or odd signature are also even
or odd under v--v, but for inelastic processes
this is not true in general. Amplitudes A' ' and
8" having definite signature in the t channel are
formed as follows:

A (z„ t) = [A'(z„ t}+A'(-z„ t)]

= zg(2 J'+1)A'~ &(J, t) [P~(z, ) +P~(-z, )],

(t ~ t)
I III I z I I j I III II I III I I I I I I I I

~or+ n K'A

physical
region

K n-7r Ji
physical

region~zzzzz I zzz IzzzzztzzzzII I I I I I I I II I I II III I I

Rev

(P,E ) (Pu Eu

FIG. 2. Diagrams defining the kinematic variables
forX n ~ A and ~+n K+A.

FIG. 3. Complex v plane showing schematically the
locations of poles, unitarity cuts, and the physical re-
gions for K n & A and the crossed reaction, ~+g K+A.
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analyticity near t=0 by the introduction of daughter
trajectories. The basic Regge-pole contributions
to the signatured amplitudes are

&""( „t) = [().'(t)+-']tt". (t}P ( )$'( '), (2»)
B )(z, t) = -z[u'(t)+ —']P '(t)P '(z, )$'(o."), (2.5b)

where $'(a) is the usual signature factor

('(a) = [+1+e ' ")]/[-sinzo. (t)].

With the introduction of daughter trajectories, the
Legendre function P„(z,) is replaced, to leading
order in v, as follows:

)
r(o. + —,') 2m v)"

(x t ()()1/2p(~+ 1) p pi J

S(A '( ), n) —= ,„„v'"ImA '( )(v, t)dv

a (t) ~v

n (t}+2n+1 v,

S(B', n) —= ,„v'"ImB(+)(v, t)dvvl" 0

I)'(t} ~v

u'(t)+2n v,

S(B( ), n) =,„„v'"+'ImB(-)(v, t)dv
1

(t) V

n (t)+2n+1

(2.8b)

(2.8c)

(2.8d)

2',('y) (z„ t) =a'(t)(v/v, ) '&'(a'),

vB(,',), (z„ t) = I '(t)(v/v, ) ('(u'),

where

(2.6a)

(2.6b)

(2,6c)

-()()"a'(t)1'(o" + z) ptp 2mvo p()(t)I'(n'+ 1) m P,P',

(2.6d)

and v, =- s,/2m is a scale factor. We see that the
net result of incorporating daughters is to make
the dominant contribution to the signatured ampli-
tudes at high energy have definite crossing proper-
ties with respect to the energy variable v, that is
to say, that to leading order in v,

(2.7a)

Q&) (v t) —B(&) (v t) (2.7b)

s~m and
(2.6a) and (2.6b) and (2.7a) and (2.7b) are used,
the sum rules for A ' and vB '~ are

AI (Q+ z) PgPg 2mv

( )' 'r(()'+I) mv p, p',

The high-energy behavior of A ~'~ and B ' then be-
comes

2nS(B('), n) —(2n+ 2)S(B('), n+ 1)
S(B('), n+ 1) —S(B('), n)

and

(2n+1)S(B ), n) —(2n+3)S(B( ), n+1)
S(B( ', n+ 1) —S(B( ), n)

(2.9b)

a+(t) = [o.+(t) + 2n+ 2] S(A '(+), n)(v~/vo) (2.9c)

a (t) = [n (t)+2n+1] S(A'( ), n)(v, /v, ) ('), (2.9d)

b'(t) = [n'(t)+ 2n] S (B('), n)(v, /v, ) "('), (2.9e)

t) (t)=[n (t)+2n+l]S(B ), n)(v, /vo) "('). (2.9f)

where n = 0, 1, 2, ..~ and v, —= v, (t) = v, (0)+ t/4m, and
where

ImA
' ')(v, t) = —'[ImA '(v, t}+ImA '(v, t)],

ImB '(v, t) = 2[ImB(v, t) + 1mB(v, t)].

In principle we evaluate the FESR from knowledge
of the low-energy data (v & v, ) and calculate the
parameters of the leading Regge poles of definite
signature, a'(t), b'(t), and o.'(t), from

1S(A'(+), n) =,„, v'"+'ImA'(+) (v, t)dv

a'(t) v

o.'(t) + 2n+ 2 v,
(2.8a)

The high-energy amplitudes for K n-w-A and
w'n-E'A are then determined from (2.4a) and

(2.4b) using the asymptotic expressions for
A '(v, t) and 8'(v, t), (2.6a) and (2.6b):

(2.10a)
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vB(v, V( ~.() (vv'(v()(v)""' ~ (V) (vvv (V))(v)
vB(v t) v lee ge 2 vo 2 e

(2.lob)

From the above expressions we see that if n'(t) = o (t) (weak EXD) then A' and B are purely real if a'(t)
= -a (t) and b'(t) = -b (t), respectively. We refer to this situation as strong EXD.

One can easily express the differential cross section and polarization in terms of A. ' and B as follows:

(m+m')'(A'(»t)I'+e(v, t)IB(v, t)l'
dt 64 wm pi,b' (m+ m')' —t

2[(t((v, t)P t '(m + m')'lmA'*B
(m+m')'(A')'+(t(v, t)[B('

(2.lla)

(2.lib)

Similar expressions for (dv/dt)(m'n-K'A) and P(m'n-K'A) are obtained by making the substitution A '-A'
and B-B in the above formulas. Substituting the high-energy expressions for A' and vB into the formula
for the polarization and assuming weak EXD [o'(t) = o. (t) = o.(t)] yields

[ v tx/e
~(if n-w A)=2(m+m')'[a (t)b'(t)-a'(t)b (t)]sin[wo. (t)]

x m+m'4 a+t'+a t' + a' t'-a t'cos mn t

j.
+ ', ([b'(t)'+b (t)']+[b'(t)' —b (t)']cos[wo. (t)])

which is energy-independent at large v [since (Q)' '- v]. Thus, if the residues happen to be in the ratio

a (t) b (t)
a '(t) b'(t) ' (2.12)

the contributions from the two terms in the numerator reinforce and the polarization becomes large, even
if weak EXD is assumed.

B. Evaluation of the Sum Rules, Resonance Parameters,
and Poles Below Threshold

There are two major difficulties in attempting a
FESR calculation of the high-energy amplitudes.
The first is that there exist sizeable unphysical
regions in both channels with a number of poles
and resonant states whose contributions to the
FESR are not experimentally accessible. It will
therefore be necessary to use SU(3) estimates of
the couplings into those channels for which the
resonance is below threshold. The second difficulty
is that even above threshold there is no detailed
phase-shift information from which to calculate
the imaginary parts —all that exist are the param-
eters of various postulated resonant states whose
very existences, let alone couplings, are often de-
batable. ' We are therefore forced to make a nar-
row-resonance approximation for all contributions
to the sum rules, whether above or below threshold.
This precludes the use of continuous-moment sum
rules and means that we will obtain relatively poor
information about the effective trajectories.

The individual contributions in the narrow-reso-
nance approximation are derived as follows. For

an s-channel resonance the usual Breit-Wigner
form yields

where M, is the mass of the resonance, -I' its total
width, I', and F, the partial widths Z*-K n and
Z*-m A, respectively, and 4 the relative sign of
the resonant amplitude. Similarly for a u-channel
resonance we have

where I', and 1, are the partial widths N*-m'n
and N*-K'A, respectively. Thus in a narrow-
resonance approximation we have

where

Me —2(me+ m +tLe+t(, e —t)
V

2m
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Mz —s(52 + W +it + p, —t)
V res 2m

The relationship between ImA. and ImB and Im T„,
follows from

ImA(v, t) = Jt(s){C'-l(s)(s'~'+ M)lmf, (v, &)

-d'l(s)(s'~' —M)Imf, (v, t)),

ImB(v, t) = K(s)lC~ (s)Imf, (v, t) + C "l(s)lmf, (v, t)),

1
2s'~'C"&(s)C' '(s)

M = —.'(m+ m'),

TABLE I. Resonance parameters. Spin-parities, masses, total widths, and coupling strengths of resonances enter-
ing the sum rules. The sign of each resonant amplitude is given by 4; I'&

~ 3 4 are the partial widths for Z -E n,
Z* x A, N~ x+n, N* %+A, respectively. The main entries for each state are the values actually used in the sum
rules. The numbers shown in parentheses indicate the range found in different analyses.

z(175o) —'

z(1915) —,"

z(194o) —,
'-

Z(2030) $+

z(2oso) -,'+

1.660
(1.655-1.675)

1,730
(1.730-1.764)

1.765
(1.755-1.775)

1,895
(1.885-1.e35)

1.920
(1.900-2.000)

1.940
(1.890-1.990)

2,022
(1.995-2.040)

2.070
(2.040-2.120)

r, {Gev)

8-channel (Z*) resonances

0.050
(0.04-0.06)

0.080
(o.o6-o.lo)

0.100
(o.oe-o.125}

0.070
(0.027-0.090)

0.170
(0.130-0.250)

0.280
(O.15-O.32)

0.170
(0.100-0.195)

0.250
(o.o67-o.2eo)

10'~ {r,r,)'~' (GeV)

0.5
(0.28—0.66)

2.0
{0.9-2.5)

2.72
{2.O —3.12)

0.49
(0.27—1.26)

2.38
(1.43—3.56)

3.92
(1.2—5.45)

3.4
(2.59—4.28)

2.25
(O.S7-3.48)

N(1688) —',+

N(170o) -',

N(17so) -',+

N(186O) —',+

1.680
(1.655-1.680)

1,690
(1.680-1.692)

1,751
(1.640-1.860)

1.863
(1.840-1.900)

I -channel (N") resonances

0.170
(0.105-0.175)

0.130
(0.105-0.180)

0.300
(o.loo-o 400)

0.227
(0.160-0.450)

0.296
(0.220-0.450)

0.18
(&0.3)

0.10
(&0.3)

3.4
(2.0-3.4)

1.1
(1.1-4.0)

1.48
(1.1—3.34)

For those resonances listed in Table 3 of Levi-Setti (Ref. 22) our phases 4 are uniformly of opposite signs from those
determined from Levi-Setti's SU(3) sign of the resonant amplitude times the phase of the SU'{2) Clebseh-Gordan coeffi-
cient (using his stated convention of the ordering of the baryon and meson). This over-all sign difference is obviously

of no consequence; it arises from different choices of signs for the isospin states for x+ relative to x and% relative
toE+ more appropriate in s-u crossing.

b The N(1675) and N(1688) couple very weakly, if at all, to the K+ A channel. Their presence has little effect on the

high-energy differential cross section at small t, but the indicated small amounts improve the behavior at ( t ( & 0.5
(GeV/c) .
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Imf, (v, i) =$[lmf, +(s'/')P, ~'(cose, )

Imf, (s"')P, , '(cose, )],
Imfgv, f) =Q[lmf, (s" ')

l=o

-Imf +(s'/')]P, '(cos 0,) .
Keeping track of the normalization, one finds

1
mfa~( & f) I Iu/a™res~

PSPS

Similar expressions for ImX and ImB in terms of
ImT, are obtained by substituting s- u, cos6),-cos8„, E,-E„, E,'-E„' in the above expressions
and using

1
1m'�~(vl )

( l)1/2 I res '
Pupal

We use the I' = 0 s-channel resonances (Z*'s) to
form the amplitudes ImA. and ImB and the F = 1
u-channel resonances (N*' s) to form the amplitudes
ImA and ImB, leading eventually to the represen-
tation of the sum rules (2.8) as sums over the s-
and u-channel poles. In Table I we list the param-
eters of the resonant amplitudes for the s- and
u-channel states considered in this study. There
are a number of independent analyses of both K n-w-A (Refs. 9-14) and v'n -K"'A (Refs. 15-17),
yielding somewhat different parametrizations and
even different numbers of resonances. The ranges
of parameters found in these analyses, and also
from the compilation of the Particle Data Group, "
are shown in Table I in addition to the values used
by us. As pointed out by Galtieri, ' there is agree-
ment among the various analyses of K n- n A only
for the three resonances Z(1765) —,', Z(1915) —,',
and Z(2030), . The remaining five Z states in
Table I are controversial. Tests were made of
the sensitivity of the sum rules to our particular
choice of parameters. While some changes occur
when other possible sets of resonance parameters
are used, the effects are in general not marked.

From the point of view of fitting the high-energy
differential cross section for K n-m A, there is,
however, some difficulty caused by the Z(1940) —,

'
state if all the resonance parameters of Table I
(our specific choices) are employed. This state,
reported by Litchfield" and Galtieri, ' is important
enough that its presence or absence has a signifi-
cant effect on the high-energy observables. When
the present work was begun this state was suffi-
ciently doubtful that we felt justified in omitting it
from the analysis. All the curves given below are
calculated with the parameters of Table I, except
for the omission of the Z(1940) —,

' . During the
preparation of this paper we have become per-
suaded that this resonance is at least as real as
some of the others [e.g., Z(2080) —, ], and have
therefore reexamined its inclusion. We are able
to obtain almost the same Regge parameters and
fit at high energies with modest changes of the pa-
rameters of some of the other states in Table I
(always within the limits of error listed in Table
III of Galtieri'). At the appropriate place below
we indicate the small changes that occur in the
Regge parameters for this revision of the low-
energy sums.

There are six "pole" terms that lie below thresh-
old; the N(938) 2, N(1470) —,", N(1518) —, , and
N(1550) 2 in the u channel; and the Z(1197) 2 and
Z(1385) ~ in the s channel. We use the Lagran-
gians shown in Table II to calculate these pole
terms. The contributions to ImA, etc. are shown
in Table III in terms of kinematic variables and
products of couplings appropriate to the charge
states involved. We now proceed to estimate these
coupling constants, using the following values for
the widths:

I'(¹(1470)—w'p) = 40 MeV,

I'(N"(1518)- v'P) = 20 MeV,

I'(N"(1550)- v'P) = 9 MeV.

These specific values are rather arbitrary, but the

TABLE II. Widths for the decay of a baryon a of mass M and spin-parity J into a 2+ baryon b of mass m and a 0
meson of mass p, and the Lagrangians used in calculating the widths. (The symbols p and E are the c.m. momentum
and energy, respectively, of the final baryon. )

JP

1
2

1+
2

3+
2

Lagrangian

g |t)& (x)g (x)P~(x) + H.c.

-ig g& (x)y5|t), (x)Q~ (x) + H.c.

g ~ 4 (x) P~(x) +H.c.8|I)a (x) a

&g
~ pe ~ (x) (It)~ (x) + H,c.8&a (»

Width I'

(g /8@M ) [(M+m)2 —V~]p

(g /4w)[M(E+m)] 'p3

(g /24wu'M2)[(M+m) -p,2]p3

(g /127rp ) [M(E+m)) p
5
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TABLE III. Pole-term contributions to ImA, ImB, ImA, and ImB.

Pole-term contributions

s channel

1+
2 ImA(v, t) = vt (gNI7~~ g~*A„/4m) (2M~~ -m —m')6(v —v~g)

ImB(v, t) =m(g&g&g g&*A~/2m)6(v —v&+)

ImA(v, t) =N(gNr&~g&*«/smyth')(3UlfE*+2(m +m'))pap~ cos88 + (M~* —2(m + m')] (E~ + m)(E~ + m')}6(v —vzs)

ImB(v, t) =~(g~g&*g&*A,/6mt p') t3p.p,'cose, —(&, + m) (&,' + m')]6(v —vz )

1+
2

1
2

3
2

u channel

ImA(v, t) = -m(g&vfz* g&*A+/4m) (2M&* —m —m')5(v —v&~)

ImB(v, t) = m (g~vIN~ g~*AI(./2m)5(v —v~~)

ImA(v, t) =v) (g&„&*gN~A&/4m) (2M&~ + m + m')6(v —vz~)

ImB(v, t) =m(g&„N* gN+A&/2m)6(v —v&*)

ImÃ(v, t) =N(gN~N~gN~AN/smyth')(3[-MN~+-, '(m+m')1p„p„'cos8„LM„*+-2(m+m')](E„—m)(E„' —m')}8(v —vN~)

ImB(v, t) =N(gNwNs gNsAN/6mVV, )(3p„p„cos8„—(E„—m)(E„—m )}lb(v -vNg)

widths of these resonances are quite uncertain.
Our choices are within the allowed ranges quoted
by the Particle Data 'Group. " When we use the for-
mulas of Table II the coupling constants in the ef-
fective Lagrangians are found to be

g(N'(14VO) - v'P) = 4.5,

(1/)t)g (N"(1518)- w'P) = 10.8,

g (N'(1550) - N'P) = 0.4.

Assuming each to be a member of an SU(3) octet
with the D/(F+ D) ratio given in Table IV, we use
SU(3) to determine the unobservable coupling con-
stants,

g(N+(14VO)-K" A) = -4.6,

(1/tt)g (N'(1518)-K'A) = -11.6,

g(N'(1550) -K'A) = 0.2.

Similarly, using

F(Z (1385)-n-A) =32.4 MeV

and Table II, we obtain

(1/p. )g(Z (1385) v A) = 9.1.
With exact SU(3) for the decuplet, the Z (1385)
-K n coupling is

(1/tt)g(Z (1385)-K n)=-(—', )'/'(9. 1)=-V.4.

If we had begun instead with the width of 120 MeV
for the A(1238), these values of 9.1 and -V.4

TABLE IV. Poles lying below threshold.

Name Mass (MeV) SU(3) multiplet

s channel

D/(D +E) Reference

Z(1197)—

Z(1385) 2

1197

1385

octet

decuplet

0.6 canonical value

u channel

N(938) —,
"

N(1470) 2+

N(1518) 2

N(1550) 2

938

1470

1520

1535

octet

octet

octet

octet

0.6

0.6

0.565

1.96

canonical value

Levi-Setti

Levi-Setti

'We estimated this from the decays N(1470) Nx andN(1470) Nq.
"Reference 22.
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would have been 10.9 and -8.9, respectively. This
gives some indication of the magnitude of the sym-
metry breaking for the & decuplet. Warnock and
Frye's values" of the Z (1385)- K n coupling con-
stant are eIluivalent in our notation to -8.3 [exact
SU(3}, A(1238) width] and -7.4 [broken SU(3)]. It
happens that our first estimate is numerically the
same as Warnock and Frye's preferred value. "

The relevant N and Z coupling constants are
shown in Fig. 4 as a function of D/(D+ E), assum-
ing exact SU(3) symmetry and g(p-m'p) =13.55.
The early empirical determinations of Zovko" and

Kim, " shown in the figure, indicate that D/(D+ F)
is in the range 0.5-0.8, but also imply some sym-
metry breaking. Numerous other estimates of the
ZKN and AKN couplings have been made. As can
be seen from Fig. 27 of Levi-Setti, "the AKN
values cluster around either Kim's of Zovko's
value, with no clear preference indicated. The
square of the ZEN coupling constant is always
found to be small, with Eovko's value as a rough
upper limit. Also shown in Fig. 4 is the estimate

for g(ZO- II'A) of Chan and Meiere. " Our calcula-
tion involves the products g(Z -K n)g(Z'-woA) for
the Z(1197) pole and g(p-II'p)g(p-K+A) for the
N(938) pole, with appropriate isospin coefficients.

C. Sensitivity to the Couplings of the Pole Terms

It is painfully obvious that there is tremendous
latitude in the specific choice of coupling constants
for the states below threshold. Some states, such
as the N(1470), N(1518), and N(1550), are rela-
tively unimportant in the sum rules. Variation of
their couplings around the values given above pro-
duces no major effects. For the 2' baryon octet
poles and the Z(1385), however, the contributions
are of sufficient importance that the results are
sensitive to the exact values of the couplings.
Numerous exploratory calculations were made to
study these variations. Even though the exact use
of the sum rules and the assumptions made in de-
termining the trajectories and residues are not de-

I I I I
I

I I
I' I

I
I I

30 l I i ] I I I I ] l

—100

20- C+M

g (p-m'p}q

IO

IOO—

-lo

-20

-30
0

D/{ F+ D)

FIG. 4. SU(3) coupling constants for the pseudoscalar
meson-baryon-baryon vertices of the 2+ baryon octet as
a function of D/(D +E'). The m'NN coupling constant is
defined by g /47''=14. 6, corresponding to g(p r p)=13.55.
The points with "errors" indicate ranges of the indicated
coupling constants found by Kim (K), Ref. 21, Zovko (Z),
Ref. 20, and Chan and Meiere (C+M), Ref. 23. The ar-
row indicates the canonical theoretical value of D/(D+E)
= 0.6; the dashed line at 0.675 is our preferred value.

0
I I I I I I I I I I I I

0.5 I.O

to -t {GeV/c)

FIG. 5. Effects of variation of coupling constants on the
high-energy differential cross section for K n—~ A.
The data shown are those of Yen et al. 4 at 4.5 GeV/c.
The upper curves (ordinate scale on the right) show the
effects of varying the D/(D+E) ratio for the N(938) and
Z (1197) pole terms. The numbers beside the curves are
the values of D/(D+E). The lower curves (ordinate
scale on the left) show the effects of different Z (1385)—K n couplings, with D/(D+E) =0.675 for N and Z

poles and the other resonance parameters fixed from
experiment. The numbers beside the curves are values
of p ig(Z (13S5) K n).
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scribed until the next section, Sec. III, we illus-
trate in Fig. 5 the effect on the differential cross
section at high energies. In the upper half of the
figure the change produced by variation of the
D/(D+ E) ratio of the 2 octet is shown, all other
couplings being held fixed. The curves are for
different ratios D/(D+ E) assuming exact SU(3) for
all vertices, but similar variations occur if ran-
dom combinations of Kim's and Zovko's values are
chosen. If the couplings are forced to be SU(3)
symmetric, the optimum D/(D+ E) ratio is in the
range 0.65-0.70, '~ not far from the canonical
value of 0.6. The lower half of Fig. 5 shows the
effect of varying the coupling of the Z(1385). The
two curves are for the exact and broken SU(3) es-
timates of Warnock and Frye for the coupling to the
KN channel quoted above, the coupling to the mA

channel being fixed from experiment. The Z(119V}
and N(938) pole contributions are fixed by D/(D+ E)
= 0.675. The experimental cross sections at high

energy slightly favor the value (1/p)g(Z (1385)
-K n) = -7.4. There is evidently some possibility
of trading off changes in the ~ octet couplings
against changes in the Z(1385) coupling. Our
choices of D/(D+E) for the 2 octet and couplings
for the Z(1385) are certainly in the comfortable
range of expected values, but are in no way unique.
The results are most sensitive to the value of
D/(D+ E). A value outside the range of 0.6 to O.V

[or its equivalent for broken SU(3)] leads to a bad
fit to the high-energy observables for K n- n A.
The Z(1385) couplings are less crucial, but cannot
be varied by more than 2(P/o without serious dif-
ficulty.

III. RESULTS

I I
I

I

+Kn mA
+K n-vr A

K n-m A

I I I
I

I I

pj b=3.0 GeV/c Re&. 3

pI b=3.9 GeV/clab

p] b=4.5GeV/c Ref. 4

presence of a sense-nonsense factor of cI (t) in the
residue b (t). From (2.9f) it is seen that o. (f) =0
is then defined as the t value where S(BI &, 0) = 0.
The question of whether fI (f) has additional fac-
tors of n (f) is left open, to be answered by the
sum rules themselves. It should be remarked
that the vanishing of S(BI &, 0) can be attributed to
interference between Regge-pole and Regge-cut
amplitudes, rather than to the presence of a factor
of n (f) in a purely Regge-pole amplitude. Be-
cause of our limitation in the sum rules to two ef-
fective Regge poles, one for each signature, we
cannot speak on this point. We merely assume that
the vanishing of the effective residue fI (t} signifies
n (t)=0.

The residues a+(f}, a (t), fI'(t), fI-(f) are calcu-
lated from Eqs. (2.9c)-(2.9f) with n = 0, the tra-
jectories having been found as described above.
The exact values of the residues depend on the
upper limit v, in the sum rules and on the choice
of I, = s,/2m. 26 We take s, = 1 GeV and use v, (t)
= v, (0)+ t/4m, with I,(0) slightly above the highest-
mass resonance included in the sum rule. The
standard value employed is v, (0) = 1.8, correspond-
ing to M = 2.14 GeV. The results are insensitive
to changes of 1(P/p in I,(0). If I,(0) is lowered be-
low the highest Z resonance in Table I and its con-
tribution is therefore omitted, the two zeros of
S(A I+I, 0) just disappear. [The inverted parabola
for a'(t) of Fig. 10 drops below the axis. ] This

A. Trajectories, High-Energy Cross Sections,

and Polarization

As is perhaps apparent from Sec. II, the uncer-
tainties of the couplings and the necessity of mak-
ing a narrow-resonance approximation preclude
the use of anything but the lowest moment (n = 0)
sum rules. We are thus unable to calculate the
Regge trajectories n'(f} from the formulas (2.9a)
and (2.9b). We assume that the trajectories have
unit slope (1 GeV ') and determine the intercepts
in the following way. The even-signatured residues
a+(t) and fI+(t) must vanish at the right-signature
point, a'(t) = 0, in order that the real parts of the
amplitudes not be singular in the physical region.
From (2.9e) it can be seen that the n = 0 sum rule
for 5+(t) automatically satisfies this requirement.
For a'(f}, however, (2.9c) shows that we must de-
fine a'(t) =0 at the t value where S(A'I', 0) =0.2'

The trajectory a'(f) is thereby determined. For
the odd-signatured amplitudes we appeal to the

100—

~ I I
4 ~

0 ~

10—

0.0
1I

I I I I I I I I I I I I I

0.5 1.0
to-t (GeV/c)

FIG. 6. Comparison of calculated and experimental
differential cross sections for K n vr A at 3.0, 3.9,
and 4.5 GeV/c.
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means that n' cannot be defined as before and also
that the real part of the Regge-pole amplitude has
a pole in the physical region, or else there is a 0'
particle of small mass. Nevertheless, the high-
energy observables are changed very little, except
in the immediate vicinity of the spurious pole.
Furthermore, small changes in the resonance
parameters can bring back the two zeros in
S(A '&, 0). Similarly, inclusion of the Z(3060) —,

'
of Galtieri' (not listed in Table I) changes the ob-
servables only slightly. We conclude that our sum
rules are reasonably insensitive to the detailed be-
havior at the upper limit v, .

As already described in Sec. IIC, the Z and N
pole terms are very important in the sum rules and
the Z(1385) somewhat less so.. The D/(D+ E) ratio
of the & octet was therefore varied to optimize
the fit to the data on the differential cross section
for K n-m-A, as shown above in Fig. 5. The
"best" solution [D/(D+ E) =0.675] is compared
with the experimental cross sections for E n- p-A

at 3.0, 3.9, and 4.5 GeV/c in Fig. 6, In Fig. 'I we
show the polarization resulting from our solution
and the corresponding data at 3.0 and 4.5 GeV/c
(Refs. 3 and 4, respectively), and in Fig. 8 we dis-
play our predictions for the A and R parameters
of Wolfenstein" at 4.5 and 9 GeV/c. Our polariza-
tion and A and R parameters are essentially in-
dependent of energy. In Fig. 9 we compare our
prediction for the slope parameter II (do/dt ~Ae")
with the results of experiment at various momenta.
These figures show that our solution is in good
agreement with existing differential cross sections
for E n- z A, gives an energy variation and mag-
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FIG. 8. Predictions of the A and R parameters for
X n m A at 4.5 GeV/c (solid curve) and 9 GeV/c (dash-
ed curve).

nitude of b consistent with the data, including re-
cent results from SLAC, "and is in agreement
with the rather inaccurate data on polarization for
0 & its&1.0.
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FIG. 7. Comparison of calculated and experimental
A polarization for K e—~ A. Solid squares are the
data of Yen et a/. 4 at 4.5 GeV/c. Crosses are the data
of Barloutaud et al.3 at 3.0 GeV/c. The solid (dashed)
curve is for K n m A (~+n—K A) and is essentially
energy-independent.

FIG. 9. Slope parameters of der/dt versus s. Same
as Fig. 7 of Lai and Louie (Ref. 5), but with the SLAC re-
sults (Ref. 28) (solid triangles) and our calculated slope
for K n m' A (dashed curve) added. References for the
remaining data are found in Table 3 of Ref. 5.
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Comparison of our solution with the line-re-
versed process, m'n-K'A, is deferred until after
a discussion of the residues themselves and ques-
tions of exchange degeneracy.

B. Residues, Exchange Degeneracy, and Duality

The residues a'(t) and b'(t) for the "best" solu-
tion are shown in Fig. 10. The residues a'(f) and
5 (f) vanish at f = -0,15 and f = -0.18, respectively,
corresponding to trajectories n.'(t) = 0.15+ t and
o-(f) = 0.18+ t. Our solution thus exhibits approxi-
mate weak EXD. The t-channel spin-flip residues
b'(f) are seen to satisfy the relation 5'(f) =-5 (t)
over a large range of t. This is evidence for
strong EXD for the spin-flip residues. The t-
channel nonf lip residues a'(f) and -a (t) have the
same general shape, but differ by a low-order
polynomial. Evidently strong EXD does not hoM
for the nonf lip residues. " It is of interest, never-
theless, to display the degree of exchange degen-
eracy in the amplitudes in another manner in order
to understand better how well or how badly EXD is

satisfied. From EXD arguments or duality dia-
grams, we expect the amplitudes (A', B) for K n- n-P to be real, while the amplitudes (A', B) for
g'~ -K+& should have a t-dependent phase factor,
exp[-iwn(t)j. In Fig. 11 are displayed the phases of
A', B, A', and B as functions of -t. The striking-
ly different f dependences of the phases for (A', B)
and (A', B) are apparent. Furthermore, the
phases of A' and B are small for ~tj& 0.5, especial-
ly that of B. Now, a t-independent phase for A' of
only 20 and a much smaller phase for B can plau-
sibly be argued as evidence for reasonable ex-
change degeneracy and a vindication of duality
diagrams. Nevertheless, this relatively modest
phase difference between A' and B is responsible
for the nonvanishing polarization shown in Fig. 7."
This emphasizes once again that polarizations are
delicate quantities and that yes-no theoretical pre-
dictions about them are hazardous. Conversely,
it argues against judging the ave~-all success of a
model or theoretical principle by how well it does
in predicting polarization.

For those readers who prefer to consider s-
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FIG. 10. Regge residues a (t), b (t) of the t-channel
nonflip and flip amplitudes, respectively, as functions of
t. The zeros of a+ and b define the vanishings of the tra-
jectories m+ and n, as indicated by the vertical dashed
lines. Exact exchange degeneracy implies a+= -a
b =-b.

FIG. 11. Phases of the high-energy amplitudes A' and
8 for K n—& A, and A' and B for ~+n—K+A as func-
tions of t. Duality diagrams predict zero phase for A'
and B, and a phase -re (t) for A' and B. The dashed
line gives the average phase, —x[0.+(t)+e (t)]/2, for
comparison.
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channel helicity amplitudes, we remark that for
the process K n- p-A the t dependences of the
real parts of the s-channel amplitudes ll„and
II, are qualitatively similar to those shown in
Figs. 1(b) and 1(d) of Berger and Fox,"although
the relative signs are opposite from what is shown
there. The imaginary part of H, is very small
and roughly constant in t, while the ratio of imag-
inary to real part of II„ is -0.3 at /=0 and in-
creases (in magnitude) smoothly to roughly -1 at
t =-1.0 (GeV/c)'.

In Sec. IIB we noted that some of the resonances
in Table I were controversial, and that we had
omitted the Z(1940) —, state from the sum rules.
A fit is still possible with this state included, pro-
vided some of the widths are altered. One fit that
yields n'=0. 14+1, e =0.24+/, and residues al-
most identical with those of Fig. 10 has the cou-
plings of Table I modified to (I',I', )'~' =2.0x 10 ',
1.2x10 ', 3.6&10 ', for the 1765, 1940, 2030
states, respectively. The observables from this
solution are almost identical with those of Figs.
6, 7, and8.

Another aspect of the residues shown in Fig. 10
is the degree of correlation between the zeros of
the residues and the zeros of the contributions to
the various sum rules from the individual reso-
nances. It is well known that such correlations
formed the original motivation for the concept of
duality. " The zeros of the various contributions to
ImA ' and ImB are shown in Fig. 12. Fir st con-
sider the zero in a'(t) at t=-0.15 (GeV/c)'. From
Fig. 12 it is seen that the important contributors
to a "(t) have zeros at small t, clustered in fact
quite closely around t = -0.15. The only important
exceptions appear to be the Z(1197) and N(938).
The sum rule for a'(f) involves Im(vA '~), however,
and the values of v for the Z(1197) and N(938) are
so small that their contributions are unimportant
over the whole range of ~t~& 0.5. Within the frame-
work of two effective Regge poles at high energy it
is gratifying that for the even-signatured amplitude
the resonances individually give zeros where a'(t)
=0 and n"(t) =0. The avoidance of a "ghost pole" at
negative t is apparently sufficiently important not
to be left to chance cancellations in the sum rule.

For a (f) the sum rule involves Im(A ~ ). The
Z(1197) and the N(938) contributions are no longer
suppressed. This is one of the major reasons for
the difference between a "(t) and -a (t) seen in Fig.
10. From Fig. 12 it is evident that the zero in
b (t) at t= -0.18 (GeV/c)' is not produced by a zero
from each resonance, but rather by a cumulative
cancellation in the sum rule. Such behavior is in
contrast with that found originally by Dolen, Horn,
and Schmid" for the p Regge pole in gN elastic
scattering. The present mechanism for generating
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FIG. 12. Distribution in t of zeros in the contributions
from individual resonances to the sum rules for v ImA'
and v Im B& & . The number beside each symbol is the
mass of the resonance. The arrows on the right indicate
the zeros in the A' + sum rule (a) and the B( ) sum
rule (b). The contributions to the A' + sum rule from
the N*(1780), N*(1860), and Z*(1920), with zeros near
t= -0.5, are relatively unimportant.

a zero in 5 (t) arises because of the alternations in
sign caused by the approximate EXD of the s-chan-
nel resonances, as discussed immediately below.

The discussion thus far has concerned EXD or
lack of it for the K* and K** trajectories and resi-
dues. The same duality diagrams of Fig. 1 that
predict EXD for the K* and E * also show that the
s-channel resonances are generated only by u-
channel exchanges. This implies that the predomi-
nant Z" resonances which enter our sum rules
should also lie on trajectories occurring in EXD
pairs and have residues equal in magnitude, but
opposite in sign. A test of this hypothesis is
shown in Fig. 13, where the relevant baryon tra-
jectories are displayed, as well as the contribu-
tions to the sum rule for ImB at t = m~g'. " The
dominant Z* resonances do seem to be roughly
EXD, lying closely on two trajectories rather than
four. The contributions from successive reso-
nances on a single EXD pair of trajectories alter-
nate in sign, and the absolute values have a smooth
variation with mass. The cancellation of s-chan-
nel imaginary parts shown in Fig. 13 was previous-
ly tested by Ferro-Luzzi et al."with experimental
data on the amplitudes for the mass interval 2.25
GeV' & s &3.61 GeV'. This analysis argued against
semilocal duality in the sense of cancellations, but
as is indicated on Fig. 13, the mass interval is
such that only one important resonance from each
pair of trajectories contributes. It happens that
these two resonances do not cancel; the cancella-
tion comes from successive members of each EXD
sequence. The N* states in the u channel are not
expected to be exchange-degenerate in their cou-
plings, and they do not seem to be so.

To conclude this discussion of residues and
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couplings we comment briefly on the "sense-
choosing" and "gho st-eliminating" mechanisms"
for the K and K**Regge poles, or more precise-
ly, on the type of zeros occurring in the residues
of the effective poles. From Fig. 10 it can be seen
that the K**appears to choose the Gell-Mann
mechanism with a dynamical zero in the A ~+

residue at larger ~t~, while the K* chooses sense.
The behavior of the even-signature residue is
similar to that reported for the P' and A, trajec-
tories, although there is still some argument
about the latter. Arguments on SU(3) grounds
would tend to favor similar mechanisms for P',
A„and K**, and similarly for the K* and p

C. Troubles: m+n~E+A

We have thus far discussed only the successes of
our sum-rule calculation. We must now illustrate
some of its glaring failures. Our solution exhibits
approximate weak EXD [n'(t) =o. (t)]. Independent
of the residues, we thus predict

d 0' cfg

CV

and

P =-P

7/2

5/2

3/2

I/2

for the reaction K n- p-A and its line-reversed
reaction p'n-K'A. To the contrary, however,
experiments indicate that at energies near p»
=4.0 GeV/c the slope of do/dt is approximately
twice as steep a.s the slope of do/dt and the inte-
grated cross section o is considerably smaller
than o. The data on the slope parameter for both
reactions are shown in Fig. 9. Even more embar-
rassing is the evidence" "shown in Fig. 14 that
the polarizations for the two reactions have the
same sign, at least for ~t~ &0.4 (GeV/c)'. Suchbe-
havior of the polarization is impossible for a mod-
el with only one effective pole of each signature be-
cause then it is always true that P do/dt= -Pdo/dt. .

This is independent of whether or not there is
weak EXD of the trajectories. The assumption of
one effective pole of each signature is evidently too
simple at intermediate energies. " The energy de-
pendence of the slope parameters in Fig. 9 indicates
that at higher momenta Ip»& 6.6 GeV/c, s&13
(GeV)'] two weakly EXD effective Regge poles may
be an adequate description, since the slopes for
m'n- K' A and K n- z-A tend to become equal. It
remains to be seen whether the polarizations for
the two reactions have opposite signs at these
higher momenta, and whether the magnitudes of
the integrated cross sections approach each other.

Why does our FESR calculation with two effective
Regge poles fit the K n- m A data at intermediate
energies, but fail to fit the data on g'n-K'A? The
reader may well say that the data obviously do not
permit a description with only two Regge poles and
that, since we chose to fit K n- p A, we necessar-
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FIG. 13. Exchange degeneracy of low-energy Z res-
onances. The upper half shows Z„, Z&, Z&, Z& baryon
states on two, rather than four, trajectories. Lower
spin states are indicated with open circles. The lower
half of the figure shows contributions to the ImB sum rule
at t= m~* . The contributions along each trajectory are
seen to vary smoothly, apart from the EXD alternation
in sign. The interval indicated by arrows is the range
covered in the analysis of Ferro-Luzzi et ag. (Ref. 88).
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FIG. 14. Comparison of polarization at 3.9 GeV/c.
Solid and dashed curves are the results of our calculation
for K n x A and m+n K A, respectively. At small

~
t ~, the observed polarizations have the same sign,

contrary to our predictions or those of any model in-
volving only one Regge pole of each signature.
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ily fail for z'm-K'A. There is clearly some
truth in such a statement, but it is misleading. We
tried the alternative of fitting the differential cross
section for w'n-K' A at 3-4 GeV/c .Even with
wide variation of the 2 octet couplings and also
coupling of the Z(1385), it proved impossible to
make the forward peak of do/dt sharp enough to
agree with experiment. We are thus still with the
question, why does our sum-rule calculation, over-
simplified though it may be, work at 3-6 GeV/c
for K n- p-A and not for g'n-K"A'P The charac-
ter of the s-channel and u-channel resonances in
the sum rules sheds some light on this question.
From Table I and Fig. 13 it can be inferred that
the dominant s-channel resonances (K n- v A) are
"peripheral" resonances whose angular momenta
increase with their masses, and whose s-channel
nonf lip and spin-flip helicity amplitudes have
zeros at roughly the same f values as Jo(R(-t)'~')
and J,(R(-t)'~'), respectively, where R=0.9 fm."
This behavior is analogous to an elastic reaction,
and is not surprising in view of the exothermic,
nature of the process. On the other hand, the
threshold for p'n- K'A is 530 MeV above the
threshold, m„+m, =1079 MeV, for elastic p'n
scattering. Centrifugal barrier effects will hinder
peripheral pN resonances from contributing to the
inelastic reaction n'n K' A. The dominant u-
channel contributions are thus expected to come
from zN states of relatively smaQ spin, "nonpe-
ripheral" resonances. This is indeed what is seen
from Tables I and IV. The "peripheral" reso-
nances, D15 and F15, which are very important
in the sum rules for elastic mN scattering, couple
weakly to n'n-K'A, while the "nonperipheral"
states such as N(1700) 2 and N(1860) —,

'
[and the

N(938) —, pole] are of considerable importance.
Let us assume that a high-energy model with two

effective Regge poles which are approximately
weakly EXD is a reasonable description of both
reactions at incident momenta above 6-8 GeV/c,
but fails for momenta of order 3-4 GeV/c. We are
then led to the following hypothesis:

(1) The leading t-channel Regge singularities
(called effective poles above) are dual to the "pe-
ripheral" resonances in the direct channel.

(2) Lower-lying t-channel j-plane singularities
are dual to the "nonperipheral" resonances in the
direct channel.

As can be seen from the energy denominators in
a fixed-t dispersion relation, at intermediate
energies the contributions to the real part of a
reaction amplitude from the resonances in that
channel are more important than those from reso-
nances in the crossed channel. Since the "periph-
eral" resonances occur in the K n- n A channel,
we can understand why the simple two-pole model

works even at intermediate energies for that chan-
nel." The dominance of "nonperipheral" states
for z'n-K'A on the other hand argues for a more
complicated description at intermediate energies.

There is an apparent inconsistency here that
should be dispelled. At intermediate energies p'n
-K'A is more PeriPheral than K n- g A. Thi.s
seems to contradict the dominance of "nonperiph-
eral" states in the resonance region of p'n-K'A
and of "peripheral" states in K n-g A. Such
arguments work for elastic processes, but not for
inelastic reactions where the resonant contribu-
tions enter with different signs in general. For
inelastic reactions it appears that no simple cor-
relation can be established between the peripher-
ality of the resonance contributions and the sharp-
ness of the diffraction peak.

(Note added in p~oof. A hybrid calculation using
imaginary parts of amplitudes from the FESR and
real parts calculated from the fixed-t dispersion
relations confirms the arguments of the two pre-
ceding paragraphs and gives a semiquantitative de-
scription of the different slopes of the two cross
sections at 2-5 GeV/c. )

The association of "nonperipheral" resonances
with lower-lying j-plane singularities in a crossed
channel can be made plausible by considering the
idealized explicitly dual Veneziano amplitude. Our
distinction between "peripheral" and "nonperipher-
al" contributions is in some ways analogous to
Harari's description of elastic scattering. " It
differs, . however, in that his "nonperipheral" con-
tributions, arising mainly from the direct-channel
background, build up the Pomeranchon singularity.
At high energies, the Pomeranchon part is what
survives for elastic processes. In our inelastic
reactions we assume that the nonperipheral part is
less and less important as the energy increases.
There is no inconsistency between our view and
Harari's. The idea that "nonperipheral" resonances
are dual to lower-lying Regge singularities can be
incorported into Harari's scheme with no difficulty.

The reader will have noted that we did not attrib-
ute the breakdown of EXD and other peculiarities
of the two reactions to high-lying cuts in the j
plane. Some reasons are:

(1) The hint from Fig. 9 of the improvement of
EXD at higher energies argues against important
Regge-cut contributions that distinguish between
the two reactions.

(2) Pomeranchon-Regge pole cuts calculated in
EXD models give effects opposite to what is seen
experimentally. On the other hand, lower-lying
Reggeon-Reggeon cuts may contribute with the cor-
rect sign.

(3) The sum rules can be viewed as giving the be-
havior of the leading effective Regge singularities
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whatever they are.
(4) Within a sum-rule calculation of the sort

necessary here, nothing can be inferred about the
specific nature of the j-plane singularities.

IV. SUMMARY

Using FESR for the reactions K n n A and
z'n-K'A, we determine the effective "pole" pa-
rameters of the K* and E * Regge trajectories
from a knowledge of the low-energy resonances
and their couplings. The resonance parameters
and the D/(D+ E) ratio for the & baryon octet are
varied somewhat to test the sensitivity of the high-
energy predictions; 2' octet couplings within the
range of values found empirically in other reactions
are preferred in our solution. We find that the s-
channel resonances in K n-n A do add in such a
way as to produce predominately real amplitudes
at high energies as predicted by duality diagrams.
We find, however, that these predictions are not
satisfied exactly. Although the phases of both A'

and B are small and independent of t for ~t~& 0.5
(GeV/c)', the residues of the even- and odd-signa-
ture Regge poles are closely exchange degenerate
only for the B amplitudes, and not for the A' am-
plitudes, thereby allowing an appreciable polariza-
tion for K n- m A as is observed experimentally.

The Regge-pole parameters determined from
the sum rules give a good fit to the reaction K n- z-A over a wide range of energies, whereas they
are unable to fit z'n-K'A at intermediate ener-
gies. Comparison of the resonance contributions
to K n- p A and g'n-K'A shows that "peripheral"
resonances dominate the sum rules in the first
reaction, while "nonperipheral" states are impor-
tant in the second. By supposing that "peripheral"
resonances are dual to the leading Regge singular-
ities in the t channel, while "nonperipheral" reso-
nances are dual to lower-lying singularities, we
are led to a rationale of why the simple model of
two effective Regge poles is adequate for K n- p-A

even at intermediate energies, but inadequate there
for z'n-K'A.
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The failure of the Treiman-YRQg test of one-pion exchange in the reactions E p Xox04++

and X+ vr 4++ for c.m. energies fxom 2.5 to 5.0 GeV is shown to have a simple dependence on
%8 find Rn exnp1r1cRl dyQRxnlc 8 axis with x'espect to which the 4-meson RngulRr distribu-

tions are independent of azimuth. This axis, which depends on t, ie seen to be equivalent to
the axis of Donohue Rnd Hogaasen in the neighborhood of the E*(0.89).

In a calculation based on the absorption model of
Gottfried and Jackson, ' Donohue and Hdgaasen' sug-
gested the use of a "dynamic" x'eference fxame in
%'hich the density matrix descr1blng the decRy of R
vector meson (e.g., p or K*) is diagonal. This
frame differs from the usual t-channel (Jackson)
frames by a rotation. Experimentally, such effects
have been noted in several final states4 of reac-
tions induced by n+ mesons and photons on hydro-
gen. We fix'st noted the rotation in a sample of
4850 events of reaction (1a) and V03 events of reac-
tion (11)at V.3 GeV/c,

K+P K n' 4++, (la)
K+p E 71 4++ . (11)

Yo confirm the existence of the effect Rnd to look

at the 8, t, and M~, dependences, me have used
the world E'p collaboration data' consisting of
3V 153 events of reaction (la) and 6593 events of
reaction (11). We note that analogous effects,
puma facie, have been understood in the angular
distribution of photons px oduced by inelastic seat-
tex'lng of protons on nuclei; R simple model leRd-
ing to the same effect in inelastic e-nucleus scat-
tering eras described by Inglis' Rnd this rotation
was observed in many experiments. '

If one assumes that a single-pion-exchange mech-
anism dominates the low-momentum-transfer
[t=(P,„t„-P~)s] region of reactions (1), as in Fig.
1(a), then an appropriate coordinate system in
which to study the final-state E-meson angular dis-
trlbutlon wRS defined by JRckson such that the


