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The binding energy of the deuteron is written in terms of once-subtracted, sidewise dis-
persion relations for the mass-energy form factors of the neutron, proton, and deuteron.
The threshold region is assuxned to dominate, and accordingly a cutoff is introduced into the
dispersion integrals. This cutoff is, however, related to the proton-neutron mass difference
6M, so that no free parameter exists in the work. The binding energy B is reproduced for a
cutoff value corresponding to 6M-1.7 MeV, this being the 5M calculated by Pagels. Both
electromagnetic effects and the deuteron breakup into an S-wave, triplet-state nucleon pair
are considered for contributions to B. No realistic estimate has been made of the effect on
the result of m. mesons in the intermediate-state expansion. The two-nucleon-state contribu-
tion dominates the results, accounting for approximately 90% of 8 at the experimental value
of 2.2 MeV.

I. INTRODUCTION

In this paper me are concerned with the calcula-
tion of the binding energy of the deuteron, using
dispersion relations involving mass-energy form
factors. The method used has been devised and
successfully applied by Pagels' to the determina-
tion of the neutron-proton mass difference. It is
essentially based on the close analogy existing be-
tween electric charge and gravitational mass as
quantities indicating the source strength of the elec-
tromagnetic and gravitational fields, respectively.
This may also be expressed by saying that as the
electric and magnetic structures of a particle are
contained in the particle-photon vertex, so its me-
chanical properties are contained in the partiele-
graviton vertex. Dispersion relations may then be
obtained for the form factors appearing in both ver-
tices.

In conventional theories, the deuteron's binding

energy B can be calculated from a knowledge of the
scattering length and effective range of the two-
nucleon forces. ' These parameters may in turn be
calculated from a knowledge of the two-nucleon po-
tential, or determined from scattering data, for
instance. A dispersive method mould differ from
phenomenological theories in that it should relate
8 to fundamental constants, such as coupling con-
stants and masses, that would occur in a Lagran-
gian description of the particles involved in the
scattering. A way of doing this mas outlined by
Blankenbecler and Cook (starting from the n-d-p
vertex instead of the d-graviton vertex we are con-
sidering) but, to our knowledge, has never been
used in any actual calculation of the deuteron's
binding energy. In this work me are forced to use
the triplet effective range for the deuteron as an

input parameter, essentially because an exact the-
ory for the deuteron is not available.

In practice, however, calculations from "first
principles" are never completely possible in dis-
pex'sion theol y whex'e usefulness lies ln relating
unknown quantities to experimentally measurable
ones. The objective of our calculation is to relate
B to known scattering processes. Not all of these
are measurable in our case. In fact those involving
a gravitation cannot be measured experimentally
because of the extreme weakness of the gravitation-
al interaction, but use can still be made of theix'
analytic properties.

The advantage of this method is that it allows a
direct interpretation of the final result in terms of
the mass contributions of the single processes in-
volved.

The deuteron is treated as a spin-one elementary
particle or quasipartiele capable of breaking up in-
to an S-wave, triplet-state nucleon pair, somewhat
along the lines discussed by Amado~ and Weinberg. 5

This assumption simpli5es the calculations to some
extent, and some of its implications will be dis-
cussed later.

The paper is divided into seven sections. In
See. II me study the general particle-graviton ver-
tices to obtain the mass-energy form factors,
which are then related to the binding energy in
Sec. III, by means of suitable dispersion relations.
The form factors appeax'ing in the dispersion inte-
grals are explicitly found by expanding the vertices
in terms of intermediate states in Sec. IV, and eal-
eulating the resulting scattering amplitudes in
See. V. The final results are contained in Sec. VI,
and are followed in Sec. VII by a summary and con-
clusion. For the sake of completeness, dispersion
relations for the nucleon and deuteron mass-energy
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form factors are proved in the Appendix.

II. GENERAL VERTEX EXPRESSIONS

It is instructive to obtain the threshold values of
the pertinent form factors before the expression
for the binding energy is derived (Sec. III). To do
this we consider Fig. 1, where W represents the
off-shell particle and I is the massless (I'=0)
graviton. Actually, for the purposes of this pa-
per, the invariant trace of the energy-momentum
tensor is sufficient to represent the graviton, ' so
the full tensor, corresponding to gravitons of spin
2, will not be considered here.

For nucleons, the most general expression for
the vertex can be composed' of I, y„y„, o„„y,y„,
I„, W„, and N„, where N is the nucleon (p or n)
momentum. By use of TCP invariance, momentum
conservation, and the Dirac equation, the only pos-
sibility for the vertex is

u(N)Z(W ) = u(N)[G»(W2) + G„'(W2)f],
where Z represents the vertex and I=y„l„. The
functions G and G' are just the mass-energy form
factors.

At the threshold l =0 and W'=N =M„, and
Eq. (1}gives us

u(N)Z(M„')u(N) =M„u(N)u(N) =M„

= u(N)G„(M„2)u(N) = G»(M» ),

At threshold Eq. (5) gives us

(2d, ) 'i'e„Z„„(M,')e„(2d,) 'i'

=M~ = (2M„) e»F~(M„)(2M„) '

= F„(M„')/2M„ (8)

since e„e„=1. Thus we can conclude that

F~(M~ )=2M~ . (7)

We need a projection operator to extract F,(W')
as this is the form factor that contributes at thresh-
old (the coupling constant). It is actually more
convenient to extract F~(w'}/2M~ = G(W'), and the
following operator does this for us:

PW2 Md w . w Mdd l w

4(M~'+d I) ' (d I)'
(8)

which one can verify by operating on Eq. (5) with

it. Note also that e ~ W =0 at threshold.
In constructing Eq. (8), use has been made of the

completeness relation

(9)

where k is the deuteron momentum. The second
term in (9) is a direct consequence of the finite
rest mass of the deuteron.

III. DISPERSION RELATIONS

so that we can conclude that

G»(M» ) —M»,

(2)
If the form factors are analytic in W', then dis-

persion relations may be written for them. If
these relations are assumed to be once subtracted,
then we may write

which is just the coupling constant for the nucleon-
graviton interaction at threshold. '

Thus a projection operator is needed to extract
G„(W') from the vertex (1), so that this form fac-
tor can be used in the dispersion relations. The
operator will be

M»lu(N)
W -M~ (4)

e„Z„„(W')= F,(W')e„+ F,'(W'} e I I „, (5)

where the functions E and E' are the form factors.

as one can verify by substitution back into Eq. (1).
For the deuteron, which we take as a spin-1 or

vector system, the most general vertex function
can consist of the polarization four-vectors, e„
and e„, for the on-shell and off-shell deuterons,
respectively, as well as d„, l„, and W„. The
I.orentz condition, d e =0 (which has the property
of eliminating the spin-0 or scalar representation),
and TCP invariance restrict the choice to the vec-
tor

W' -M' " ImG(W")dW"
w»a (W' -M )(W' —W —ie}'

(10)

where the pole term M is the threshold value of
G(W'). The integration starts at M' because, as is
shown in Sec. IV, ImG vanishes below this point.
The analyticity of ImG is shown in the Appendix
and closely follows the method of Bincer. '

The binding energy of the deuteron,

B=M„+MP -Md,

can be obtained from Eq. (10) as

B=G~(w )+G„(W ) —G~(w~)

f ImG (W")dW"
» a (W'~ -Mq )(W' —W2 —ie)

ImG„(W ")dW"
„2 (W' -M„)(W' —W —ie)

Wa M ~ " ImG (W")dw"
~ (w" M:)(w" w2 i.).
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%'e will now assume that as S'~ approaches infin-
i,ty

lim [G~(W') + G„(W') —G„(W')]-0,
N'3~ m

as the similar type of assumption being made by
Pagels. ' With this important assumption, Eq. (12)
yields

" ImG„(W')dW' 1 " ImG (W')dW'
~2 2 g ~ @f2 I

n ft . p

1
" ImG~(W')dW'

m ~„& O' -Mq

is the subtraction terms that give 8 directly.
In this theory we are assuming low-energy domi-

nance and so, since the high-energy contribution
will not be calculated, the integrals appearing in
Eq. (14) must be cut off. As lt is the integration
range that controls the nature and number of the
intermediate states, we require that it be the same
for the three integrals of Eq. (14). In other words,
if X'M„2 represents the upper limit of the deuteron's
(last) integral and X"M„' the upper limit of the
nucleons' (first two) integrals, then X and X' will
be related by

where a change of variable from S" to $V has been
made.

It can be seen that the assumption of once-sub-
tracted relations is essential to this work, since it

Now A,
' is determined by the neutron-proton mass

difference i so ~ is also determined io within the
limits of reasonable agreement with this mass dif-
ference 5M.

IV. INTERMEDIATE-STATE EXPANSIONS

The vertex diagram, Fig. 1, can be expanded in terms of intermediate states as shown in Figs. 2, 3,
and 4 below. Ne write the nucleon vertex as

u(N)Z(W') = (X,/M„)»'Pr, I)q(O) (0),

where g(x) is the nucleon current (g-~„)%(x},%(x) being a nucleon creation operator. Contracting out the
graviton" gives us

,Z/2
W(W)Z(W')=i fd'we " (WT[(8(x)'il( )]0I(o[

M~
j./2d'xe-"'e x, X exqO O+~ ' d'x~-"" WqOex O,

where T is the time-ordering operator, 8(xo) is the time step function, and e(x) is the graviton current
(the trace of the energy-momentum tensor). The last term is the equal-time term and contributes only at
the pole, so we neglect it from here on. '

Intermediate states are now inserted &nto the commutators and the projection operator is applied to ex-
tract the required form factor. Also i, 8(xo) is taken to —,', which takes G to ImG. ~ Thus Eq. (17) becomes

ImG+(W ) = —' (N /M )' ' d'xe-"* d'n(2v) 'g(N(e(0) ~n) (n([1(0) (0)P(W' )e'*
n ft

d'n'(2') sg(N~((i(0)(n') (n' ~e(0) [0)P(W') e '"'"
n'

q
.. E q

mW~ ~W
N

FIG. 2. The nucleon-photon intermediate state.

~ . l
W

cl

FIG. 1. The general graviton-particle vertex. FIG. 3. The deuteron-photon intermediate state.
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FIG. 4. The two-nucleon intermediate state.

where the sums are understood to be over the spins of the indicated intermediate-state particles.
The x integration is then carried out yielding momentum-conserving 5 functions, which in turn allow the

intermediate-state integrations to be performed. The result is

ImG„(W') = p (N /M„)'l'w+2(nG+ lG)5((n+ l)'-M„') 8(n, + l, )'(Nlein+ l&(n+ llql0&P
spin

+g(N. /M )"'wg21.~(i'-M. ')8(-1.)&Nial-i&(-lieio)P. (19)
spin

Now the second term exist only when l' =M„', but l' =0, so this intermediate state is just the vacuum.
This in turn results in the matrix element &Nlgl0& which vanishes, "so the second term is dropped. In the
first term the intermediate state cannot be just a nucleon, because this also results in the vanishing term
&Nlgl0&. The intermediate state must consist of more than a nucleon, and it will be taken to be a nucleon
plus a photon. It is thus seen that the smallest mass for the intermediate state is M„, which explains the
lower limit on the dispersion integrals for the nucleons, E(I. (10).

For the deuteron we can follow an analogous procedure. The starting point is the deuteron vertex

e„Z„„(W')= (2d, )'~'&d, ll jG~(0) l0),
where j„(x)is the deuteron current (Cl -Md')C, (x), C„(x) being the deuteron creation operator. The steps
now followed are: the graviton is contracted out, the equal-time term is neglected, intermediate states
are inserted into the commutator, G is taken to ImG, and the x integration and the intermediate-state inte-
grations are performed, giving us,

ImG, (W') = Q(2d, )'l'w+2(d, + l,)5((d+ l)'-M„')8(d, + l, )(dleld+ l &(d+ ll j,l0&P„
pop

fl

+g (2d )' 'w+2l 5(1' -M„')8(-l )&dl j„l-1&&-lie'l0&P„. (21)
po]

(20)

1/2
ImG J(W') =

~ d4q ddk 2qG2kG5(k' —M„')5(q') 8(qG) 8(kG) 5(q+ k —N —l )M„2w

As before, the second term vanishes, and the first term will also vanish if the intermediate state is just a
deuteron because (dlj„l0&=0.

The intermediate states are taken to be a deuteron plus a photon for one possibility, and a two-nucleon
state for another possibility. The lowest allowable mass is M~, explaining the lower limit on the deuteron s
dispersion integral.

Thus, in detail, we desire to calculate

x g &Nielq, k& &q, k idio&P(w'), (22a)

ImG (52 )=(2d ) II ,'f d d 'd''k2d 2k 5(d''—M'')5(k )5"(d )5(k )5(d +5 '—d —I)'
xZ (dleid, k& &d', kl j,'l0&P.(W'),

pO1

ImG "(M')=(kd, )'I' f ' d'kdnkk , k(n5kMn')5(n' M ')5(k )ii(, ) (5k+—nd —„I)

(22b)

(22c)x P &dlelp, n&&p, nl j„'lo&P,(W'),
pol, spin

where the explicit symbols used for the particles are defined by Figs. 2, 3, and 4, respectively, and the
superscript on the left-hand side indicates the intermediate state.
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V. INTERMEDIATE-STATE CALCULATIONS

The detailed calculations of Eqs. (22) are very lengthy, and so we give only the essential steps here.
For the nucleons there are two situations, one for the proton and one for the neutron. Considering the

proton and Fig. 2, the spin sum is'

&Plelk, q)&k, qlql»&=+ ' u(P)iM, ~ . ' . «e y + v.„q„

M '~2
p' - ""m.": p-, --' ",'"

x uk
k

uk ",( ~e y~ — O„eqs up (23)

Here k =+1.79 is the anomalous part of the proton's magnetic dipole moment. Because a threshold calcula-
tion is being performed, the anomalous moment terms do not have to be corrected by off-shell factors or
by negative-energy contributions. 9 The photon's polarization is e. The scattering matrix element &p~e~k, q)
is given by all the factors up to u(k) in Eq. (23), the vertex matrix element (k, q~)7~0) is given by the factors
up to u(P), and the projection operator, Eq. (4), is the last term, M~f/(W' -M«').

The spin sums are performed and the resulting traces calculated. Then the intermediate states are in-
tegrated out, and after much simplification the result is

aM W M ' 8W2 W 11W 3M 2 12W WIm, (W')=- 4W, 8 M, —
W,

—
W, M, lnM, + —,'k 8+2M, —

2W,
—

W, M, lnM,
P P P

(W -M«)(-21W —4W M«' —19W M~ +8M««) 3W2 W2

12W4M 3 (24)

(26)

xie[ (d+ I+d-'),gqp+ ds g,~+(d+ I)pg, 8]

+ 'Le [-(2d —k) ~ g~~ + (d —k)~g~~ + d~g~~]

The expression for the neutron has only the k' term appearing (as the neutron has no net electric charge)
where k =+1.91, and has M~ replaced by M„. The electromagnetic coupling constant a is 1/137.

It should be noticed that since G(M') =M, where M is real, then ImG(M') =0. This can be expressed in
Eq. (24) as

Iim ImGp(W ) lim +1 —«k+ sk -Q.o. (W3 —M~2)

w&~NQ w2 g a 2M'

For the deuteron there are two situations, one for each possible intermediate state. For the first con-
sider Fig. 3 where the polarization sum is

g&d)e~d' k)&d' k('~0)S =~~2 (2d )&/2 g()~ (d+ I)~
pol p)], 0

. -g„8+(d —k) (d —k)s/M„'
(d- k)'-M '

~a ~~ ~X ~& r r

(2k )~('2 (2d')~~2 (2k )~~2 (2d')~~~ L ( lg» ~gl)'+ )'gY~]
0 0 0 0

w w Mu'-d l w

4(M' d. )) " '
(d ()' ~ ~ "")}' (26)

Here ~' is the photon's polarization and e' is the intermediate-state deuteron's polarization. In Eq. (26)
the factors e~e& separate the scattering matrix, &d[e)d', k), from the vertex matrix, (d', k( j~)0). The pro-
jection operator is given by Eq. (8).

The polarization sums are performed and the intermediate states are integrated out, yielding
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o!Mg'(W 2-Mg') 17M24W'+ ISM22W4+W' W'
d 4W2(W2+M 2) 2M 2(W2 M 2) M 2

-2M + 10M„W + 9M 6W —87M S'e+ 12M 2%8+48"~
SM~W(W -M )

which has the limit

lim ImG~&(W2) = lim ~ -0,a(W2 -M~ )
W2~+ 2 "

W2 +~ 2 8M'
d

this being consistent with the real nature of G„(M~2).
The final diagram to be considered is Fig. 4, in which case the polarization and spin sums give us

I I

( ~4(~(4(,p)2( ,0~ni(, (~0)p;— g I
»», (2M, '4», (," 2 p(n)p&n(p)n(p)p» (2)

pol, spin po'I, spin

+jMp v(n) I'pi, 0
2 u(P)u(P) I'~ v(n) iM„vo)) I'pi, "2u(n)u(n) I"

q IP(P)
. P'+Mp . . g'+M„

~ p"-m, '

Alp w w Mg —d' l w M„M~M ~M

(27)

(28)

(29)

where the spinors v and v indicate antiparticles of momentum n = -n and p= -p, and p' and n' are the off-
shell nucleons. The spinors u(p) and u(p) [or u(n) and u(n)j separate the deuteron plus graviton to two-
nucleon scattering matrix element, (d~e~P, n}, from the two-nucleon-deuteron vertex matrix element,
&p, sly.'IO&

The quantities

r'„(p') = iR(p')r„,
I' (p') = I" (p')+iV(p')22

(3o)

represent the n-d-P vertices, respectively, with the deuteron off shell and one nucleon off shell. It is
through I" and F that information about the deuteron is introduced into the calculation. In principle, the
functions R and V can be calculated and expressed in terms of deuteron, nucleon, and meson masses, and
strong-coupling constants. ' This would, however, complicate the calculations enormously. In what follows
we set R and V equal to their on-shell values and express them in terms of the low-energy parameters of
the deuteron. "

Summing and integrating E(I. (29) gives us

M (W' —4M') (', 2W —4WM'+(SM
)4wW(W2+4M ) SW M

16M' W' 8WM' W+ (W' —4M')'i' l
—4M M (W —4M ) W —(W —4M )'

4W +8M2 (W —4M )(-W + 14W2M2+8Mn)
SW2 24W2m4

W W+(W' —4M2)'i'
(W' —4M')'(' W —(W'-4M')"' I' (31)

which has the limit

R2(W2 4M2)1/2
lim ImGP„' "(W')- lim 0.

W2~4N2 W2~ 4N2 6
(32)

Note that there are no terms in V' in (31) due to E(ls. (SO) where I" does not contain V.
In the development of E(I. (31) we have made the simplification M„=Mp = —2M~=M. This will affect the R2

and MA V terms by no more than a few parts in a thousand and, as will be seen wheri the results are plot-
ted (Fig. 5), will not affect the results significantly. The approximation greatly simplifies the calculation.
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VI, RESULTS

The expressions for ImG, Eqs. (24), (2V), and (81), are now inserted into the dispersion integrals,
Eq. (14). The results are given in terms of individual mass shifts for the various contributions.

6M' ~= — ~ -21-—+11lnA, ' + ink'eMk 3 24
4m 4

" "-1
(33c)

(33d}

eM1 2 20»» 54
6M&=+ — —4+—,+Ban 68 ln Xa+92 1n(X2+ 1) +28 —, ink'-92 ln2+Sy, (X'),

8vÃ, t+3+Wa 8, , 8

8&2 4+&8
}

int - ,'y, (t) + --,
'

t (()t) -,'+t (()t) — ln

+M)(v / ———/5/a)n -20)n/+ +/0&&/n + '*0,(/)- 'q. (/-) —'.0,(/-)+12 I-.
25 t+ 3+&8 24 4+~8
t t+8 — 8 t t+1 2 1 2 2 2

(88f}

In Eqs. (38), M is taken to be 938 Me V; a, k~, and

k„are given previously. The cutoff parameter and
t are related by

, X+(~2-I)'t'
z —(X'-1)«3 (34)

The three functions y„y», and y» are given by

/p, (a) = dx,
'lnx

x lKc
x'+6@+11

lnx

and have to be evaluated numerically. y, is some-
times called the Spence function. B is now defined
as

Deo" who greatly reduce the effects of this term,
and also with Duck'5 who neglects it completely.

Equations (36) are inserted into Eqs. (33) and the
results rearranged to find B. A computer was
used for the final calculations, and the results are
shown in Fig. 5, where the error bars are a mea-
sure of the error introduced by the approximation
M~ = 2M„= 2M~ = 2M. They assume an effect of five
parts per thousand on the B' and MBV terms. As
can be seen, they do not affect the results signifi-
cantly.

The binding energy, 2.2MeV, is roughly repro-

OP

CQ,

The values of 8 and V are determined from Ref.
13 and are

where r i.s the deuteron's triplet effective range of
1.VS F. From Eqs. (36) we have eliminated terms
proportional to p, where p is the admixture of the
d state. This is in agreement with Mathews and

2.O 2.5 KO

FIG. 5. The plot ofB against A,'2.

2.2 MeV
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5M„'" =0.11, aM~=0. 69, M~ "=-2.39,

and similar results hold at A.
"= 2.75. Most of the

variation in the curve in Fig. 5 was due to the
&M~'" term.

It must now be asked: "What effects will m me-
sons in the intermediate-state expansions have on
the results?" Calculations were performed to de-
termine the effects of the m meson on &M„and &M~.
The necessary expressions are given by Pagels, '
where it must be realized that we are Gnding
&M~+ &M„' rather than 6M~ —&M„". A significant
contribution, in fact larger than 6M& and 6M&, was
found.

No estimate of the effect of the m meson on &M„
was made. However, apart from a correction due
to structure effects in the deuteron, such as Fermi
motion, the m meson would be inserted into dia-
grams like those in Fig. 4, where it would inter-
act with the nucleons. As in the case with photons
in the intermediate state, the ~M~+ ~M„' contribu-
tion would cancel this latter part of the &M„" contri-
bution due to the minus sign in the definition of B
[Eq. (11)]. The remaining 3-meson correction,
which is analogous to the calculated photon contri-
bution of B, is unknown.

We thus concluded that m mesons in the inter-
mediate-state expansions would not give significant
results compared to the &M„'" contribution. Hence
we did not calculate them.

VII. SUMMARY AND CONCLUSIONS

duced for a cutoff in the region 2.5&%."&2.8, which,
when inserted into Pagels's' work, gives a proton-
neutron mass difference of 1.5- 1.7MeV. Pagels's
work was not able to reproduce the proton-neutron
mass difference exactly and 1.7MeV was the value
he obtained.

At &"=2.55 (where 8= 2.2 MeV) the detailed re-
sults in MeV are

~M' =0.92, &M' = -0.62, &M' " =0.09,

tarity is also essential for the applicability of the
method in its present form.

The binding energy may then be expressed in
terms of the cutoff parameter X. The parameter
is not free, however, since threshold dominance
relates it to the neutron-proton mass difference,
which further corroborates the usefulness of this
assumption already so successful in a number of
problems "'"

In particular, the value of B found agrees with
the experimental value and corresponds to a pro-
ton-neutron mass difference of 1.5 to 1.7 MeV,
which Coincides with that obtained by Pagels' and
compares favorably with the experimental one of
1.3 MeV. The value of B is made up of several
contributions of which the electromagnetic ones
are small and tend to cancel one another, while
~M~'" is the dominant one. Its value is rather sen-
sitive to the cutoff, since its 8' and MRV contribu-
tions are large but of opposite sign. The contribu-
tions from Pig. 4(a) and from Pigs. 4(b) and 4(c)
also display this behavior.

Actually, in setting A and V equal to their on-
shell value, we may not have been entirely correct
in the region close to the shell value of W'. This
would certainly be true in the case with a compos-
ite deuteron where the form factors may be even a
factor of 10 ' smaller than their on-shell values
slightly off shell. '4 Moreover, off shell, the ex-
pression for the n-d-P vertex would contain more
than two form factors. Since our deuteron is ele-
mentary, we cannot even be safely assured that
the form factors behave in a way similar to that of
Ref. 14, particularly because of the nonoccurrence
of anomalous thresholds.

A refinement of the method would therefore re-
quire a more accurate calculation of the n-d-p
vertex within our deuteron model, and would almost
certainly increase the complexity of our work by
several orders of magnitude. We are, however,
considering the problem.

We have calculated the binding energy of the deu-
teron by using sidewise dispersion relations for
the mass-energy form factors of the neutron, pro-
ton, and deuteron. The method involves a number
of assumptions.

It is assumed that the form factors sathsfy once-
subtracted dispersion relations, and that they have
the asymptotic behavior indicated by Eq. (13). We
cannot add anything more to this except for stating
with Pagels that these assumptions are essential to
the method. ' They are part of its heuristics.

The deuteron has been considered as an elemen-
tary particle capable of breaking up into two nu-
cleons in an S-wave state; this condition of elemen-

APPENDIX

Dispersion relations can be proved for the nucle-
ons, as shown below (essentially following Bincer').
We let

X/2
G ()e')=g ( f d *e "'e(e)

spin

x QV ~[e(x), g(0)] ~0) P(W3)

d x dxo x, xo;Q'

(Al)
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where

Z/2

f(lxl, *.;w') fr=ox(exec) ;-o(r.)e'"" p(elle(*)o(o, )IIo)e(w ), '
spin

(A2)

which vanishes for x, &0 because of 8(x,), and vanishes for x, & because the commutator disappears for
spacelike ]x]. The frame

N=(M„, O), W=(We, W), l =(W e- M„,W),

has been chosen. It leads us to

W =(We-M„), We=(W +M„)/2M„.
Now, to show that there are no singularities in f in W, we perform the spin sum. We let

(N)[e(x), )7(0)] (0)P = u(N)(0(function of x]0)P,

(AS)

(A4)

(A5)

as this is the only possibility that makes the matrix element a scalar, and is the only possibility that can
be combined with the projection operator to form a scalar. Now we use Eq. (4) for P and obtain for the
spin sum

uN, ,NN =1.
spin

This does not depend upon W', so f has no singularities in W'. Thus

(A6)

x(lx( w') for f(lel, r„w') =exp(-er, (w, -I )] (A7)

is analytic in 8" because of its lack of singularities and because of its behavior in xo. Then F can be writ-
ten in a dispersion relation, assumed to be once subtracted:

P((x].W2) =P()x) M ')+N (W' -M„)(W'2 —W —ie) '

and since

(A8)

e (w') =fdllx I x(llxl;w'), (A9)

G may be written in a dispersion relation if the order of integration can be interchanged. It can, since
]Vf~ never becomes imaginary in the range of W„as seen by the relation ~Q =W, M„[from Eq. (A4)].
This condition must be observed because the 8 integration brings out a term (sin~W~ ~x ~)/(~W ~ ~x~) which

could be singular if ~W] were imagina, ry.
We show dispersion relations for the deuteron's form factor in an entirely analogous way, the only sig-

nificant change being the polarization-sum step, which is

(d ~[e(x),j,(0)] (0)P„(W') = e„(0~function of x~0)P, (W') . (Alo)

Only an e„can come out to make the element a scalar, and be combined with P„ to form a scalar. Using

Eq. (8) for P„(W'), the polarization sum becomes

K -W M~ +2M„
4M (W +M )

(Al 1)

This certainly has no singularities in S" for the range of W' being considered in the dispersion integral,
Eq. (14). Thus, proceeding as above, we can prove the dispersion relation for the form factor of the deu-

teron.
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Using finite-energy sum rules for the reactions K n ~ A and ~+n-%+A, we determine
the effective "pole" parameters of the K* and K**Regge trajectories from a knowledge of
the low-energy resonances and their couplings. The resonance parameters and the 0 /(8+I')
ratio for the 2 baryon octet are varied somewhat to test the sensitivity of the high-energy
predictions; ~ octet couplings within the range of values found empirically in other x'eac-
tions are preferred in our solution. We find that the s-channel resonances in X n —7f A do
add in such a way as to produce predominantly real amplitudes at high energies as predicted
by duality diagrams. We find, however, that these predictions are not satisfied exactly.
Although the phases of both A ' and Jt are small and independent of t for ) t

~
& 0.5 (Gev/c)t,

the residues of the even- and odd-signature Regge poles are closely exchange-degenerate
only for the B amplitudes, and not for the A' amplitudes, thereby allowing an appreciable
polarization for E n —Tf A as is observed experimentally. The Regge-pole parameters
determined from the sum rules give a good fit to the reaction X n r A over a wide range
of energies, whexeas they are unable to fit ~+n K A at intermediate enex'gies. Comparison
of the resonance contributions to E I x A and x n K A shows that "peripheral" x'eso-
nances dominate the sum rules in the first reaction, while "nonperipheral" states are im-
portant in the second. By supposing that "peripheral" resonances are dual to the leading
Regge singularities in the t channel, while "nonperipheral" resonances are dual to lower-
lying singularities, we are led to a rationale of why the simple model of two effective Regge
poles is adequate for E n-~ A even at intermediate energies, but inadequate there for
x+ n E'+A.

I. INTRODUCTION

The duality diagrams introduced by Harari' and
Rosner' conveniently illustrate the ramifications
of duality and the absence of quark-model "exotic"
states. Processes with planar duality diagrams
suppoSedly have high-energy amplitudes with im-
aginary parts and t-dependent phases, whereas
reactions with nonplanar diagrams have purely
real amplitudes at high energy. Rosner explicitly
states that his derivation of the duality diagrams
from SU(3) couplings applies only to the nonf lip
amplitude (A') of (0, s ) scattering, and requires
purely f coupling of the vector mesons, and
purely d coupling of the tensor mesons to the

pseudoscalar mesons. Harari, on the other hand,
conjectures that whenever a diagram is nonplanar
all the corresponding helicity amplitudes should be
purely real at high energies. Thus Harari predicts
that whenever the duality diagram for a reaction is
nonplanar the polarization should vanish at high
energy. One such process is K n- m A, whose
three duality diagrams are shown in Fig. 1. Al-
though the quantum numbers allow resonances in
all three channels, the s-t diagram, relevant for
near-forward scattering at high s, is nonplanar.
Following Harari's conjecture that both the non-
flip (4') and flip (B) amplitudes are real, we
should expect no high-energy polarization. How-
ever, experiments at 3.0 and 4.5 GeV/c show a


