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The analytic structure of the virtual forward Compton scattering amplitude as a function of
one and two complex variables is investigated for various combinations of variables which
involve the virtual photon mass. This is done both by using the Deser-Gilbert-Sudarshan re-
presentation and by using the Feynman perturbation theory. The role and significance of
complex Landau singularities is discussed. In general these are branch points, but it is
found that at t=0 some of these become poles. The effect of these complex singularities and
of overlapping cuts on the ordinary single-variable dispersion relations and the mass extra-
polations in the vector-meson-dominance model is explained. Using the Cutkosky disconti-
nuity formula for Feynman graphs, the analytic structure of the discontinuities across vari-
ous normal threshold cuts of the non-Born-term part of this amplitude is deduced. One finds
that the two-variable analyticity of the amplitude implies a single-variable analyticity for
these discontinuities. It is shown that in general the inelastic structure functions Wand W
cannot be expected to have a simply determinable analytic structure. But under certain con-
ditions Wand W can be identified with boundary values of the discontinuities across the s-
and u-channel normal threshold cuts in the virtual forward Compton scattering amplitude,
respectively. This is used to show that the contribution to Wand Wfrom certain types of
Feynman graphs under certain conditions are analytic functions of one complex variable, and
only for such cases can one use crossing symmetry to relate the inelastic-electron-scattering
structure functions and the annihilation structure functions. The motion of the Landau singu-
larities of v W2 is shown to provide a possible explanation for its observed rapid approach to
"scaling" for finite but large final-state masses.

I. INTRODUCTION

In the recent literature on inelastic electron scat-
tering, increasing use has been made of analytic
continuations of the inelastic-electroproduction
structure functions [see Ref. 1, especially Refs.
la, 1b, and 1c] and single-variable dispersion
relations in the virtual photon mass q' for the vir-
tual forward Compton scattering amplitude"' '~ and

for its integrated absorptive parts. '~ Power-se-
ries expansions in q' for fixed center-of-mass
energy s have been used in the analysis of experi-
mental data on these electroproduction structure
functions. '" The vector-meson-dominance model

(VDM) depends crucially on "smooth" analytic con-
tinuations in the mass q', " '~ and so do some
theorems of current algebra. ' We mould like to
know the limitations and range of validity of all
such analytic continuations, dispersion relations,
and power-series expansions. For this purpose,
we investigate the analytic structure of the virtual
forward Compton scattering (VFC) amplitude T as
an analytic function of one and two complex varia-
bles and demonstrate a method of deducing, in

certain cases, the analytic structure of its discon-
tinuities across fixed cuts and of the inelastic
structure. functions.

Our analysis is based on the Feynman perturba-
tion theory, ' and we only consider massive scalar
particles. We ignore spin and renormalization,
since these do not affect the position of the singu-
larities on the physical sheet. However, the
strength (residues of poles and discontinuities
across cuts) and the nature of these singularities
do depend on spin, renormalization, and the nature
of the couplings. Besides these, renormalization
can also affect the singularity structure on unphys-
ical sheets. Our results therefore apply to the
kinematic singularity-free invariant amplitude, and
we hope that the physical-sheet analyticity is valid
even if the perturbation theory fails"' (as in the
case of strong interactions). In this paper we do
not attempt any rigorous proofs, but simply dem-
onstrate some important theorems and physical
features relevant to the problem.

In Sec. II we collect the basic definitions used
throughout the paper.

In Sec. III me start by giving a practical discus-
sion of the Deser-Gilbert-Sudarshan (DGS) repre-
sentation, ' and show how one can deduce the ana-
lyticity of the VFC amplitude directly from this
representation for any combination taken as the
pair of independent variables. The results are
tabulated in Table I. From our analysis we find
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that the DGS representation implies the saxne ana-
lyticity for the full VFC amplitude as we obtain
from the subsequent perturbative analysis. How-

ever, for a single-box diagram, we do get a larger
domain of analyticity than implied by the DGS rep-
.resentation. This is because in the absence of
knowledge of the detailed structure of the DGS
spectral function, the DGS representation is in-
capable of showing an analytic continuation with
complex singularities, except by giving an infinite
cut along the whole real axis (which separates the
whole complex plane into a pair of disjoint half
planes). We show how to determine the DGS spec-
tral function for an arbitrary Feynman graph, and
use it to show that for the box diagram the DGS rep-
resentation gives the same analytic structure as
perturbation theory does for the absorptive part of
the box graph. This analysis also demonstrates a
practical technique of determining. whether the con-
tribution of a particular Feynman graph to the in-
elastic structure functions' "scales" or not in the
Bjorken limit. '

In Sec. IV we use well-known techniques2"' to
determine the analytic structure of the Feynman in-
tegral for the box diagram with unstable external
legs at t =0. On the basis of it we conjecture re-
sults for the complete VFC amplitude in all orders
consisting of all possible Feynman graphs. The

proof of these conjectures is left to a subsequent
paper. The off-mass-shell continuation is defined
by the Feynman integral, and the physical boundary
is determined by the Feynman prescription of giv-
ing an infinitesimal negative imaginary part to the
masses of aQ internal legs which are presumed
stable (the resonances can also be treated as stable
particles for the purpose of determining the phys-
ical-sheet singularities" ). Fixing t =0 is found
very useful in trying to generalize our analysis to
all orders, because at i=0 the dual diagram' for
the VFC amplitude is topologically similar to the
dual diagram for the vertex function. Therefore
the two amplitudes are required to have their Lan-
dau singularities similarly located (though their
nature could be different). An analogous result
does not hold for the second-type' or mixed singu-
larities" which are not determined by the usual
dual diagrams. One expects" that the pure second-
type singularities in all orders stay away from the
physical sheet and are located at the edges of the
physical region (at s=0, 4M', and u=0, 4M'). How-
ever, we cannot make any definite statements
about the mixed second-type singularities. "

We indicate why we expect that an analysis of all
orders of Feynman perturbation graphs at t =0 will
show that besides the Born-term poles, the only
Landau singularities on the physical sheet of the

TABLE I. The single-variable analyticity of 1' obtained from the DGH representation.

The pair of
independent
variables

The slope and
intercept of the
integration line

cr =Pv +z
Fixed real
variable

Complex
variable

Analytic structure in the one complex variable
implied by the DOS representation~

Single-variable analyticity of the forward Compton amplitude T

(z, v)

(z, s)

slope = v

intercept = z

v= s-M -z2

s= sz

s

Real analytic for z & p2 ~

cut along the whole real v

Real analytic for all vR

Real analytic for all z&& p, ;
cut along the rvhole: real s

Real analytic for s& & (M+@)2;
cut along the whole real z

axis for z&&p

axis for z& &p,

axis for sz & (M +p)
(v, s)

(z, o))

(v, o))

(o), s)

v

z=s —M —v2

v = -o)(s-M2)/(1-o))
z =(s —M2)/(1-o))

S=sg

Z Zg

R
o) = o'&&0

(d = o)R

s=sR

Heal analytic for all vz
Real analytic for s&& (M+ p) ~

cut along the whole real v axis for sz& (M+ p)2

Real analytic for z &p, 2;

cut along the whole real o) axis for z &p2

Real analytic for all o)&

Real analytic for all vz
Real analytic for all o)& ~ 0

Real analytic for all or&

Real analytic for s &(M+ p)2;
cut along the whole real o) axis for s & (M + p, )2

Note: When there is a cut along the whole real axis, one may still be able to define T' as an anaIytic function in the
whole complex plane, but it will then have complex singularities.
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FIG. 1. The analytic structure of the virtual forward
Compton scattering amplitude in the complex q plane for
fixed real s.

complex q' plane for fixed s = s„+ie (or vice versa)
are the s-independent normal q'-threshold branch
points (for real timelike q'& 0} and a set of com-
plex anomalous singularities q,~(s), which move
with s, and correspond to the single-loop box or
triangle reduced diagrams. In particular, this
shows that the Landau singularities of the full VFC
amplitude nearest to the origin and on the real
plane are given by the lowest-order Feynman
graphs. This is a reflection of a similar well-
known result for the vertex function. "

When all the external legs are stable (or when
s is below'the normal threshold) the VFC ampli-
tude has only real singularities on the physical
sheet. These real singularities are the Born-term
poles (due to weakly connected Feynman graphs
which separate into two graphs on cutting a single
line), and the normal and anomalous branch points.
When the external legs are unstable, some of these
anomalous branch points move over into the com-
plex plane to give the complex Landau singularities.
W'e find that at (=0 some of these anomalous branch
points coalesce to form simple anomalous poles
(which come from the strongly connected graphs).
We demonstrate this explicitly for the single-loop
box graph, and give reasons why we believe this
need not be true in similar situations for arbitrary
Feynman graphs. This structure has important
implications for ordinary single-variable disper-
sion relations (with semi-infinite real cuts and

poles} and for mass extrapolation in the vector-
meson-dominance model. " '"

We find that ordinary single-variable dispersion
relations can cease to exist either when left- and
right-hand cuts overlap, giving a cut along the
whole real axis, or when we get complex anomalous
singularities. Thus fixed-v dispersion relations in

complex q' exist for all real v, while fixed real q'

dispersion relations in v cease to exist for q'
~ 4p'[ I —(y, '/4M')]. Similar results for other

choices of variables are listed in Table I.
In order to study the mass extrapolation in the

VDM, we consider the physical-sheet analytic
structure (see Fig. 1) of the VFC amplitude in the
complex q' plane for real s fixed above the thresh-
old, i.e. , Res~(M+ p)', Ims-0+. From Fig. 17(c)
and our subsequent discussion, we will find that
we have a real cut Z, —=(4p' & q' «) due to the
normal q2 threshold together with a moving (with

s) overlapping cut Z„= b(s —4M'+u) & Req' «,
Imq'- 0+) due to the u-channel normal threshold,
with the physical region squeezed between them.
In addition we have the complex anomalous singu-
larities like q„'(s), the u-channel Born poles P„(s),
and the vector-meson-resonance poles on the se-
cond sheet at m '- im~I'~. . VDM requires an ana-
lytic continuation of the VFC amplitude from the

p pole to the origin. For small sR, Z„overlaps Z,
squeezing the physical region between them, and
the above analytic continuation is not possible since
the continuation path A leads off to the unphysical
sheet in the e-0+ limit. But for large sR this cut
moves to the right exposing the physical boundary
and the analytic continuation is possible along a
path J3. This is the well-known" reason why VDM

is expected to work for large real s only. Now the
mass-extrapolation assumption for VDM amounts
to dominating the absorptive part across the nor-
mal q' cut Z, by the p pole with a width (which pa-
rametrizes the effect of this cut), cutting off u-
channel poles P„(s) by the form factor and ignoring
the Z„cut due to its distance. But VDM also ig-
nores the contributions of complex anomalous sin-
gularities. This we find to be unjustified because
even though, at large real s, these anomalous sin-
gularities may have a small effect on the modulus
of the VFC amplitude at q' =0, due to their large
(of order of ss} distance from the origin, they can
still have very significant effect on the phase of the
amplitude (or its ratio of real to imaginary part).
Related results for the case t 40 have been recently
obtained by Potter and Sullivan. '"

In contrast to the DGS representation, the advan-
tage of our perturbative analysis is that we can
deduce the single-variable analyticity of the discon-
tinuities of the non-Born-term part (the strongly
connected Feynman graphs) of the VFC amplitude
across the various normal threshold cuts. The
Born terms give nonanalytic 6-function contribu-
tions. The single-variable analyticity of the dis-
continuities is found as a straightforward conse-
quence of the two-variable analyticity of the amp-
litude. These facts are apparent from the Cutkosky
discontinuity formula, "'' from which one can also
show that the non-Born-term parts (nonresonant
final states) of the inelastic structure functions are
a boundary value of the discontinuity functions on



FOR%'ARD COMP TON SCATTE RING AMP LITUDE. . .

and only on the eut-free part of the real axis, when
the mass of the undetected final state is kept fixed.
These facts are explained further in Sec. V. There
we also discuss the special class of graphs for
which the inelastic structure functions can be ana-
lytically continued from the scattering region to
the annihilation region. '"'""

In a separate publication" we discuss an inter-
esting application of our analysis which is based
on the observation that the physical x-sheet anom-
alous singularities x, (s) of W(s, x) rapidly approach
their 8-independent asymptotic position once 8 is
large enough. %'e propose that this may provide
an explanation of the rapid approach to "universal-
ity*' of the inelastic-electron-scattering structure
functions. A simple-minded discussion of the
physical basis of this proposal is given in Secs.
IVC and V.

Most of the sections of this paper can be read
independently of each other. In particular we sug-
gest Sees. IVC and V to those interested in practi-
cal applications of our analysis.

II, DEFINITIONS

These satisfy s+u =2m+2M .
(6) The scaling variables are

x

If we keep P' =M and t =0 fixed, we know from
Lorentz invarianee that T is a function of two in-
variants. We choose these to be either the set (z, v}
or the set (z, s), and study the analytic structure
of T(z, &) and T(z, s} as functions of complex z, v,
and s.

%ashen the spins of the photon and the nucleon are
considered, one finds that T is a multicomponent
Lorentz tensor T&~, ~, where a and P are spinor
indices and p, and v are vector indices. Then one
can use I orentz invarianee'"'" to expand the tensor
amplitude in terms of a complete set of linearly in-
dependent tensors f2~„,@(i)]formed out of q„, P„,
y'„"", and e'„"', as follows:

T(n8) P gfn8)(g)T

The forward Compton scattering amplitude rep-
resents the process yN-yÃ when there is no four-
momentum transferred from the photon to the nu-
cleon. This process is shown in Fig. 2. For future
reference we list the relevant kinematic variables
below [our metric is (1, -1, -1, -1) and N=c=1]:

(1}The photon mass is q'=—z.
(2) The nucleon mass is P' =M'(fixed).
(3) The energy of the photon in the rest frame of

the nucleon is proportional to v= 2q ~ P.
(4) The direct'-channel center-of-mass energy

equals

s=- (P, +P,)'=(q+P)'=z+ v+M'.

(5) The momentum transfers are

f = (P, +P,)' = (P —P)' = 0 (fixed),

s=(P. +p,)'=(P- q)'=z —~+M'.

FIG 2. The vxxAIR1 fQI'~@~ CQmP/QQ Sc&+e~~g
Rmphtud6.

Here the coefficients T, are scalar functions of
linearly independent invariants, and we call these
invariant amplitudes. These are chosen to be free
of kinematic singularities, which ean be discovered
by applying conservation 1aws like four-momentum
conservation and gauge invarianee. '"' "

It is well known"" that the analytic structure
of the invariant amplitudes is the same as that of
a corresponding amplitude with all spins ignored.
That spin is an "inessential complication" in the
study of analytieity is most easily understood in
terms of the Feynman graphs in which spin just
adds extra momentum-dependent terms in the nu-
merator of the integrand, but does not affect the
denominators whose zeros give the usual Landaue
and second-type singularities. ' On the other hand,
it. should also be clear that spin wiQ be very im-
portant in the study of the asymptotic behavior"
which is an input for the dispersion relations. This
will not concern us in the present paper. However,
when discussing specific cases we should remem-
ber that these spin factors ean lead to caneellations
within a particular Feynman integral, or between
different ones in a sum of Feynman integrals. From
now on %e shall ignore all the spin factors and only
consider scalar particles. Hence, oux results will
only apply to the kinematic singularity-free invari-
ant amplitudes. In the same spirit we will also
assume as usual that the infrared and ultraviolet
divergences have been removed by a suitable cut-
off.
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III. RESULTS FROM THE DGS REPRESENTATION

Using the Lehmann-Symanzik-Zimmermann (LSZ) reduction formulas, " the forward Gompton scattering
amplitude can be defined in three ways (ignoring spin):

'T. (q, p) f)d=-'xe" *( )Ie(x,) z(,(x), ~.( )0]l p)

T„(q,P) = -f-d'xe"'&P (e(-x,)[J,(x), J,(0)][P&,

ol

7 (qP)„=, fd 'x e'" (I' IT ('J,(xlJ..(0))IP),

where J,(x) and J,(x) are local electromagnetic currents and T, the positive time-ordering operator. For
a stable nucleon these definitions agree for various physical values of the four-momenta q and P. This is
seen as foQows:

T,(J„(x)J,(0)) = e(x,)[J,(x),J,(0)]+J,(0)J,(x)

= —e(-x,)[J,(x),J,(0)]+J,(x)J,(0).

T,(q, P) -T,(q, P) =f ] d'xe"'"&P )J,(O)J,(x) ~P&

= Q(2 )'~'"(q-P+P.)(PIJ.(0)I && IJ,(0)IP&.

Energy conservation and the stability of the physical nucleon of momentum P (P» 0) forbids it to decay
into a physical single particle of momentum q (q'» 0) and another system of momentum P„(P'» 0). There-
fore P„=O, i.e. , the only intermediate state allowed is the vacuum. But (P~ J,(0) ~Q& =0 from the LSZ
assumptions. Therefore, in the physical region of the s channel [qo»0, (q Pp» q'P'], Tr(q, P) =T„(q,P)
Similarly, in the Physical region for the (crossed) u channel [q'& 0, (q ~ P)'» q'P'], Tr(q, P) =T„(q,P).

This shows that in the appropriate physical regions Tr coincides with Ts&. For unphysical (and com-
plex) values of the momenta one must define the amplitude T by means of an analytic continuation. '
Then the functions 7'~, 7.'R, and T„will simply be different boundary values in the appropriate regions of
this unique analytic continuation T. To seek this analytic continuation it is convenient to start with Ts or
T„rather than Tr, since the locality of the retarded (or advanced) commutator (i.e., vanishing at space-
like separations) allows its Fourier transform to have a large domain of analyticity. ' On the other hand,
it is perfectly possible to arrive at this unique analytic function T by analytically continuing any represen-
tation for the scattering amplitude which has the suitable analyticity and agrees with T ~ in the physical
regions. This fact will, be used in our subsequent discussions in this section. %'e should observe that even

though the Feynman perturbation theory is derived using the form T r(q - P), the analytic structure obtained

by analyzing connected Feynman diagrams reflects the analytic structure of the retarded (or advanced)
commutator. This is because Feynman graphs involve positive-energy particles and conserve four-mo-
mentum, so that the extra terms J,(0)J,(x) or J,(x)J',(0}are not seen in the diagrams contributing to the

respective channels. To be precise, the connected Feynman diagrams correspond to the connected part
of the retarded (or advanced) commutator defined by

e(".)&Pl[J,(x),J.(0)] IP&...,.,:=- ~(".)&Pl[J,(x),J.(0)]IP&- ~(".)&'"(P-P')&fil[J,(x),J,(0)]~A&.

The term 8(+xo)6~ ~(P —P')&0 ~[J;(x),J,(0)])Q& corresponds to the disconnected graphs shown in Fig. 3(a).
%hen discussing analytic continuations we will be interested mainly in the cut structure of the amplitude

in the complex planes. Since pole graphs do not affect such structures, we shall ignore them in a11 our
iscusslons.
Let us now consider the amplitudes TR(q, P) and T„(q,P) Using the iden. tity'"'&

e"'" (**.e() ) 2f&e!~"'*'('~' - a.+ ie) '

(or a subtracted version), it is easy to show that T„ is analytic in the upper half q, plane and T„is ana-

lytic in the lower half qo plane. Vfe can define a function T which equals T„ in the upper half plane and T~
in the lower half plane. The two half planes are separated along the whole real axis, with the discontinuity
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FIG. 3. The unitarity and discontinuity diagrams.

FIG. 4. The various physical regions for the forward
Compton amplitude. The experimentally accessible areas
show the different reactions which involve parts of the
forward Compton amplitude in the definition of its in-
elastic form factors. (H is any hadronic system. )

in T across the real q' axis being the absorptive part of T,which equals

A(q, P) —= Jl d'xe"'*&Pl [J,(x),J2(0)]IP& =T(q, +ie) —T(q, -ie) =Ts(qo) —T„(q ).
In the case in which this discontinuity vanishes across some finite interval of the real q' axis, we can

analytically connect Ts and T„across this segment, and then T defines a real analytic function of q';
otherwise not. On the other hand, if this absorptive part is nonzero along the whole real q axis, then TR
and T„are not analytically connected. However, we will see from the analysis of the Feynman graphs that
one may still be able to define an analytic continuation of T„(and a different one for T„) into the lower half
plane, but this continuation will have branch points in the complex plane (and corresponding complex cuts)
and will not be a real analytic function. Here again we must remember that as long as we can find an ana-
lytic function which equals Ts or T„ in the appropriate physical regions, it is a perfectly legitimate analytic
continuation into the unphysical region, though the domains of different analytic continuations would be dif-
ferent. This fact will be very useful in understanding the Compton amplitude for q'& 0.

To understand the physical significance of the absorptive part A(q, P), we put in a complete set of physi-
cal (in or out) states, use translational invariance, and integrate to get

A(q, P) =(»)'g [&'"(q+P -P. )&PI &i(0) Is& & ~ I z (0) I» —~'" (q —P+P )&P l&2(0) l~& & sl y(0) I» ].
Now, for all q' in the s-channel physical region (q'& 0, P'& 0, P„' o-0, see Fig. 4), energy conservation
and stability of the nucleon make the second term vanish, so we get for all q'

A(q, P)pqy ( g = (2w) Q5 (q+P —P„)(PI J,(0) I n& &n I /2(0) IP&.
n

The various parts of this commutator correspond to the various classes of connected unitarity diagrams
C, P, and D shown in Fig. 3. Its disconnected part [Fig. 3(a)] is not needed for the present considerations.
These parts are real quantities defined as
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C(q, I') =(2v)'gf'4) (q+P —P,)(PIZ, (0) In&, (ale, (0) IP)„
D(q, P) =(2)))'Q5 '(q —P )[(Q IZ, (0) I l&, ( l, PIZ, (O) IP&, +(P IZ, (O) IP, l&, &lie, (0) In&, l,

P(q, P) = (2v)'g &'" (q —P —P.)« I &,(0) IP, ~&.&~, P 1 &2(0) I f1&.,

a(q, P) =C(q, P)+D(q, P)*P(q, P),

where the subscript c denotes the connected part of the matrix element. From Figs. 3(b), 3(c), and 3(d)
we observe, that the unitarity diagrams for C, P, and D are topologicaHy similar to the Cutkosky discon-
tinuity diagrams for the discontinuities across various s-, u-, and z-channel normal threshold cuts,
respectively. The xelationship between C, P, D and disc, T, disc„T, disc, T, respectively„will be dis-
cussed later.

Using the I SZ reduction techniques it is easy to show the crossing relation

C(q, P) = ~P(q, -P), (10a)

where the (+) or (-) sign refers to a boson or a fermion target IP), respectively, reflecting the Pauli
principle. For q'&0 and q'&0, C is like the structure function W for inelastic electron scattering (e-+X
- e +anything). For q'&0 and q &0, P is like the annihilation structure function W for the reaction
(e'e —%+anything). Its clear that to use this crossing relation we need to analytically continue the two

sides of the equation to common domains. If the existence of such an analytic continuation can be estab-
lished, then it can be used to connect inelastic-electron-scattering and annihilation structure functions.
The regions in which these functions are nonzero are shown in Fig. 4. In region I, only C contxibutes. In

region II, (C+D) contributes. In regions III, IV, and V (C+D+P) contributes. In region VI, (P+D) con-
tributes. In region VII, P contributes, and in region VIII, none contribute and thus the commutator must
vanish. This is because kinematics requires that C contribute for s & 0 (in fact M ), that P contribute for
u & 0 (and s & 0, but may be analytically continued into region VII keeping u fixed), and that D contribute
for z ~ O. We should observe that C, D, and P cannot vanish identically in any finite subregion of the un-

physical region IV if they are analytic functions. But this does not restrict the value of their sum, which

represents the full commutator and need not be analytic. A similar remark applies to regions III and V.
Thus the vanishing of the sum (C +D+P) in regions III, IV, and V (as indicated by Bjorken's analysis' ' '~'"
for the asymptotic-limit functions), together with analyticity, could be expected to impose rather strong
restrictions on the functional form of C, D, and P. Since the J''s are Hermitian boson currents, we can
use Eqs. (6) and (8) to obtain an additional crossing relation

A(q', v) =-A(q', —v).

To study the support of the absorptive part A(q, P), it is convenient to use the DOS representation' which

is derived on the following assumptions:
(1) microcausality, [J,(x), Z, (0)]=0 for all x'& 0 (spacelike);
(2) rapidly vanishing asymptotic behavior in n for

G(a, ()) ff d(x )d=-(J'x)e "'e "'*'(P'"l(z, (x),z(o)] l»

(we shall assume the unsubtracted form);
(3) T, P, or C invariance.
Nakanishi~ has shown that every connected Feynman diagram satisfies a DGS representation, so that we

shouM expect the results obtained from the DGS representation to be valid for each perturbation diagram.
This is discussed further at the end of this section.

The DQS representation for the Fourier transform of a causal commutator states that

~(a»=- f ~""'*(&l(~(*),z.(oil(l»
1 ()o E

dP doe(P q+PP')6(q'+2Pq P —o)QH (o P)(P q+PP')"
-8 pm2 n=o

where t e function

+1 if x&0
E x -1 ifx&0 ~
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The DGS spectral function H(o, p) is real, irrespective of the nature of the currents, because of T, P, or
C invariance. The terms for n& 0 correspond to terms in A. which do not vanish as ivy-~ for fixed z or
iz i-~ for fixed v [where we express the polynomials in z by those in v using their linear dependence due
to 6(z+v —o)].4d "" For example, such terms can arise when the spin is not ignored. They would also
occur when the commutator has Schwinger terms [since the Fourier transform of (d "/d(x')")5(x') is (q')"].
Using crossing symmetry of the whole Compton amplitude (which requires symmetry under v- -v), we
can also show that H(v, —P) =H(&x, P).

We will be concerned with the case when the nucleon is massive and stable and we will ignore the sub-
traction terms, since they are known not to affect the analytic structure of the matrix elements. With
these restrictions we can write (using our notation)

1 00

A(q, P)—= d xe"'"(Pi[j,(x), J2(0)]iP) = dP des(z v+PM )5(z+Pv —o)H(cr, P).-I 0

The physical region in the real (z, v) plane and the support of the spectral function H(c, P) in the real
(o', P) plane are shown in Figs. 4 and 5.

From their representation for A(z, v}, DG$ are also able to derive a representation for Ts which is

(14)

where P(z, v) is a real polynomial in z and v.
The support of H(e, P) is deduced from the behavior of the commutator in the physical region. The phys-

ical region (where energy & mass) is v'&4M'z. The s-channel reactions lie in s—= z+v+M'&M, ' and the
I-channel reactions in u=a —v+M') M„'. For M, -M) 0 and M„-M&0, these two regions are disjoint
and this nucleon stability condition is crucial to our analysis (if these conditions are violated the analyticity
is reduced drastically). The support Z of H(o, p) is bounded by -1 & p ( 1, o'& 2VMp+ p. ', and v & -2pMp
+p', assuming that M, =M„=(M+ p, }' where p is the pion mass. Z is shown in Fig. 5.

For every point in the (z, v) plane the absorptive part A(z, v) receives a contribution from the integralalong
the line in the (v, P) plane given by the equation

z+Pv —o =0.

The parabola v' =4M'z generates a set of lines in the (a, p) plane which have as their envelope the parabol. a
o =-p'M'. The part of the line s =a+ v+M =M, ' in the physical region generates a pencil of lines through
(o =M'-M, ', p=-l), lying between tangents of positve slope and the line p=+1. Similarly, the line u
=z —v+M' =M„' gives the tangent to o = p'M' through (o =M' -M„', p =+1). All the lines generated by points
in v & 4M z intersect the parabola (or at least touch it) and the z function changes sign inside the parabola
(or at the point of contact) where H(o, P) vanishes. Also, in the support of H(o, P), e(—,

' v+ PM') = s(v) for v

lying in the physical region of the (z, v) plane.
Using the fact that due to the stability of the nucleon the s-channel physical region [where the term

(Pi J,(x)J,(0) iP) contributes] is disjoint from the u-channel physical region [where the term (Pi J,(0)J,(x) iP)
contributes], DGS show that one can write

(15)

To see the cut structure, we can write ./SLOPE = 2pM

+ dp d
H(z iv &p)
V +Pv+gE

whose imaginary part is given by
OO

——lmTr(q, P) = dP do 5(z+Pv —o)H(c, P).
m -1 0

r, +)
'/0

T p(

//
//
/

0=-P M

FIG. 5. The support Z of the DOS weight function
II(o,P).
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We see that the DGS representation for TR „defines a function which is analytic in the physical region
[since there the sign of (-,' v+ PM'} is fixed), but due to the presence of i(-,' v+ PM')e, it cannot be continued
to unphysical values of v since (—,

' v+ pM'} can go through a zero and change sign. On the other hand, the
representation obtained for T ~ is continuable to the unphysical v regions, provided ImT ~ vanishes over a
real interval in v. To determine the support of ImT~, we use the fact that the nonvanishing contribution to
the integral defining ImTr comes from the intersection of the line z + Pv' —v = 0 with the support of ff(o, P).
From Fig. 6 we observe that for arbitrary fixed real v and a variable z (or for z fixed less than p' and v

variable), we can always find a pencil of such lines corresponding to a real z interval (or real v interval,
respectively), which do not intersect the support and therefore give a vanishing value of ImTr In .such
cases the DGS representation for T ~ defines a real analytic function of z for arbitrary fixed real v with a
cut along a part of the real z axis. Similarly, for fixed real z & p.

' we get a real analytic function of v.
But if we fix z & p, , then the line z + Pv —c =0 always intersects the support for all real v, and in general
we will get a nonzero ImT ~ for all real v. In this case we do not have a real analytic function of v, but
instead a function which has a cut along the entire real axis, and the DGS representation for T ~ can not be
used to continue in v from the upper half plane to the lower half plane. However, as we shall see in the
analysis of Feynman graphs, we may still be able to find an analytic continuation of the amplitude from the
upper half v plane to the lower half v plane, but this continuation will have complex branch points and,
correspondingly, cuts in the complex plane. At this point we should note that in the case z& p,', the non-
vanishing of ImT~ for all real v may not imply the nonvanishing of A. for all real v. This is because, for
certain v in the unphysical region, e(-,' v+ PM') can change sign on z+ Pv —o =0 inside the support and so
may cause the integral for A to vanish.

A similar analysis in Fig. 7 shows that for fixed s& (M+ p}' the amplitude is not a real analytic function
of z, and for fixed z& p,

' the amplitude is not a real analytic function of s. Of course, below these thresh-
olds (which are the lower bounds on actual thresholds) we do get the amplitude to be a real analytic func-
tion of one variable. The reason is that for fixed s as we vary z, the o intercept of the integration line
rises while its slope decreases and [for, say, s& (M +p) ] this can cause the integration line to intercept
the support for all real z. In fact we observe that whenever a variable is such that varying it can cause
this intercept to rise simultaneously with the falling slope, we can expect to get a nonreal analytic function
(above the threshold for the fixed variable). On the other hand, if the intercept falls simultaneously with
the falling slope, then we may expect a real analytic function. Using these rules, we can analyze the am-

/

,'/SLOPE = v

p
2

z+p2

z&0

(
z=O

z&0
z&p.2

(a)
ED; z VARIABLE

—P
/ S FIXED & (M+p. )z;

z VARIABLE

P
(M+~)2.
LE

0
+SLOPE=v

PE=
2p.M

SLOPE =

(S-M2-z)
OPE =2@.M

z FIXED&p. ;

v VARIABLE (b)

w~--~
z FIXED&/L

v VARIABLE

0 g—P
z FIXED &p,2;
S VARIABLE

(b)

p
0 z FIXED &+2

s VARIABLE

FIG. 6. The integration line z+Pv —0=0
for various z and v.

FIG. 7. The integration line z+P{s-M -z) -o =0
for various z ancl s.
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plitude for any combination of a pair of invariant variables and the results are indicated in Table I.
We thus see that the representation for TR derived from the DGS representation for A defines an analytic-

function in the physical region, but does not provide an analytic continuation of T» to the unphysical
regions. Instead the representation for T ~ is in a continuable form and the two agree on the various phys-
ical regions. Since T is defined to be the analytic continuation to the unphysical region of the physical-
region amplitude (TR or Tr), we choose the DGS representation for Tr to define T for all z and v (or z
and s, etc.). Hence in general we have

dpT(z, v)=P(z, v)+ do gv h (o, P)+g(z+pv —o)"h„(o,P)
0 , z+Pv —0 n=o

for all z and v. T r(z, v) is always a boundary value (at Imz & 0, Imv & 0, Rev & 0 in the s-channel physical
region; at Imz&0, Imv&0, Rev&0 in the u-channel physical region) of an analytic function T(z, v) of two
complex variables. As we have seen, it may not always be a boundary value of a real analytic function of
one complex variable when the other variable is fixed above certain real values. We also note that this
analytic continuation is conjugate symmetric in the two complex variables, i.e. ,

T(z*, v*) =T*(z,v).

This property will also be reflected by the analytic continuations obtained from Feynman graphs. This does
not necessarily imply that the physical amplitudes T(z, vR +iz) or T(zs +i@,v) are real analytic functions of
one complex variable. Now

1 dO

A(z, v) = dP «z(i2v+PM')5(z+Pv —o)H(o, P)
0

l ao 1
dp do 5(z+ pv —o)H(o, p) = ——ImT(z, v+iz), in the s-channel physical region

0 7T

oo 1
dP «&(z+Pv —o)ff(o~P) = ——ImT(z, v —fz), in the u-channel physical region.

0

(20)

4

I

(b)

FIG. 8. The direct-channel box diagram:
(a) for special masses, (b) for general masses.

Thus the absorptive parts A(z, v) and I(z, v) agree in the various physical regions. They can differ in the
unphysical region v'& 4M'z, and here I(z, v) need not represent the commutator. But in the unphysical
region the definition of the Fourier transform of the commutator is arbitrary, since neither the DGS re-
presentation nor any general principles indicate any analyticity for these absorptive parts, and so we have
no a pro~i criterion to choose one over the other. Thus different representations of the commutator in
the unphysical region, which agree on the physical region, will give the same amplitude and the same
physics. Since we have chosen a particular representation for the amplitude on the a P~io~i basis of ana-
lyticity, it is convenient to choose its total imaginary part I(z, v) to define the commutator even in the un-
physical region. One advantage of such definition is that the analytic continuation of the amplitude into a
particular complex domain is unique and so has a unique imaginary part. In the particular case of a real
analytic function (only real cuts), the total discontinuity across the real cut gives the imaginary part For.
an analytic function with complex cuts (as is needed to define the analytic continuation of the amplitude in
the case when the DGS representation indicates a nonvanishing imaginary part across the whole real axis)
the imaginary parts in the real region on the physical sheet are related to the discontinuities across the
complex cuts' also. This will become clear when we discuss Feynman graphs. As an example, we should
note the fact that since the DGS representation for
T tells us that T is a real analytic function of z for
all fixed real v, we can, therefore, unambiguously q q p p

q4define the imaginary part I(z, v) as the total discon-
tinuity across the (real) cuts in the z plane for any IYly

real z and p, and we can take this to define the
commutator for all real z and v.

Np

Before we conclude this section we discuss Naka- qs
nishi's ' method of deriving the DGS representation
from the Nambu2. 6a-6c representation for an arbj U t
trary-order Feynman graph for the virtual forward
Compton scattering amplitude, and apply the re- a

suits to the box graph of Fig. 8(a). In particular, we
explicitly demonstrate how to use this representation
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to study the "scaling" of the contribution of any Feynman graph to the inelastic structure functions 8'.
For an arbitrary Feynman graph, with N internal legs and l independent loops, for the &FC amplitude

the Nambu representation" '6' 6' is written as

N N C((n j)N-2l 2

@~0+ 0 t- j. & &
[Dh&jJ' p ~s Sql ) +2EC

where 6 is a constant. For a n-channel graph the variable s is replaced by u. Applying circuit theory, "
one can show that the discriminant

N

&((rli ~ ~ ~ in(Ni~i siM ) = 58((hali "i c(N)s+~s(nli" i c(N)~+til((rli". i c(N)ll+~N(&li" i c(N)M C(f(rjjK cl)™li
j=l

while C((nl j) is a sum of products of (n,.j and for"
0» (r; &1, $,((n;j) ~ 0, v =s, z, u, M, {jj=1, 2, ..., N, and C((().,j) ~ 0.

Again we define

(22)

(23)

and use s=z+v+I' and u=z —v+I' to write

D =q(z+ Qv —P).

To get a representation with a DGS type of denominator, we use the identity

(25)

dP5 P — do6o-

{)(o—q} (-1}" " dv s"
(27)

after n partial integrations.
We use 5En,. —1}to extend the o, integrations to infinity and assume suitable convergence properties so

as to be able to interchange the order of the n„P, , and o integrations to get

T(g, s, M'}=G(N 2l —1)! dP -Q«; '
& gu -1 {)(P 0)-C(/e, j)"-" ' " " 0(a —0)

N-Rl l ( + Pv o)N-Rl

(28)

If we define the DGS spectral function

(29)

we get the DGS representation

(30}

To find the support of the spectral function H(o, p), we use the 5 functions and note that by its definition

-1» (t) & 1 for 0 & a,. & 1,
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implying thatH(rr, p) is nohzero only for 0 & p & l. SimilarlyH(cr, p) is nonzero only for g,„&g &rj),„,
where $,„c,„) is the minimum (maximum) value of p subject to the constraint that c)I)

= p lie at a fixed given
value in the interval [-1,1]. Therefore the support of H(o, P) is the two-dimensional region

p 1r hami)) c rI rn)))r]

To get a feel for the representation, me determine its spectral function for some examples.
For poles of the form T(g, v) =C/(z -m') we get H{cr, P) = C5{P)5(rr —m'). For poles of the form

1-
T(z, v) =

s —m u —m

H(c, P) = [~(P —1)+a(P+1)]C(c-m'+M'),

while

H{~,P) = g(1- P') —~{c-m'+M')2 8

Bo'

gives

2
T(a, v) =

(s-m )(u-m )'

Now we use this method to determine the explicit DOS representation for the box diagram of Fig. 8(a).
Here %=4, /=1,

$, = e2e4,

(, = c)'-4(n r + c)'3)

5 Q
—+8(cr j + +3)r

while

$„=0,

'9 = &4(&x+rxs+cr3) =c)'c(1 n4)r

(33)

(34)

0~ — ' ~1
Qg+ Q2+ CV3 1 —&4 1 —Q~

1 {1—n, )p'+ n, 'M'
corm, —n, (1 —a,)M' =

n.(1 —c).,) c).,(1 —n, )

C = n, + @2+0.~ + n4 = 1 because of the 6 function.

So the DQS representation is

B(z, v) = dP dcr
H(cr, p

8+ pv —cr

(36)

(37)

H(o', p) =-G +dc)., 5 g cc, 1,-—6(cr —g),
~(p-@) s

0 ~1 5 =1 'g 80' (38)

Performing the e, and es integrations using one 5 function gives

Put 1 —n, = c). and n, /n = y and use the e functions to get

Use a 5 function to do the y integration to get
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~(, e) d[=e(-e) e(e -))[(-t e)f-," . —,

'
e( — ' '; ' ). (41)

Assuming we can interchange the order of integration and differentiation, we get

)t(rr, e)=-d[e(e) — (Pe)[)-( ) e)—„f i .e(z- i
' ).

Call

)
' dn P'n'M' —Pn[[[.'+ p' " 8(n) —8(n —1)

, (1 —n)', n(1 —n) „(1—a}'

(42)

(43)

We define

where

P'n'M' —Png'+ p,
'

( ~,)
(n —n+)(n —n )

n(1 —n) a(n —1)
(44)

(s+ P V')+[s'+ 2V'(P 2)s —O'V-'(4M' V')-] '"
dr( t P)

2( p2M2) t

)
(2n —n, —n ) (n —a,(n —n )(2n —],)

(45)

Doing the a integration, we get

e(n. ) —e(n. —1) e(n-) —6(n- —I)
Ia'(n, ) I(1 —n, )' Ig'(a, ) I(1 —n )'

where the 0 functions are interpreted to vanish if o., are compl'ex.
To see the use of having the explicit form of the DGS function, we calculate

lim vImB(z, v) for z&0 and x=—fixed.
P ~d)O

7 V

We expect from our calculation in Sec. IV that for z & 0

lim vImB(z, v) = lim —.disc, B(z, v)p~~, x fixed p ~co 22

(I+x)[8(-x) —e(-x-I) I= const Max'+ p'x+ p.
'

To calculate this from the DGS representation, we note that

ImB(z, x)= zf dzf ded( tt)e(-z ezz —z).

(46)

(47)

(48)

Doing the P integration and using the support of H(s, P), we get

vImB(z, v) . " Is fs ( s
lim =iim drr e[ —-x —e) —-x-i )terr, ——x).p~ g p~ (V iI V V

(49)

Assuming we can interchange the order of integration and the limit, and assuming that the limit of a prod-
uct of distributions is the product of their limits, we get

lim
v ImB(z, v) dz[e(-x) —e(-x —1)]rim)i rr, —-*).0'

p ~ 7T ~do p~ V

Now one may be tempted to claim without further assumption' that

(60)

0
limII v, ——x =II o, -x .p~ V

But it is important to note that this could be false since H(s, P} is a distribution which is defined as a
limit of a sequence. So, to use the above result, we must assume that we can interchange the limit v-~
and the limit of the sequence defining the distribution. Assuming this, we get



FOR%'ARD COMPTON SCATTERING AMPLITUDE. . .

}(m»}m»(», v} = »-I d»[»(-»} —»(-» —(}]}}(»,-»}.
1I~

Substituting the II(o, -x) obtained for the box graph, we get
Oo

g
lim vlma(x, v) =KG[8(-x) —8(- x- l)](1+x) Ch I—(o)
fI BQ'

=xG[e(-x) —8(- x- 1)](1+x)[I(+ ) -I(- )].
Now I(-~ ) = 0, since the 5 function cannot be satisfied for 0 & a & l.

To calculate I(+~) we note that

(53)

(54)

o+x M

a - ", , +0(l/cr').
o +x'M (55)

[e(a.)-e(a, -l)][a,) [e(a )-8(a —1)][a (

(a+x'M')(1 —a,)[a, —a [ (o+x'I')(1 —a ))a, —a ]
'

Therefore

O'~ oo ~M'x'+ p, x+ p.
' '

[8(-x)-e(- x-1)](1+x)lim vlmB(z, v) =mG
fI ~ Mx +p, x+p.

which agrees with the result obtained by direct laborious calculation of the discontinuities. This demon-
strates the utility of having the explicit form of the DGS spectral function of any Feynman graph for study-
ing the "scaling" of its contribution to the inelastic structure functions. ' For this purpose one should also
include spin, which has the effect of altering the function C(a) and adding external momentum-dependent
factors in the numerator, ' but the technique for obtaining the DGS representation remains unchanged. %e
should also be careful about the infrared and ultraviolet divergences. "'

The above result also shows that the complex anomalous poles in the discontinuities indicated by our
general analysis are also shown by the DGS representation when the explicit form of the spectral function
is calculable. On the other hand, in spite of being equivalent to the Nambu representation, the DQS rep-
resentation in its general form is very inconvenient to continue into the unphysical region due to the ap-
parently singular nature of its spectral function. That is why, for example, the resonance poles on the
second sheet are hard to represent in the DQS form.

IV. RESULTS FROM PERTURBATION THEORY

To understand what happens to the analyticity of
the amplitude 7.' when its absorptive part is non-
zero on the entire real axis, we study the analytic
structure of the Feynman integral represented by
the box diagram of Fig. 8. This is the simplest
graph exhibiting a nontrivial cut structure. Since
spin is unimportant in our discussions, we take
all particles to be scalars and the internal masses
in Fig. 8(a) are chosen to reflect the f =0 symmetry
of the graph. The generalized Mandelstam repre-
sentations in the complex s and t planes for this

diagram have been extensively studied by several
authors in cases when one fixed external mass is
unstable, or when a pair of equal external masses
are unstable" (like the off-mass-shell forward
Gompton amplitude). Unfortunately these repre-
sentations do not display the analytic structure at
I;=0 in the complex mass plane and so we have to
start afresh.

A. The Bjorken-Landau4:utkosky Method

We use the .Bjorken-Landau-Cutkosky method
for analyzing the singularities of integrals. The
details of this method are very clearly explained
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in the first two chapters of the book ELOP" "
and hence omitted here. We simply outline the
method to establish notation and terminology.

It is well known" '0 that the singularities (in
the space of complex external variables) of the
analytic continuations of integrals, like the Feyn-
man integral, arise when the singularities of their
integrands, moving as functions of the external
variables, either lie at an "end point" of integra-
tion or two (or more) of them "pinch" the integra. —

tion hypercontour between them so that it cannot be
distorted without crossing one of them. This is
because, if such situations did not arise in all the
integrations, we could use the Cauchy's theorem to
deform the contour away from the singularities of
the integrand to define an analytic function. This
analytic function would analytically continue the
Feynman integral, since the distortion of the hy-
percontour is equivalent to moving the external
variables away from the singular point of the Feyn-
man integral. The original integral is then a
boundary value of this analytic continuation.

Such analysis applied to the Feynman integral
shows that all its singularities are given by a set
of equations first obtained by Bjorken" and Lan-
dau, "which require that

(1) for each internal line f of the Feynman graph
either q,

' =m, ' or n, =0, where the fn, )'s are the
Feynman parameters; and

(2) for each loop j of the internal momenta

Q&» o., q, =0, where Q&» denotes summation along
the jth loop of the internal momenta.

For a given Feynman graph, the leading singu-
larity corresponds to all o, & 0 (no o, =0). The
q-order lower singularities correspond to the q of
the n, =0 and the remaining n&&0, and are shared
by the reduced or contracted graphs in which the

q lines with a, = 0 have been shrunk to a point.
The location of the complete set of singularities is
given by the leading singularities of the original
graph together with all its reduced graphs.

The physical boundary is determined by the Feyn-
man prescription of giving all the internal masses
an infinitesimal negative imaginary part (m, —
m, ' -ie}.

The solutions of the Landau equations with a11

n, ~ 0 correspond to singularities of the Feynman
integral with undistorted hypercontour. In the
presence of several branch points the definition of
the various sheets of the complex domain depends
on the choice of the cuts attached to these branch
points. We define the "physical sheet" as the sheet
of the normal threshold cuts which carries the

physical boundary. Normal thresholds, in general,
are the lowest-order singularities of a given Feyn-
man integral and they lie in the physical region. 'P

We collectively call the higher-order singularities

the anomalous singularities. The anomalous singu-
larities found on the physical sheet are the ones
which move onto it during the process of analytic
continuation. Among the various possible meth-
ods""' for the anomalous singu]. arities to come
on the physical sheet the most common is the
mechanism of "critical intersections, " and much
less common ones are the mechanisms of "cusps"
and "acnodes. "" The type of graphs or the condi-
tions under which cusps and acnodes have been
found do not seem to occur for the scattering am-
plitude at t=0, since its dual diagram is topologi-
eally similar to that of a vertex. We therefore
assume their absence and restrict our discussion
to the mechanism of critical intersection, which
corresponds to a pinch moving onto the undistorted
hypercontour past an end point. With this mech-
anism the only anomalous singularities found on
the physical sheet are the ones which climb onto it
through the normal threshold cuts, or through the
cuts attached to the (lower-order) branch points
which have previously come onto the physical sheet
through the normal thresholds. The required con-
dition for one Landau singularity to change sheets
by moving through the cut attached to another
Landau singularity is that their Landau curves
"touch effectively" (or intersect critically). For
two Landau curves to "touch effectively" they must
touch and at the point of touch have identical values
for all the Feynman parameters o, It is easy to
prove that the intersection (if it occurs) of any
Landau curve with any one-order-lower Landau
curve is necessarily effective. But as we will see
(in Figs. 13 and 14}, once an effective touch is es-
tablished one must check that the singularity does
in fact cross the lower-order cut. This requires
that the point of touching be a turning point of the
higher-order Landau curve relative to the lower-
order Landau curve.

These singularities can be poles or branch points
depending on various factors like the dimensionality
of space-time, the redundancy in the Landau equa-
tion for a given graph, spin, form factors, and na-
ture of the couplings. The poles and the branch
points can be distinguished in practice by one of
two methods. Either we calculate the discontinuity
(using the Cutkosky formula" ) across the given
singularity and see if it is finite or a 6 function (a
6-function discontinuity indicates a pole} or, alter-
natively, we calculate the discontinuity across a
lower-order singularity and in it see explicitly the
presence of the pole due to the given higher-order
singularity. v'

The singularities obtained from the solution of
the Landau equations fall into three main classes
which are conveniently categorized in terms of
the Nambu representation (see Sec. III}. These are
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the Landau singularities (D =0, C 40), or the mixed
or pure non-Landau (or second type) singularities
(D=0, C =0). The Landau singularities" corre-
spond to pinches and end-point singularities when

all the components of the loop momenta are finite.
The second-type' "singularities correspond to a
wide class of special solutions of the Landau equa-
tions, which correspond to pinches when either all
(pure) or some (mixed) components of the loop mo-
menta are infinite. In the present paper we shall
mainly concern ourselves with the Landau singu-
larities, since very little is known about the Rie-
mann-sheet properties of the second-type singu-
larities. The presence or absence of the second-
type singularities depends on the dimensionality of
space-time, but can also be affected by spin and
derivative eouplings. It has been expected" that
the pure second-type singularities for a scattering
graph always stay away from the physical sheet,
and their position can be found in terms of the mo-
menta p, of the external legs only. They are lo-
cated at the edges of the physical region (s or u
=0, 4M'), where

(i) det(P, P, ) =0

(i, j= 1, 2, ..., F. =number of external legs) and
E E

(ii) p, Q p, =0 and Q p, '=0.
i=1 i =1

The situation regarding the mixed second-type

singularities" is not so clear. They orginate on

the unphysical sheet, since they need C(n) for a
subgraph to vanish [and C(n) being a sum of prod-
ucts of n's cannot vanish for n&0]. But it is not
known in general whether they come onto the phys-
ical sheet through a cut on the physical sheet, when
an analytic continuation is performed. The neces-
sary conditions for this to occur are that the sec-
ond-type singularity curve either has an "effective
intersection" with some other curve that is itself
singular on the physical sheet or that the curve
contain, s acnodes or cusps. "' "

The reason that the second-type singularities can
be important even if they stay on the second sheet
is that the discontinuities in general display the
singularities of both the physical and the second
sheet, and in fact that is how the second-type sin-
gularities were discovered. It is the lack of know-

ledge of the second-sheet singularities that re-
stricts us to discussing only the single-variable
analytieity of the discontinuities, which only in-
volves the ordinary and virtual" anomalous singu-
larities on the physical sheet of the amplitude.

B. The Box Diagram

Consider the general box diagram of Fig. 8. Us-
ing the Feynman parameters and doing the loop
integration, we obtain the "Nambu representation"
for this graph:

dnqdn2d&3d(1/6(Q1+ H2 + o.'3 + o4 1)C
B px, p2t p31 p4 = cons 2

0 0 0 0
(58)

where

2 2 2
+2 +4S +1+3t +4+1~l +1+2~2 +2+3P3

4~, , t,' — Q,)(Q;m ),
n=l

(1) The "box singularity" which corresponds to
Fig. 8 or Fig. 9(a): In this case we need (m, =m,
=v)

det(y, ,) = ——,a),(f),

C = Al+ Q2+ Q3+ &4 ~

If we define the variables

where

3f —p. -m, . S-m, -m,2 2 2 2 2

2 pm2 2m, m4

= J)i~mimj
(60)

det(y, ~) =0, (61)

then for the single-loop box graph the equation of
the surface of the Landau singularities is given by

t
1 +

4 p,

S -m2 -m4 8 —p —m4
2 2 2 2

2m2m4 2 pm4

2 2 2-p, —m4
2 ILtm4

and the vanishing of the various minors of det(y; &)

corresponds to the lower-order singularities due
to the reduced graphs shown in Fig. 9. For future
reference we list the equations for the various
Landau surfaces in the two-dimensional complex
space of external variables, starting with the
leading singularity.

n~»=O and m =m,3 1 39 (64)

which. is identical to the equation of the physical-
sheet "triangle singularity" corresponding to the

(63)

At fixed t =O the box singularity is given by the
equation
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FIG. 9. The reduced graphs for the leading and lovrer-
order Landau singularities for the direct s-channel box
diagram.
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FIG. 10. The Landau curves in the real (z, v) plane for
the case m =M. The equation of the ellipse AHA'B' is
M2z2+ jM2zv+ p2~2 —p2(4M2 —p, 2)z =0, and the coordinates
of the points of tangency are A = (4p, -2p ), 8 = (2 p + p /
M, 2 jL(M - p —p, /M), A ' = (0, 0), B' = (2 p —p3/M, 2 phf
—@2+p'/M).

M'z'+(M'-m +V, )zv+V, v +hz=0, (66)

Z -=[M'- (m+ g)'] [M'-(m —p)']. (66)

reduced graph of Fig. 9(b). For t40 one defines
a complex cut joining [see Ref. 14, especially Ref.
14c] the box branch point (1/Wt' type) and the
triangle branch point (in)' type) But i.n the t =0
case these two points coincide giving a collapsed
cut which, as we will see later, acts like a simple
pole ' and could I1Rve R dominRting effect in the
appropriate regions.

(2) The "triangle singularities" corresponding to
Figs. 9(b), 9(c,), and 9(c,): Corresponding to Fig.
9(b) we have the anomalous threshold surface Z„
whose equation S, '=0 can be written as

sR

I)

s= {M+@)2 B

Irn s=O
/

Irn z '
XA

p~ z(O M &&A'

(M -pg, )

Bl

~Im z
Im s

Al M +2@.a

IAl z
Irn s

Zs

The shape of its conic section with the real plane

(zs, vs) is determined by the discriminant, which

turns out to be h, . It is an ellipse, parabola, or
hyperbola depending on whether 2 & 0, =0, or & 0.
It is easy to see by an analysis similar to that for
the triangle graph in EI GP, that the condition for
this triangle singularity to be on the physical sheet
of the VFC amplitude is 6 & 0, i.e., an elliptic
curve with the normal threshold surfaces as tan-
gent planes. This then restricts m to be ~M —p ~

&m &M+ p.. Figures 10, 11, and 12 show the real
section of this surface Z„under various conditions.

z=O z= 4@.
Im z=Q

FIG. 11. The Landau curves in the real (z, s) plane for
the case m =M. The equation of the ellipse ALA'8' is
Mlz2+ p2(p2.—XM2 —s)z+ p2(s —M2)2 =0, and the coordi-
nates of the points of tangency are A = (4p2, M2+2 p2),
B =(2V2+V /M, (M+V)2), 4' =(O,M2), B' =( 2@@23/+M,

(M —v)').
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FIG. 12. (a) The real section of the Landau surfaces for m ~ M + p when we get an hyperbola.
(b) Virtual singularities close to the physical boundary of disc, B (~,sz).

To obtain the solution of the above equation for gen-
eral masses we recommend that the reader use the
method of dual diagrams. ' To draw the complex
parts of Z„requires another two dimensions. To
get over this difficulty we use the search-line
method. We imagine a plane in the complex (z, v)
space. This is

v = gz +q, P, q real

Imv = glmz .

It intersects the real conic section of the quadratic
surface Z„ in the real (zs, vs) planes at two unique
points. If its slope is kept fixed and the intercept
q increased, the line moves upwards in a direction
perpendicular to itself and the two points of inter-
section form a pair of continuous curves on the
Landau surface. Eventually these two real inter-
sections with the search line coalesce, and after
that they are no longer real and become a pair of
complex-conjugate points, with the imaginary parts
of their coordinates related by the above equation.
Nothing is missed since every complex point lies
on one and only one search line.

Using such search lines, we discover that at-

tached to the positive-gradient arcs of the real
conic sections are two parts of a complex surface
with Imv/Imz = g & 0, while attached to the negative-
gradient real arcs are two parts of a complex sur-
face with Imv/Imz = g& 0. Along horizontal tan-
gents g =0, Imv =0, and Imz is arbitrary, while
along the vertical tangent g =~, Imv = arbitrary,
and Img =0.

In using this description of the Landau surface to
perform an analytic continuation it is frequently
important to distinguish the directions along which
we approach the real section. For this purpose
we define the following limits ' onto the real sec-
tion. When we approach the real domain along
Ims/Imz & 0, we call it the "corresponding half-
plane limit, " and when we approach along Ims/Imz
& 0 we call it the "opposite half-plane limit. " Fur-
thermore, the limit onto the real section of the
Landau surface that is defined by giving z and s
(or z and v) small imaginary parts whose relative
sign is the same as that which they take on the at-
tached complex Landau surface (i.e. , the same as
the sign of the slope of the search line) will be
called the "appropriate limit. " When their rela-.
tive sign is opposite to that taken on the attached
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—T(zs + LE q ss —iE). ' (68)

So we are simultaneously taking the corresponding
and opposite half-plane limits of the amplitude T,
and therefore disc, T will carry both the ordinary
(appropriate limit) and virtual (inappropriate limit)
anomalous singularities of T.

To find which segments of this four (real) dimen-
sional surface Z„are singular on the physical
sheet, we use the fact that the Feynman parame-
ters n vary continuously on this surface, so know-

ing the n's at their effective intersections with the
lower-order singularity (the normal threshold
tangents), we can deduce the a's on the whole real
conic section of Z„. In particular, the real seg-
ment (solid lines in Figs. 10, 11, and 12) with all
a ~ 0 is singular on the physical sheet. The com-
plex segment occurs on the analytic continuation

by distorting the hypercontour when the n's are
complex.

At t =0 the singularities corresponding to the
reduced graphs in Figs. 9(c,) and 9(c,) are found
to coincide with the normal z threshold [Fig. 9(e)]
and the normal M' threshold [Fig. 9(f)], respec-
tively.

(3) The s-channel normal threshold corresponds
to Fig. 9(d), and gives the plane

s-M =z+v& 2pM+jU, '

complex Landau surface we call it the "inappro-
priate limit. " It is easy to see that these limits
are different if and only if the sections of the real
axes being approached in both variables lie in a
cut, i.e. , the real section lies in a crossed cut.

If the complex Landau surface is not singular on
the physical sheet, then the appropriate limit can-
not be singular. If the inappropriate limit is singu-
lar, then the singularity is found just past the real
boundary of the physical sheet approached by going
through the real cut [Fig. 12(b)]. This is quite like
the location of the resonance poles at q' =m -iml"
on the second sheet. Such arcs of real singular-
ities [Fig. 12(a)], which are singular in the inap-
propriate limit (and hence lie in the region of
crossed cuts), are called virtual singularities.
These virtual singularities are present in the non-
Euclidean region P.(z, s, M')&0] on the real axis
(when e- 0) which lies inside the crossed normal
threshold cuts. Their presence is, therefore, not
important fo" the discussion of the domain of ana-
lyticity on the physical sheet of the amplitude,
though they are near its physical boundary (which
lies above or below the cut). On the other hand,
their importance for the study of the discontinuities
is seen by the fact that in the limit c —0+,

disc, T(zs +is', s, ) -=T(zs + is', ss +i e)

+ (o.,n, )imv+ (o.,Q n, )z, e- 0+. (71)

Therefore the physical boundary of a Feynman
integral with real internal masses is

Imp& 0, Imv& 0. (72)
The two-variable analyticity is then easily es-

tablished using techniques explained in ELQP.
This continuation is conjugate symmetric, i.e. ,
B(z, v) =B+(z+, v+). To see this we just have to
note that the properties of all the complex seg-
ments of the Landau surface are invariant under
complex conjugation. Therefore if we start at some
real point (zs, vs) and continue to some point (z, v),
the distortion of the n hypercontour forced on us,
if any, when we meet singularities will just be the
complex conjugate of that forced on us if we had
continued by a complex-conjugate path to the com-
plex-conjugate point (z*, v*). Thus the value of
B obtained at (z*, v*) will just be the complex con-
jugate of that obtained at (z, v).

To establish the analyticity in one complex vari-
able keeping the other fixed in the physical region,
we have to study the singularities on a particular
search line z =zR+ie or v = v~+ie. In such cases
the Landau curves shown in Figs. 10 and 11 give
physical-sheet singularities, while the Landau
curves of Fig. 12 do not contribute since they are
singular in only the inappropriate limit on the real
(z, v) plane 2'' '" Therefore from now on we
will not consider them any more, but remember
that these virtual singularities occur in the dis-
continuity, since the whole of the real arc in Fig.
12(a), on which the points E and E lie, is singular
in the inappropriate limit. These singularities are
nonsingular in the appropriate limit because during
the process of analytic continuation they never
cross a cut to come onto the sheet chosen as the
physical sheet, as shown in Fig. 12(b).

If we consider B(z,vs+i') as an analytic function

with
Ims =0, Imp =-Imv. (69)

(4) The z-channel normal threshold corresponds
to Figs. 9(c,) and 9(e) giving the plane

z ~ 4p, ', Imz =0, v arbitrary.

This completes the description of the whole Lan-
dau surface of B.

To establish the analytic continuation of B in two
complex variables, we just have to show that we
can start from the physical boundary and find a
singularity-free path to continue the Feynman in-
tegral into the complex unphysical domain, making
suitable detours when we hit its singularities. To
discover the physical boundary we use the Feyn-
man prescription to find

ImD = (Qg Q4 + Q4Bg + QgBg)lmz



FORWARD COMPTON SCATTERING AMPLITUDE. . . 589

Im z
ri

2/ +m
ZN

VR & 2@2
-iE'

(o) B (z, v + ie)

A2

Re z
C

vN at 2=2@ M+p, -vR

(b) B (z„+i@,v)

Im b'

ZR(2P, +- -2u.
M -iE-.

~3
2P.M-P, —

M
&v &-2P. ZN

Z vA

VN=2p. M 4p zR

p3
V R = 2,P. M-P. —

M

jLf
3

rK 2p +
M

3
4P. & ZR&2P. +—2

M

ZR = 2P.2+

~3
v & 2p, M-p, 2-—

R M

r ( V

t)f
ZA

V= —2p2
p3 QJ=—I

v = 2p.M-p. 2 ——
M

cu= -(—-I)M

F

ZR 4
-2p.

N

ZR
VA= ——i2M

2

FIG. 13. (a) The single-variable analyticity of B (z, vz+ie) in the z plane.
(b) The single-variable analyticity of B (z&+R, v) in the v plane.

of z, Fig. 13(a) shows the location of various
branch points for various values of v„. The solid
lines indicate the motion of these branch points on

the physical sheet, w'hile the dashed lines indicate
their motion on the unphysical sheets. We see that
Z, gives a fixed branch point z~ on the real axis
at z =4p.'. Z, gives a branch point v~ of z =2p.M
+ p.

' —vR which moves just below the real axis. The
anomalous branch point A corresponding to the tri-
angle singularity Z„ is on the unphysical sheet
when vR& -2p, '. As vR is increased, A crosses
over into the physical sheet through the eut at-
tached to z„, and when v„ increases through vR

=2pM —p' —p.'jNf, A again crosses over into the
unphysical sheet through the cut attached to the
moving branch point vN, which leads A beyond this
point. So ultimately for large vR we are left with
the two branch points v„and z„. In the limit c- 0+,
v„ lies on the real axis. B(z, vR+ze) therefore has
only real cuts attached to the branch points z„and
v„, and is therefore a real analytic function for all
fixed vR.

When we consider B(zR +ie, v) as an analytic func-
tion of v, Fig. 13(b) shows the location of various
branch points for various values of zR. For zi
& 2p'+ p'jM the branch point v„due to Z, lies just
below the real axis on the physical sheet, while
the branch point A due to Z„ lies on the unphysical
sheet As we in. crease zR through 2p. '+ p'jM, the
branch point A moves below the real axis and then
crosses over onto the physical sheet through the
cut attached to the vN branch point. As zR is in-
creased more, the two branch points move infini-
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FIG. 14. (a) The single-variable analyticity of B (z,
s&+it) in the z plane. (b) The single-variable analyticity
of B (z&+is, s) in the. s plane.

tesiznally below the real axis (A below v„) till we
reach zR=4p, '. Beyond this value of zR, the branch
point moves to finite distance below the real axis,
and since it does not cross any cuts in this pro-
cess it stays on the physical sheet. This corre-
sponds to the complex segment of Z„attached to
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AB. Thus for zR&4p. ', in the limit ~-0+ we get
a real branch point v„and a complex branch point
A at v„, and B(z„+i&,v) is no longer a real ana-
lytic function of v. This is consistent with what we
expected from our discussion of the DGS represen-
tation and also shows that the reason why the DGS
representation indicates a nonreal function of v

for zs & y.
' (lower bound to 4p, ') is that the analytic

continuation acquires complex branch points. At
this point we should note the importance of keep-
ing e nonzero and determining the magnitude of the
imaginary parts of the various branch points (us-

ing search lines). If in the above discussion A
were above v„, then as we would go through z&

=4p, ', A would move down and cross over onto the
unphysical sheet through the cut attached to A. It
is because A is below v„ that it remains on the
physical sheet as a complex branch point.

We can similarly discuss the analytic structure
of B as a function of one variable while the other is
fixed, for various sets of variables. The motion
of singularities in the case (z, s) shown in Figs. 9
and 14 and Table I indicates the results for all such
possible sets of variables.

C. The Blankenbecler-Nambu-Mandelstam Method

To obtain further insight into the origin and nature of these complex anomalous singularities, we con-
sider the fixed t =0 dispersion relation for our box diagram, which in the nonanomalous case (say z& 0) is

1 ",disc, B(s', z)B(s,z ds' (73)

Using Cutkosky's discontinuity formula, ' assuming a coupling constant g at each vertex in Fig. 8 and de-
fining, at t=o, q, =q, =Kg g2 =Py g4 Ty mg=m, P we get2 — 2= 2=

disc, B(s, z) = „,, „„(, dp 6(p —m, ') 0(q,') d7&(r —m4') '&(q, ) dK
)2 q

~min "min (K —0

(74)

where P „,„, r,.„,„(P), and s „,„(~,P) are the extrema relative to q," when two of the three squared
four-momenta are kept fixed. They can be shown"" to be determined by the Landau equation

Q2g2 + QSQ3 + Q4Q'4 = 0yV V V-

where the a's serve as Lagrange's undetermined multipliers.
From these equations we determine the integration limits to be as follows. '

I m|n 0& ~max

„=0, v,.„=(Ws- ~p',

z,„,„(s,z, M;r, p) =M +p —(z -M —s)(v —p —s)/(2s) + [X(s, p, r)X(s, z, M )] /(2s),

where the triangle function is

&(x, y, z) -=x'+y'+z' —2xy —2yz —2zx

=[x- (Wy+Wz) ] [x —(v y —v z)2]

and the masses of the external legs are

P2 P3 I .

Integrating, we get

disc~(s, z) = ' ' ' ' 8(s —(m, +m4)'),
-ig' [X(s,m, ', m, ')]'~'

77 s~z

where

f(s, z) -=p'[s —s,(z)] [s —s (z)] =m, '[z —z,(s)] [z —z (s)],

(75)

(76)

(77)

(78)

(79)

2p,
(80)
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If we use this expression for disc, B(s, z} without the 8 function to define it for all real s, then it is an
analytic function of z for fixed real s (though it need not be analytic in s). We can use this to define the
analytic continuation of B(s,z), for all z, by varying z and suitably distorting the integration contour to
avoid the approaching singularities of alisc, B. As we increase z from small values to a point above its
normal threshold cut [i.e. , Imz =+is, Rez & (m, + p)'], the path followed by the poles in disc, B due to f(s, z)
=0 is shown in Figs. 15 and 16, and to avoid it we must distort the integration path as shown. The final
position of this pole (determined by the fixed z) then determines the anomalous threshold, which, being a
solution of a quadratic equation, can be in the complex s plane. The complex-conjugate root of f does not
cross the integration contour and so gives no singularity of the amplitude on the physical sheet. If we had
increased z to a point below the cut [i.e. , Imz =-iz, Rez&(m, + p)'], then the anomalous threshold would
be in the complex-conjugate position.

By similar techniques one can deduce the single-variable analyticity of the integrated absorptive part,

R(z)=J ds'tnsc, n(s', z).
(m, +~4)'

(81)

It is easy to see that the roots of f(s, z} represent the anomalous singularities given by the Landau equa-
tions. In the present case of a single-loop box graph at t =0, this singularity turns out to be a pole. This
is a peculiarity of fixing t =0 when q, =q, causes a double pole in the integrand of the Feynman integral.
The double pole on the first (z) integration gives a simple pole, which survives the remaining (7, p) inte-
grations by successively pinching with the remaining simple poles. For general t40 this singularity is a
cut joining the triangle and box branch points of disc, B."'' ~ This cut collapses to a pole when t- 0. We
find no such poles on the physical sheet for multilooped Feynman graphs. This is easy to understand if we
focus our attention on one momentum loop and lump the remaining integrations together. Then a sufficient
condition to get a pole in the final amplitude (irrespective of the sheet it lies on) is that the starting inte-
grand have a double (or higher-order) pole, so that the "first (z) integration" yields at least a simple pole.
Then the integrands for the remaining two (P and v) integrations must be such that they do not "smooth"
this pole into a cut on successive integrations. This requires that these remaining integrands provide
pinching poles. Hence only a single-loop Feynman graph at t =0, whose four legs are elementary particles
[I/(p' —m'+is)] or resonances [I/(P' -m'+imI')], can, in general, give such anomalous poles.

Using similar arguments one can show that inclusion of spin turns these anomalous poles into a pole plus
a cut at the same point, and that inclusion of form factors can "smooth" out these Landau singularities.

For applications to the study of "scaling"' of the inelastic structure functions it is convenient to know the
analytic structure of disc, B for fixed real s in the complex x plane. The Landau singularities of
disc, B(s, x) are located at

x,(s) = z,(s)/[s -M'- z,(s)] (82)

and they move as we vary s. From the above formula we see that when s is large compared to a suitable
combination of the internal masses, "these singularities x,(s) move rapidly to positions extremely close
to their asymptotic position x,(~). The rapidity of this approach to the asymptotic region can be deduced
from the above equations. In a separate publication" we discuss how these observations could provide a
possible explanation for a rapid approach to "universality" of the inelastic electron-scattering structure
functions. By "universality" we mean that the inelastic structure functions become s-independent functions
of z once s is large enough. This is in contrast to "scaling" which requires both s and z to be large before
one obtains a function of x alone.

To understand intuitively this explanation of "universality, " let us consider the following model of the
discontinuity of a box diagram (f =0) with spin, for large real s and fixed x =z/v:

Oo S K max
disc, B(s, x)—=

[ (»,&, dP5(P —m, ')8(q, ) d7 |)(7 —m, ')8(q, ) dz
0 & min

(83)

where [X(s,z, M'}] '~' represents the second-type singularity at the edge of the physical region and the
factor g is the effect of spin. Integrating, we get

2 I I
[X(s,z, M')]'~' disc, B(s, x) ~fl(s, x) =ln '" ', + p' (84)

where, as s -~ for fixed finite g,
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2

[x;„(s,x) —p,']- —
( 1) (x+ 1+s/p'),

[x,„(s,x) —p,']-Z, (x) = a quadratic s-independent function of x.
(85)

This shows that singularities in E(s, x) arise when the edges of the allowed phase space ~,„„approach
the exchanged mass p, . For large finite s, the singularity x,„—p' = 0 is very far (at x = -1 —s/p2) from
the region of interest -1 & x&0 in the complex x plane. On the other hand, the singularities z,„—p,'=0
are close to the experimental region and s-independent since the edge I(: „of the phase space has stopped
moving. So, if we assume that the variations with s in the "shape" of the function F(s, x) versus x are
controlled by the motion of the nearby singularities, then we should expect I to attain a universal s-inde-
pendent shape once x (s, x) is s-independent. However, the s dependence of the over-all magnitude of
F(s, x) is determined by all its singularities and will, in particular, be affected by the distant s-dependent
singularity x,„—p, =0. In a case (like the above) when this distant singula, rity is giving a divergent con-
tribution due to ultraviolet divergence in the graph, the magnitude of I will diverge as s-~. This is one
source of "nonscaling" behavior in certain field-theoretic models of inelastic electron scattering. '" The
other is the g dependence of the form factors in graphs with vertex corrections. These graphs have
"smoother" singularities which, hopefully, give a negligible contribution.

We may choose to adopt the philosophy that the ultraviolet divergences are a disease of the theory rather
than of nature, and assume that there exists a realistic causal and unitary S-matrix theory without such
divergences. Then we know' that the physical-sheet analytic structure (i.e. , the position of the singulari-
ties but not their nature) obtained from finite-order Feynman perturbation theory (with a cutoff) is expected
to be the same as that obtained from this unitary s-matrix theory. In such a theory the experimental data
in the region -1 & x & 0 should be expected to show the effects of the nearby singularities (v,„—p' =0),
rather than the effects of the distant singularities (e,„—p, =0) which are obtained in the asymptotic models
based on summing leading ultraviolet divergences. '" This provides the motivation for constructing models"
of inelastic-electron-scattering structure functions which are based on their analytic structure and domi-
nant singularities.

It is easy to generalize these arguments to arbitrary graphs, and specially those that correspond to a
peripheral production of the intermediate state. In this way one can also see why the physical x-sheet
singularities correspond to box- or triangle-shaped reduced graphs.

D. Single-Variable Dispersion Relations for the

Full VFC Amplitude

As far as dispersion relations' are concerned,
we find that one can always write a fixed real v„
dispersion relation in z for the amplitude B rvith

integrals over only real contours and real poles,
as long as the asymptotic behavior is "decent"
enough to be handled by a finite number of sub-
tractions. Also, because of the Sugawara-Kana-
zawa theorem, '"' '" one just needs to check the
asymptotic behavior in only one direction in the
complex z plane. On the other hand in the case of
real s„ fixed above the normal threshold there are
complex singularities in z and the above theorems
fail. In such cases one can again use the Cauchy
theorem to write dispersion-like relations, but
now one must include the contribution of the com-
plex cuts. We must also independently check that
the contribution from the circle at infinity does in
fact vanish, or can be taken into account by a
suitable number of subtractions. This can usually
be done with the help of a wider class of the maxi-
mum-modulus theorems called the Phragmen-
Lindelog theorems. ' '"

To see what happens in a realistic model of the

full scattering amplitude, we consider a combina-
tion of the s-channel and the u-channel box dia-
grams of Fig. 17(a) at f =0, each of which can be
obtained from the other by the simple interchange
v- -v. We will now find that our analysis will give
the same analytic structure as expected on the ba-
sis of the DOS representation.

The possible physical- sheet Landau singularities
for such a combination T are shown in Fig. 17(b)
in terms of the complex variables (z, v). By meth-
ods already explained, it is easy to see that the
physical-region amplitude is a boundary value of
an analytic function of two complex variables. The

ImS .-(M+@.)

Re s

(M

s = M2+ —j2MZ

2

FIG. 15. The motion of the pole in discs' (s&, z) as z
is increased, and the accompanying distortion of the inte-
gration contour.
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physical boundaries are (Img&0, Imv&0, v&0) for
the s-channel physical region, and (Imz&0, Imv
&0, v&0) for the u-channel physical region.

We have to be careful when we consider the sin-
gle-variable analyticity in v keeping z =z„+i~
fixed. In such cases the DGS representation for
T(zR+ie, v) indicates a cut along the whole real
v axis when z~ & p,'. But this does not c prior
rule out the possibility. of finding an analytic con-
tinuation in v with complex singularities but a, large
domain of analyticity. In fact me sam that such an
analytic continuation does exist for the s-channel
box diagram. But when we take the amplitude
T(ps+i@, v) to be the combination of the s-channel
and the u-channel box graphs, we find that the v-
plane analytic structure is as shown in Fig. 18.
%'8 find that for z & 2 p.M + p.

' the s-channel normal
cut Z, overlaps the u-channel normal cut Z„, and
the physical region of the combined amplitude T
(which is above the Z, cut and below the Z„cut
when these cuts are chosen-parallel to the real v

axis) is squeezed between these two normal cuts
and vanishes in the limit e-0+. Clearly, under
such circumstances we cannot determine the phys-
ical value of the amplitude as the boundary value
of such an analytic continuation in one complex
variable. One way to rectify thi. s situation would
be to define a different analytic continuation by
distorting the cuts, but then me mould risk ex-
.posing the singularities on the unphysicaL sheet,
since du11ng the deformation of the .Cuts 'these un-
physical singularities could cross through onto the

FIG. 17. The analytic structure of the sum of
direct- and crossed-channel box diagrams.

physical sheet. The other choice is to consider
an analytic continuation in v which is separated by
a eut along the whole real v axis, the s-channel
physical region being just above this eut and the
u-channel physical region just below. This, me
would observe, is precisely what happens in the
case of the DGS representation. On the other hand,
if we fix v=v~, and Imv=0 and consider the ana-
lyticity in z, we find that we do get a real analytic
function of z for any v in spite of the u-channel
cuts, and that the physical boundary of this real
analytic function of one complex va, riable is Imz
& 0, i.e. , g =zz+ie. The location of the physical

T(zR+i&, p)

FIG. 18. The single-variable analytic structure of
T (s&+ic., v) in the v plane, showing the.overlap of the
normal cuts
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boundary is most easily deduced from the expres-
sions for the imaginary parts of the denominators
in the Nambu representation of the s- and u-chan-
nel box diagrams. These are, respectively, of the
form

Img, &
=(a+5)lmz+bimv+c

= aImz +5Ims+ c (86)

V. THE ANALYTIC STRUCTURE OF

DISCONTINUITIES AND INELASTIC STRUCTURE
FUNCTIONS

The two-variable analyticity of the amplitude
T(s, z) implies a single-variable analyticity of the
difference T(s„z) —T(s„z) in the complex z plane
if we keep s, and s, fixed. Cutkosky' used this

ImD~„~ =(a+ b)imz —blmv+c

=(2b+a)imz —blms+ c,

where a&0, c&0, 5~ 0, and &-0+.
If we consider the pair of variables (z, s) we

find that we run again into the problem of overlap-
ping cuts in the complex s plane if we fix z =zR+ir
with z„&2l1M + p,'. At za & 4p,

' (I —i1'/4M') this
function ceases to be real analytic in s because of
the anomalous thresholds. Similarly, if we fix
s = s„and Ims =0, we get a real analytic function of .
z only if s& (M+i1}'.

From this discussion we conclude that for the
full forward Compton scattering amplitude we can-
not expect much more single-variable analyticity
than that implied by the DGS representation and
shown in Table I.

fact, in the framework of Feynman perturbation
theory, to determine the single-variable analyticity
of the discontinuities of the amplitude across fixed
cuts. He showed that the singularities of a given
Feynman integral F($), which are also the singu-
larities of the discontinuity F (() (across the eut
due to the reduced graph with m legs on the mass
shell), are those which correspond to the (reduced
and full) Landau diagrams, in which lines have
been added to the given reduced diagram which de-
fined the original singularity. The other Landau
singularities of F($) appear on both sheets (corre-
sponding to the given fixed cut) and their cuts can-
cel when we calculate the difference. The singu-
larities of I' which correspond to the reduced
graphs with additional internal lines i (i &m on the
mass shell) appear on only one of the two adjacent
sheets connected by the branch point corresponding
to the reduced graph with m lines on the mass shell
(e.g. , the anomalous threshold due to triangle
graphs moves from the second to the first sheet of
the normal threshoids due to bubble graphs). This
discontinuity can also carry the non-Landau singu-
larities. These facts can readily be seen from the
structure of the Cutkosky formula for calculating
discontinuities (remembering that in applying this
formula one integrates in the physical region and
then analytically continues into the unphysical do-
main}. This formula can also be used to calculate
the discontinuity F ($) of the discontinuity
function F ($} across a (fixed) cut corresponding
to a reduced graph in which the additional internal
lines i (m& i ~m') are also on the mass shell, and
we find that

(88)

[the sign of F, ($) is, in fact, defined by this
relation]. This result can be obtained by the fol-
lowing replacement in the original Feynman inte-
gral:

The Cutkosky formula defines an analytic func-
tion of the internal masses and external invariants,
whose domain of analyticity must be found by ana-
lytic continuation. This, in general, could be a
very difficult problem. But in the special case
when we are interested in the single-variable ana-
lyticity in the second variable of the discontinuity
across a fixed cut in the first variable (like the
normal s-threshold cut} the problem is much sim-
pler. Then it only requires the knowledge of the
ordinary and virtual anomalous singularities on the

I

physical sheet of the second variable (like the com-
plex z plane). This will become clear from our
discussion and Cutkosky's analysis. In practice we
are interested in the various boundary values of
this function. For example, disc, T(za+ic, sa)
across only the normal s cut is one such boundary
value above the real z cut, which corresponds to
giving all internal masses a small negative imag-
inary part when one starts to encounter singular-
ities on the real axis. (This is because disc, T is
of the form T'.) These small imaginary parts are
inessential on the cut-free region of the real axis.
Qn the other hand we observe, from their defini-
tion, that the inelastic structure functions are a
different boundary value, whose boundary is dis-
covered by the prescription of putting m, '-m, .'-ic
for the internal masses in the initial state and
m&'-m&'+ i~ for the internal masses in the final
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state, when one encounters real singularities.
(This is because they are of the form

~
T~'.) The

mixed nature of this prescription makes it difficult
to determine the boundary for arbitrary graphs. " '0

But in the regions of the real axis where the dis-
continuities are cut-free (and pure imaginary) the
+i& are irrelevant, so that their values will agree
(up to factors of i) with those of the various inelas-
tic structure functions defined by a similar formu-
la, even though the imaginary part of the amplitude
in this region is a sum of different discontinuities
across various cuts and not a boundary value of
any discontinuity function. This follows from the
conjugate symmetry [T*(s*,z*)= T(s, z }]of the VFC
amplitude, from which we see that

dlsc~T(ss ~ z) =—T(ss + xe& z) —T(ss —zE~ z)

[di-sc, T(s„,z*)]*.

Hence, on the cut-free part of the real z axis we
can reach the point z~ = z = z R where

dlsc~T(s~r zs) = [disc -T(ss, zs}]
= pure imaginary.

This is not possible on parts of the real z axis
lying inside a cut. Similarly we find that

2QmT(s„+ ie, zs + ie) = [disc, T(ss, zs + i&)]

—dlscgT(ss +16, zs).

In this formula disc, T represents the contribution
of the connected direct-channel graphs of Fig. 3(b),
while disc, T gives the contribution of the semidis-
connected graphs of Fig. 3(d), to the total imagi-
nary part of the VFC amplitude. Since by defini-
tion ImT(ss +is, zs +is) must be real, hence

Re[disc, T(ss, zs +is)] = Re[disc, T(ss + i z, zs)]

= —,'disc, [disc, T(ss, zs)],

which is related to the imaginary part that the in-
elastic-electron-scattering structure functions de-
velop due to the presence of the double-discontinu-
ity graphs (like the semidisconnected graphs) when
we try to continue the structure function to the
annihilation region (where z is timelike).

Thus we see why a simple relation between the
discontinuities or the structure functions and the
imaginary parts of the amplitude only holds in
cases when the amplitude is real analytic [T*(s*,z)
= T(s, z)], rather than when it is conjugate symmet-
r1C [T*(s+,z*)= T(s, z)].

Using the Cutkosky formula, we can identify
disc, T, disc„T„and disc, T, on their cut-free sec-
tions of the real axes, with the non-Born-term

parts of the structure functions C (s, z), P(M, z),
and D(z, s), respectively. The conventional func-
tions W and 8" are trivially related to C and P, re-
spectively. The Born terms give nonanalytic 5-
function contributions to C, P, and D.

To understand the main features of the analytic
structure of the discontinuities, we first consider
the example of disc, B. This was explicitly evalu-
ated in the last section. We leave the detailed dis-
cussion of higher orders to a subsequent publica-
tion. We find from this calculation that for fixed
real s„&(m, +m, }', disc, B(s»z) is analytic in the
whole z plane except for a pair of anomalous singu-
larities at f(ss, z) =0. For ss &(m, +m, )',
disc, B(ss, z) =0. Since disc, B(ss, z) is not re-
quired to be analytic in s~, this sudden disappear-
ance of anomalous singularities for ss &(m, +m, )'
should not be surprising. When A.(M', m, ', p') &0
(Euclidean case) the anomalous singularities are
at complex-conjugate points z, (s}. When
A.(M', m, ', i1 ) &0 (non-Euclidean case) the anoma. -
lous singularities consist of a pair of virtual anom-
alous singularities on the real axis. We note that
there are no cuts along the real z axis in
disc, B(ss, z), even though B(ss, z) does have a cut
(m4+i1)'&z &~. This just reflects the fact that
disc, B(s„,z) must only contain ordinary and virtual
singularities of B which correspond to adding lines
to the reduced graphs defi. ning disc, B. It could
have real cuts for z &0 if the virtual singularities
were branch points, or if it had vertex correc-
tions as in the graphs of Fig. 19. The real cuts
would join the pairs of virtual branch points and
extend to infinity from normal threshold branch
points.

For fixed zs the above formula of disc, B(ss, zs)
was used without the 8 function to define it for all
s, and we noticed that it had both the s-channel
normal threshold branch points (instead of only
one like the amplitude). This is easily understood
by the fact that in trying to analytically continue
this formula to s below (m, +m, )', we necessarily
cross over into the unphysical sheet in the s plane
of one of the amplitudes B(ss sic, z„), and there-
fore as a function of s the disc, B necessari1y ex-
poses the singularities on both the physical and the
adjacent unphysical sheet. This is also seen from
the definition

disc g = g(( —B(

where the numerical subscripts denote the sheet
of the normal s-threshold cut. We see that disc, B
must carry the singularities of both the first and
the second s sheets. This complicates the study
of its analyticity in the comp1ex s plane, and
that is why we restrict ourselves to the complex
z plane keeping s fixed.
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Keeping v fixed also complicates the analytic
structure in the complex z plane, since

disc, B(v„,z) =disc, B(sR —zR -M', z). (95)
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FIG. 19. Typical double-discoritinuity graphs
leading to real cuts in the discontinuity functions.

From this relation it is clear that the analyticity
of this function cannot be simply related to the sin-
gle-variable analyticity of any amplitude, since
for fixed v~, complexifying z requires simulta-
neous complexification of sR and, as indicated
above, this exposes all the singularities on the
unphysical sheet of the s plane, all of which are
not known to us. Besides the Landau singularities,
the unphysical s sheets can carry the second-type
singularities and also the singularities which come
from the divergence of the sum of the perturba-
tion series. "

Thus great care must be exercised when discus-
sing the single-variable analytic continuations of
the discontinuities across moving branch cuts, to
make sure that the analytic continuations are
meaningful (that is, there exists a reason for the
discontinuity to be an analytic function of one vari-
able), and that the singularities coming from the
unphysical sheets of the amplitude are correctly
taken into account.

We should, however, observe that since the
discontinuities across given fixed normal cuts do
not have these normal branch points, the inclusion
of crossed-channel diagrams does not affect their
single-variable analyticity, as it did for the am-
plitude.

To summarize, we find that in general
disc, T(sR, z), disc„T(uR, z), and disc, T(zs, s)
across the respective fixed normal s, u, or z
threshold cuts are analytic functions of the second
complex variable when we fix s, u, or z, respec-
tively, at real values. Besides the real normal

W(s = u, v) = + W(u = s, -ar), (96)

where the Pauli principle gives positive sign for
scattering off bosons and negative sign for scat-
tering off fermions. The inelastic-eleetron-
scattering experiments measure W(s, &u) for

threshold cuts (coming from double-discontinuity
graphs like those of Fig. 19) they carry the ordi-
nary (complex) and virtual (real) anomalous singu-
larities. On the other hand, the non-Born-term
parts of the inelastic structure functions C(sz, z),
P(u~, z), and D(zR, s) are boundary values of these
discontinuity functions, respectively, on and only
on the cut-free part of the real axis.

Since there are no real singularities for space-
like zR &0, the non-Born-term part of the inelas-
tic-electron-scattering structure function
W (ss, zz) [or C(sR, zs)] for fixed real sz is a.

boundary value on the real z axis of an analytic
function in the experimentally accessible region
zR& 0. This is not true in general for timelike
zR & 0, due to the presence of double-discontinuity
graphs (like Fig. 19) causing real cuts in the re-
gion zR & 0, and due to the presence of real virtual
anomalous singularities. If, however, for some
dynamical reason the contribution of the double-
discontinuity graphs (like the semidisconnected
graphs) vanishes, and the real cut joining the

pairs of virtual anomalous singularities lies out
of the timelike region of interest, then in this cut-
free timelike region the WNB(s~, zR) is again a.

boundary value of an analytic function. An exam-
ple of such a dynamical reason" ' ' is the trans-
verse ra.omeniuzr1 cutoff and s- ~ limit in the
Drell-Levy-Yan model, which causes graphs like
those of Fig. 21 to give a vanishing contribution.

As far as the complex part of the z plane of
disc, T(s~, z) is concerned, we find from the for-
mula for z, (s) that the complex anomalous box
singularities move towa, rds the right (Rez & 0) or
left (Rez & 0) half plane depending on whether

(M —m, —y.') is negative or positive. For a
single-loop Feynman graph, baryon conservation
requires (M —m, —p') to be negative, so that the
left half z plane is singularity-free. This inequal-
ity is even stronger for box singularities from
multilooped Feynman graphs (Fig. 20), since m,
and p, now represent the sum of the masses of the
reduced legs WP and v z, respectively. Thus one is
justified in expanding W as a Taylor series in

z for fixed real s in the region Rez&0. '"
As an interesting application of these ideas, we

study whether we can use the general cr.ossing
relation between the inelastic-electron-scattering
structure function W and the annihilation structure
function W to relate inelastic electron scattering
to annihilation. " Crossing implies that
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FIG. 20. Typical reduced Feynman graphs leading to an anomalous box or triangle singularity at t = 0 and the
corresponding "tautened" dual, diagram.

s & (m, + m4) and 1 & v & +~, while for the annihila-
tion cross section we need W(u, &u) for u& (m, +m, )'
and -1& co& 0, which can be obtained from the
crossing relation if we know W(s =u, &u) for s
& (m, +m, )' and 0«u& 1. But, for a general graph,
disc, T(s, &u) for fixed real s has a normal thres-
hold (real) cut &o,„&&u &+1, together with real cuts
joining pair of virtual anomalous singularities that
lie in the region co &+1. Therefore, in general the
boundary value (above the cut) of disc, T(s, v) for
fixed real s does not represent WNs(s, td) in the
region + ~+1 owing to the presence of real cuts,
and so the crossing relation cannot be used.

However, if the amplitude T is restricted to the
class of t-channel ladders with point couplings" ' '"
(corresponding to a multiperipheral production of
intermediate states), then disc, T is free from
the normal threshold cuts in +. One still has the
real cuts connecting the virtual singularities in
the region ~ & +1, but these generally lie at a
finite distance away from + =+1. Under such con-
ditions we obtain a cut-free interval from +,& &
& ~ with co, & 1, where the boundary value of disc, T
gives C(s, co). We can therefore use crossing to
obtain P(u = s, td) in the limited region -1 & +& -&o, .
This result for finite energies is the analog of the
result obtained by Drell, Levy, and Yan" " for
asymptotic energies. On the other hand, we find
no reason at finite energies for the analyticity
conjectured by Pestieau and Roy.

Further discussion of the analytic structure of
the discontinuities and the inelastic structure
function will be undertaken in separate publica-
tions. There we will use the method of dual dia-
grams' to generalize the analysis to all orders
of Feynman perturbation graphs at t =0, and show
that the only Landau singularities that appear on
the physical sheet of the complex z plane for
fixed s =ss + ie (or vice versa) are the s-indepen-
dent normal z-threshold branch points (for real
timelike z & 0) and a set of anomalous singularities
z,(s), which move with s, and correspond to the
single-loop box or triangle reduced diagrams.
Their 'equation is given by
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FIG. 21. The dual diagrams for Feynman graphs
representing scattering amplitudes and vertex functions.

z (s) =T + K —(M —p K)(s —r —p)/(2p)

+ [ x(M', p, K)x(s, ~, p) j "/(2 p), (97)

where P, ~, and z are the squares of the sum of
the masses of the bottom, top, and vertical re-
duced legs, respectively, as shown in Fig. 20.

In the case (Euclidean) in which the lower ver-
tex is internally and externally stable, X(M', P, K)

& 0 and the z, 's represent a pair of complex-con-
jugate ordinary anomalous Landau singularities
when X(s, 7, p) &0 [i.e., s& (Wz+Wp)']. On the other
hand, in the case (pseudo-Euclidean) in which
X(M', p, «) & 0, the z, 's represent a pair of virtual
anomalous singularities on the timelike part of
the real x axis. The physical z sheet is defined
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FIG. 22. Typical possible dual
diagram for leading singularities
of the VFC amplitude.
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to be the sheet of the normal z-threshold cuts
(or the lowest-order Landau singularities) that
carries the physical boundary. The box and tri-
angle singularities are coincident at t =0.

These facts follow" "from the following con-
sequences of the Landau equations and four-mo-
mentum conservation. '

(1) The dual diagram for the VFC amplitude
(t = 0) has to be drawn in a two-dimensional plane
and is triangular (Figs. 20 and 21).

(2) A two-dimensional dual diagram with l inter-
nal dual vertices (corresponding to l independent
loop momenta), and N internal dual prongs (cor-
responding to N different internal line momenta),
must satisfy ¹ 23+1 to give a nontrivial solu-
tion of the Landau equations.

(3) A P pr-onged internal dual vertex must be
drawn in a (p —1)-dimensional space. Each prong
could consist of multiple internal lines like OA.

and OC in Fig. 20. This condition is called "taut-
ening" of the dual diagram. The only anomalous
singularities found on the physical sheet are the
ones which can climb onto this sheet through the
normal threshold cuts, or through the cuts at-
tached to the branch points which have previously
come onto the physical sheet through the normal
thresholds. The sufficient condition" ' "' for
one Landau singularity to change sheets by mov-
ing through the cut attached to another Landau
singularity, is that their Landau curves "touch
effectively" (or intersect critically). This need
not be a necessary condition if we have acnodes
or cusps, in the Landau curves. Here we assume
their absence. "

For two Landau curves to "touch effectively, "
they must touch and at the point of the touch must
have identical values for al/ the Feynman param-
eters o.. It is easy to see that, in the Euclidean

P '

FIG. 23. Dual diagrams of one-order-lower singu-
larities. P represents the point of "effective touch. "

region, for two Landau curves to touch, the dual
diagram of the higher-order singularity at the
point of touch must simultaneously form the dual
diagram for the lower-order singularity being
touched. For this reason the leading singularity
of Fig. 22 cannot touch the one-order-lower singu-
larities of Fig. 23. This geometric criterion for
touching is sufficient for our proof, since Landau
and Okun and Rudin have shown that in a theory
with stable internal lines the multilooped reduced
graphs with dual diagrams like in Fig. 22 give
leading singularities in the Euclidean region only.
Only the single-loop reductions can give singu-
larities in both the Euclidean (ordinary) and the
pseudo-Euclidean (virtual) regions. ' For the exam-
ples of Figs. 22 and 23, the leading singularity of
Fig. 22 cannot touch the one-order-lower singu-
larity of Fig. 23 because of the tautening of the
internal dual vertex 0, (or 0,). On the other hand,
it can touch the two-orders-lower singularity at
z = (DO, +0+)', but this touch is not effective if
M is stable so that 0&AO, B& m. For it to be effec-
tive we need eogop 0 which cannot happen if the
above condition is satisfied by the angle AO, B.
This just reflects the fact that the reduced dia-
gram corresponding to the 0,0, line being absent
cannot be singular unless both z and M' are si-
multaneously unstable. On the other hand, the
lower-order singularity corresponding to a single-
loop reduction of Fig. 23 can come onto the physical
sheet at P through the normal z-threshold cut.
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