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This behavior implies an analogous exponential vanish-.
ing of the imaginary part of the five-point function. It
would be very interesting to have a physical explanation
for this behavior.

The same results are obtained by a direct calculation
of the asymptotic behaviors.

Explicitly,
tX -+cR - Q -$ & -b 1aa» xxo xxb

2b~+[-abb+aaa+axx —Axxb(mb ) Ofxxb (mb ) —11,

~x 5' ~bx+O'box -1
2 2 2b5'+I-abb -ax~ -abx 2mx —2mb +~bbx(mx )

For reasonable masses arid intercepts both brackets are
negative so that the diagram in (AS) has a higher power.
However, for example, for sufficiently negative inter-
cepts the second bracket is positive.
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By an explicit calculation of the high-energy behavior of the three-point function in the
A.ps theory, through terms of order A, s, we demonstrate that the eikonal approximation for
generalized ladder exchange fails in that model, for this vertex function. In a given or-
der, it underestimates the exact asymptote.

The high-energy behavior of Feynman graphs and
of field-theoretic amplitudes is currently studied
with the help of the eikonal approximation. " This
technique has been extended from its original do-
main of applicability, fermion-vector-boson mod-
els, to other field theories, in particular the XQ'

model. ' The latter model has two important fea-
tures which make it an attractive theoretical labora-
tory: (1) The (hopefully) inessential complications
of spin are absent and the Feynman rules are cor-
respondingly simple; (2) Regge-type behavior has
been established in this theory. Unfortunately,
there is no proof that the amplitudes of this model,
when evaluated in the eikonal approximation, bear
any relation to the high-energy asymptote of the
exact expressions, even in perturbation theory. In-
deed, a recent investigation by Tiktopoulos and
Treiman4 of certain scattering graphs, involving
crossed ladder exchanges, indicates that there may
exist groups of Feynman diagrams whose high-
energy behavior is not necessarily given by the
eikonal approximation.

The purpose of this paper is to publicize the fact
that the generalized ladder exchange graphs, con-
tributing to the three-point function (vertex function)
in the A.P' theory, when calculated to fifth-order
perturbation theory, possess "leading logarithms"
in the high-energy region which are not properly
given by the eikonal approximation. This result
makes use of an old calculation, performed some

I (p, q)=X+ X

=P Q

FIG. 1. Generalized ladder graphs, through A,5,
which contribute to I'(p, q).

years ago by one of us (R.J.) in connection with the
evaluation of the high-energy behavior of the vertex
function in a spinor-vector-meson theory: quantum
electrodynamics. ' For the latter theory, the eikon-
al approximation correctly describes the high-
energy asymptote, at least order by order in per-
turbatioh theory. '

The use of the eikonal techniques to calculate the
vertex function is just as plausible as the analogous
computation of the scattering amplitude sirice the
eikonal approximation is correct in this context for
spinor-vector-meson theories. ' Because our cal-
culation is in a (relatively) low order of perturba-
tion theory, all the contributing ladder exchange
graphs can be analyzed completely, and it is evi-
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dent that the noneikonal contributions do not disap-
pear from the sum. Moreover, the noneikonal part
is of the same form as the eikonal result; thus,
there is no easy way to separate one from the other.
Therefore, we conclude, in agreement with the con-
jecture by Tiktopoulos and Treiman, that the eiko-
nal approximation cannot be used in the A. (P' theory.
The three-point function is the first amplitude for
which the eikonal method fails, and this is, in our
opinion the'simplest example of that phenomenon.

The details of our calculation are the following.
The leading logarithms, arising from generalized
ladder exchange and contributing to the vertex func-
tion I'(P, q) on the mass shell (P' = m'=q') with
large momentum transfer [-k'= —(p —q)'» m'],

FIG. 2. Parameter
labeling of I'5&(k ).

are represented through fifth order by the graphs
of Fig. 1. These graphs have the following integral
representation7:

r(p, q) =A. +x'r, (k')+x'r, .(k')+x'r„(k'),

r, (k') =i t, [(r'+2p r)(r'+2q ~ r)(r' —m')] (2)

I'„(k') =—,Or'+2p r)[(r+s)'+2p (r+s)][(r+s)'+2q (r+s)](r'+2q r)(r' —m')(s' —m')j ', (3)
d'rd's

r»(k') =—,f(r'+2p. r)[(r+s)'+2p (r+s)][(r+s)'+2q (r+s)](s'+2q s)(r' —m')(s' —m')} '. (4)
drds

These formulas are written in analogy with quantum electrodynamics. They are not the complete vertex
function in this theory for two reasons: (1) Self-energy and selected vertex correction graphs have not
been included; we have not analyzed the behavior of these (2) I.n a scalar theory, the crossed-ladder ex-
change graph enters as —,'X'r»(k') in Eq. (1) because of symmetry effects; i.e., the direct ladder is enhanced
by a factor of 2 relative to the crossed ladder. However, this numerology does not lead to an exponentia-
tion of the vertex function [see Eqs. (6) and (7) below], and we shall ignore it. The asymptotic formulas
for (2) and (3) may be readily found by straightforward computation or from the literature. ' ' These ex-
pressions, in the limit -k'» m', are

r, (k')- (I/32m'k')In ~k /m'
~,

I'„(k')——,
' [I;(k')] '.

The calculation of I'»(k'), which is outlined below, yields

r„(k')-—', [r,(k')] '.

(5)

(6)

Therefore, we find the following asymptotic form for the fifth-order leading logarithms arising from gen-
eralized ladder exchange graphs:

r,(k') = r„(k') + r„(k')-—', [r,(k')] '.
The eikonal approximation, applied to the third-order contribution r, (k'), is correct':

4

r, (k2) =i,[(2P ~ r)(2q ~ r) (r 2 —m 2)] '- r, (k').

(6)

s, d4rd 4s
2 2 2 2 —1r () )—= — 2, ((2) r)(2) ( + )((2q ~ (r ~ s))( ' — ')( — ')) ' ~ )

4

(2v)8 2p r 2p ~ s&
+ ~([2P (r+s)](2q r)(2q s)(r' —m')(s' —m')j '=

2 [I;(k')]'.

In passing from the first to the second lines in the right-hand side of (10), the integrand was symmetrized

(10)

On the other hand, when the fifth-order ladder exchange graphs are evaluated in the eikonal approximation,
the following incorrect result is obtained:
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in s and x. Thus, in the usual way, the eikonal approximation leads to an exponentiation,

I' (P, q) =Xexp[A.'I', (k')].

Unfortunately, as a comparison of (8) with (10) indicates, this result is in error.
We emphasize that the analogous eikonal computation in quantum electrodynamics appears to be correct.

In that theory one finds, as -k'- ~,"
/k2

f
.r"(p, a)- y" ('(p') = y" r (I') = ey" exp (,(n' (12}

where p, is the photon mass. The validity of the eikonal approximation in this theory has been checked
through seventh order, "and as we shall argue below, this should be true to all finite orders.

We now indicate the derivation of (7). Two independent methods are presented. The first makes use of
a parametric representation for I'»(k'). The second employs the modified Feynman rules which are useful
for studying high-energy behavior. These rules were developed by K. Wilson and one of us (R.J.)' and are
analogous to Weinberg's infinite-momentum rules. ' The parametric representation for 1»(k') is

1 2
I' 5(k2) =

2 do. ldnSdPIdPSdyldy25(1 —c(I —n2 —P, —P, —y, —y2)D ',
7T p

D= —k'f +m2(g+2f),

f = P,rl(o', + I2.)+c(,y, (PI +P,) + o(,P,((2.+ P, ),

g = [(cIS+r, )(P. + YI)+ (cII + Pl)(P, + YI)+ (o(I + PI)(I2, + y, )](y, + y, )

+[c(,'+(P, +P.)'](c(.+r,)+[P,'+(I2, +IS.)'](P.+r, )+( .o' P+.')( ll+P, )

(13a)

(13b}

(13c)

(13d)

Here the parameters are associated with the propagators as indicated in Fig. 2.
Clearly the leading contribution for large ~k2

~
arises from the region of parameter space where f van-

ishes. In order to expose that region, we first make the following transformation:

+I +I+I) Pl oIP1 I P2 oIP2p Yl +I'& d&IdPIdPSdrI- «IdPIdPSdrIIII'«, 5(I —(2,' —P,' —P.' —rl );
I tf ~2 o2+2p Pl oSP1 I Y2 oSr2 I «Id~2dPldr2 —d~I'd~2 dPI dr2o2'«25(I —&1 Pl +2 Y2).

Next, we scale all remaining sets of parameters which can cause f to vanish when they themselves vanish
(in the terminology of Tiktopoulos, "these are the "minimal sets"):

o(I' Plnl "p-o.2'- PIn2'p dc(I'dc(2 dISI "dc(-2'pldpI5(1 —121'" —n );2

Pl PSPI y r.'- p.r.", dP,"dr.'- dp,' "dr,"p,dp, 5(1 P,"'
r2 —)j-

+1 PS+I Yl P3YI +l dyl +1 dYI P3dP35(1 ~I' rl )-
Pl P4PI I P2 P4P2 e dPI dP2 dPI dP2 P4dP45(1 Pl P2 )I

With these substitutions, we have

2 I
r„(e') =(, da, da, dd, dd, dy, dy, da", da, dp, dp,"dp, d"p",dp, (a,a, )'p,p, p,p,p,

77 p

oloSPIPSPS+ I oSPI+2 oloSPSP4PSPI oIP4P2 +IPSrl oSPSr2

( +SPIPSPS I oSPSP4PSPI P4PS PSYI } ( PIPSPS+I PSP4PSPI Pl+2 P2Y2 )

x 5(1 —PSPS(2I —o(2"}5(1—p4pSPI —y2")5(1 —y,"—PSISI )5(l —PS" —p,p, )5(1 —(2I —P, )D

(14)

In the above, D is to be expressed in terms of the new variables. When this is done, it may be observed
that the leading asymptote comes from that region of the p, integration where p, is near zero. Hence we
set p, to zero in all the 5 functions, as well as in g. In f, p, is set to zero whenever it is compared to a
nonvanishing variable. Equation (14) now simplifies to the following, when the remaining 5 functions are
used, and the superscripts are suppressed:
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1I' (k ) dv d vdp dp dp dp dp v', v p p p p~ 5(1 - v —v )1.6m

x 6(I -P -P.)«I -P2-P~)(lk'I v(v2P(P2psM~5+ m') '.
There are eight disjoint regions of integration that contribute to the leading behavior of I"»(k ). These
arise whenever p, as well as any one member of each of the following pairs are near zero: (v„v,), (p„p,),
(p„p,). (There are eight ways to select one member out of each of the three pairs. ) Each region gives

(I/I «')'(I/4! Ik' I')&'(
I

k'
I
/m').

Hence
r22(k') =—,'(I/32((')'(I/ I

k' I')»'(
I

k'
I /m ').

This verifies (7).
We now discuss the second evaluation of (7}. The method involves decomposing each propagator into two

pieces,

(r2 —m2+ie) '=(2((I„) [(ro —(d„+ie) ' —(r2+(d)„—ie} j, &u„=—(r +m )' 2,

and performing all integrations over the zeroth components by closing the contour. Evidently this decom-
position results in 64 "secondary" diagrams which describe I'»(k'). From this set, only those are selected
which have the property, at large momentum transfer, that a denominator can get very small during the
integration. The dominant contribution can come only from these. One is then left with two secondary dia-
grams. These have the integral representation"

I"22(k ) =I, + I2,

l, =(1/2' s') Jd sd's ((Ps;p), ,

(,=(1/2"s')f d'rd's l(p —r s p),

[I(r, s, P)] '=u)p „(o„(up „,(o„„(d,'((dp „+(o„—(up}((dp „,+&„„—(02+m)

x (&u2 „,+((), +(()„—(dP+ m}((d2 „,+(d, +&@„—&o2).

(16a)

(16b)

. (16c)

(16(i)

Ne have presented the integrals in the rest frame of q. To evaluate them, one notices that the region of
integration

R~: p )~» r Il»sll»m»s /'2s ~~»r q'2r jJ, r, s»m2/ R/

gives the following contribution" to each integral I,:
i(s( = I2"( =

2 (I/32(( ) (I/
~
k ( )ln (~ k ~/m )

In addition to the region R„ there also exists the disjoint region R„"
2' P II II P II

r I( II m J. / II / (PII
2 2/

which gives the same contribution as R, to each integral I;:
(18)

(This is evident from the fact that I, is related to I, by the transformation r p-r. ) Th-erefore we find, as
before, "

r„(k') = —,
' (I/32&')'(I/I k' I')ln'(I k'

I
/m').

One may understand the failure of the eikonal ap-
proximation, in this model, in the following fash-
ion. Working in the brick-wall frame, p = (p', p},
(I =(p', -p), k = (0, 2p), we may route the large 3-
momentum p through the crossed diagram in the
four ways depicted in Fig. 3. The eikonal approxi-
mation correctly reproduces the sum of I'»(k )
with one of the routings of Fig. 3(a} or 3(b). The

presence of the additional routings indicates that
the eikonal approximation underestimates the true
answer, which is what we have found. Further-
more, it is clear that in a spinor-vector-meson
theory, where the outside legs of Fig. 3 are fer
mion propagators with numerator factors, the di-
rect routing of Fig. 3(a) dominates the alternate
routings, Figs. 3(b), 3(c), and 3(d}. The reason
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FIG, 3. Routing of large momentum through crossed
graph. The heavy lines carry "hard" momentum; the
light lines carry "soft" momentum.

for this is, of course, the presence of momentum
factors in the numerator. Therefore, one would
not expect the eikonal approximation to fail in that
model, and explicit computation confirms this
hope. Finally we remark that the phenomenon dis-
cussed here certainly is present in higher orders.
For example, the graph pictured in Fig. 4(a) has
the eikonal routing given in Fig. 4(b), and the non-
eikonal routing of Fig. 4(c). Note that the non-
eikonal routing is of length 4, in contrast to the

FIG. 4. Graph which possesses noneikonal routings:
(a) full graph; (b) eikonal routing of length 6; (c) non-
eikonal routing of length 4.

eikonal, which is of length 6. Hence the former
is 0( ~lP

~
') and dominates the latter, which is

o(I~I-')
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to the exponentiation of the lowest-order result.
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The explicit evaluation is given in Ref. 5. The second
region, R2, was erroneously omitted in Ref. 5. Note,
however, that already R& gives a noneikonal result; the
contribution from R2 makes the discrepancy even larger.
We emphasize here that the principal results of Ref. 5
are not affected by the omission of R2, since that region
does not contribute when one is discussing quantum elec-
trodynamics.
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