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Following Mueller, we relate the single-particle production cross section for the process
a+b x+ anything to a discontinuity of the six-line amplitude a+ b+ X -a+ b+ X. Using the
dual-resonance model for the six-line amplitude, we obtain an explicit form for the produc-
tion cross section at high energies. The formula exhibits the expected features of limiting
fragmentation, an invariant central region, and triple-Regge asymptotic behavior. In addi-
tion, it has a universal cutoff in transverse momentum of the form e 4~&-L in the central re-
gion, where b is the universal trajectory slope. We discuss for particIe production some
general consequences of duality in the missing mass. For example, we relate the behavior
of two-body scattering amplitudes at wide angles to the transverse-momentum dependence of
production cross sections. Finally, we discuss the possible experimental relevance of our
results.

I. INTRODUCTION

Despite their phenomenological shortcomings,
dual-resonance models' (DRM) have proven to be
an extremely valuable theoretical laboratory for
investigating the consequences for scattering am-
plitudes of the requirements of analyticity, cross-
ing, and Regge asymptotic behavior in the absence
of constraints imposed by unitarity. It is remark-
able that two-body DRM scattering amplitudes pos-
sess such phenomenologically plausible high-ener-
gy features as narrow forward peaks and an expo-
nential decrease at fixed wide angles, even though
achieving thorough agreement with experiment
seems to be impractical. '

Mueller' has discovered an ingenious method for
describing single-particle production at high ener-

gies in general terms, using Regge-pole phenome-
nology. He has shown that single-pole dominance
in Regge exchanges at high energies leads to a
limiting distribution of produced particle momenta,
i.e., the distribution has the property of limiting
fragmentation, an invariant central region, and
triple-Regge behavior. ' However, the Regge as-
sumption alone does not provide an explicit de-
scription of the shape of the limiting distribution,
and in particular does not explain the experimen-
tally observed cutoff in transverse momenta. One
must look to specific models to explore these ques-
tions.

The DRM has the Regge behavior required to pro-
duce a limiting distribution. Accordingly, we have
applied the DRM to a study of the single-particle
distribution.
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We divide the momentum phase space for the pro-
duction of particle x into three types of regions,
appropriate to the single-, double-, and triple-
Regge asymptotic limits in the six-point function,
and a fourth region corresponding to an asymptotic
limit at fixed missing mass (see Fig. 1). These
regions are as follows.

(i) Fragmentation regions (single-Regge). In the
asymptotic limit appropriate to this region, the
momentum of particle x in the rest system of par-
ticle a (or b) is held fixed as the energy increases.
We call this the fragmentation region for particle
a (or b) Singl. e-Regge exchange implies' that in

the fragmentation region for particle a at high en-
ergies, the number density of particle x, defined
as the production cross section divided by the total
cross section, i.e.,

dp p dv play

approaches a function of the momentum of particle
x in the rest system of particle a, independent of
the total energy and the identity of particle b, given

by

I)
'1 O(y
Ix-&'= x

Ii Wy
Il

X x

b
(iv)

FIG. 1. Diagrams for the six-line amplitude appropri-
ate to the single-Regge (i), double-Hegge (ii), triple-
Regge .(iii), and fixed-missing-mass (iv) asymptotic lim-
its.

Let us briefly review Mueller's analysis and the
general features of particle production. Mueller's
method relates the cross section for the process
a+ b -x+ anything to the appropriate discontinuity
(see Sec. II) in the missing-mass variable of the
amplitude for the process

a+ b+x- a+ b+x.

dp*..= f".( p Pg)d'p/E.

where (E, , P) is the four-momentum of particle x.
A corresponding statement applies in the fragmen-
tation region for particle b.

(ii) Central region (double-Regge). In the
asymptotic limit appropriate to this region the
transverse momentum of particle x is fixed in any
frame of reference that moves parallel to the beam,
while the momentum transferred from both a to x
and b to x grows. Double-Regge exchange implies'
that in the central region the number density of
particle x approaches a function of the transverse
momentum of particle x, independent of the total
energy and of particles a and b:

dp"., = f"(P.)d'p/E. .
(iii) Triple-Regge region. Let us construct the

invariants from the momenta for particles a, b,
and x, as follows:

s„-=(p —p, )
momentum transfers

s,„-=(p„—p, )',

s„=(p, +p, )'., total energy

M' = ( p, +p, —p„), missing mass.

The triple-Regge form applies when both s/M'
and M' are large with s,„- (or s,„-) fixed. This is a
region near the phase-space boundary for fixed
transverse momenta, but not so close at a partic-
ular total energy that the missing mass is too
small. We may write' the number density in the
triple-Regge region for particle a as

dp,",=(M'/s, ~)~& o' 'I '«'h", (s„-)d'p/E„, (1.6)

where n(s,„)is the lea-ding trajectory coupling to ax
and o.v(0) is the intercept of the leading trajectory
coupling to bb. A corresponding expression applies
in the triple-Regge region for particle b. The tri-
ple-Regge form (1.6) is most compactly expressed
in terms of the invariants, but may also be written
in terms of P~ and p~~ in the rest frame of a, since
for large s„, these are functions of M'/s„and
s,„- (see Sec. II).

Both the triple-Regge region and the central re-
gion can be regarded as special limits of the frag-
mentation regions. In the DRM the asymptotic
limits can be taken in any order, so that the tran-
sition among the various regions is smooth.

We have derived (Sec. III and Appendix A) the dis-
tribution functions f"„f,", h", , h,", and f" in the
DRM. Perhaps the most striking feature of our
distributions is a universal exponential cutoff at

4plarge transverse momentum of the form e ~~ in

the central region. Transverse momenta are also
limited in the fragmentation region. Such a re-
striction on transverse momenta in high-energy
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collisions is a familiar experimental result. We
believe the predicted cutoff is a general conse-
quence of Regge asymptotic behavior, crossing,
and analyticity, having the same qualitative validity
as the narrow forward peak and wide-angle behav-
ior of the two-body DHM amplitudes.

(iv) The region of fixed missing mass. This re-
gion is an elliptical ring in the phase space of P.
As the energy increases it moves tow'ards the
phase-space boundary. In this region the standard
phenomenology of four-line amplitudes applies.

It is important to observe that four-line phenom-
enology gives an alternative dual approach to ob-
taining the distribution functions. Although this
observation can be shown to have validity indepen-
dent of the specific DRM, let us describe it in
somewhat more detail in that model. 6 The missing-
mass spectrum is then a discrete set of narrow
resonances at o.(M') =N The. contribution to the
limiting distribution from a resonance with large
N agrees closely with the distribution obtained from
Regge behavior described in (i)-(iii). This is anal-
ogous to the result for the four-line amplitude that
the residue of the Nth pole has the behavior N"" for
large N, agreeing with the discontinuity in energy
of the leading Regge behavior. As the total energy
increases the ellipse corresponding to a given res-
onance moves towards the phase-space boundary.
Thus we see that for sufficiently large N, the con-
tribution from a given resonance traces out the en-
tire limiting distribution as the total energy is in-
creased. ' Qf course, how large N must be may de-
pend upon the region of phase space under consid-
eration.

This result is a particularly useful application of
general dual principles, since it relates the energy
and angle variations of differential cross sections
for a+ 5 —@+M' for fixed resonant mass to the lim-
iting distribution for the production of particle x.
For example, it suggests that in general it may be
possible to relate the observed exponential cutoff

in p~ in production distributions to the behavior
near threshold at fixed angle and large resonant
mass in differential cross sections. We will dis-
cuss these observations in greater detail in Sec.
IV and Appendix B.

In the concluding section we discuss some prob-
lems in reconciling our results with unitarity in the
DRM.

II. GENERAL CONSIDERATIONS

After establishing our notation, we discuss the
generalized optical theorem, the kinematics of the
regions (i)-(iii) above, and the dual diagrams
which contribute in these regions.

A. Notation, Optical Theorem, and Kinematics

We find it convenient to use an all-incoming con-
vention for particle momenta (see Fig. 2). The
momenta p, (= -p,-) and p, (= -p;) are thus positive
timelike, whereas p; (= -p, ) is negative timelike.
The invariants of interest are

M'= (p, + p, +p„-)', missing mass

s„=(p, +p, )', total energy

s,„-=(p,+p„)', -
momentum transfers.

s,„-= ( p, + p„)', -

With our conventions, in the physical region of in-
terest, variables with two unbarred or barred la-
bels are positive "energy" variables and those with
one unbarred and one barred label are negative
"momentum transfer" variables.

The "correct" discontinuity in the missing-mass
variable is the one which gives the sum over inter-
mediate states of the modulus squared of the pro-
duction amplitudes. There are four variables in
the forward six-line amplitude, which have normal
thresholds in the physical region for the process
a+b-x+M'. These are s„and s~ (the incoming
and outgoing total energies), M'—= s„„-, and s,~,

X
dab

Sob d&p/E
I

X X

FIG. 2. Kinematics and optical theorem.

DISC M2
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(the "crossed-energy" variable). We have not
studied the prescription for taking the correct dis-
continuity for a general amplitude. In the case of
the DRM we find that amplitudes containing singu-
larities in the variable s„„donot contribute to the
asymptotic limits, so we ignore these singularities.
The correct discontinuity is then obtained by en-
circling only the singularities in M', keeping s„
fixed above and s~ fixed below their respective
singularities. This will have important conse-
quences in what follows.

Since we are interested in the limiting single-
particle production distribution we will be consid-
ering in general the limit

S~b ~ +~ + 2&
~ Sgb ~ +oO —$6~

a
X

b

a
X

b

a
b
X

Q

a ~ Q

xf 'ix
b4 Jb

X

a
b

a a
X X

b b

a a

a
b
X

I

Q X

b a
x b

a 'a x
b
x b b

X

a
b

and
M +~ tie.

(2.1)

op
bx (2.2)

Furthermore, in the various kinematic regions
discussed in Sec. I, we have'

(i) Fragmentation of a:
I a

b
X

X X

a ab, b

a

X

with s,„-, s„/M fixed. This is equivalent to fixing
the momentum of x in the rest frame of a, since

s -=m '+m ' —2m E
and

s„/M' = [I - (Z„-p, )/m, ]-'.
Fragmentation of b:

Sax

with s„-, s„/M' fixed.
(ii) Central region:

S — Sax ~ bx

(2.8)

(2 2')

(2.4)

with s,„-s,„-/s„—= e fixed. One finds in this limit the
important relation

I!,"=p~ + m (2.5)

(iii) Phase-space boundary of fragmentation re-
gions: In addition to (2.2) or (2.2'), we have

s„/M'-+~. (2.6)

Of course, the corresponding limits are simulta-
neously taken with s~, s,-„,s;, .

B. Dual - Resonance Model

In the usual DRM for the six-point function there
are contributions from -', (6 —I)!= 60 distinct dia-
grams corresponding to the different permutations
of the external lines. However, we shall see that
only seven of these contribute to the limiting sin-

FIG. 3. Four classes of diagrams contributing to Disc~2.

gle -particle-production distribution.
Only the 18 diagrams which have a, b, and x ad-

jacent can contribute to the discontinuity in the
abx(M') channel. These 18 can be grouped into
eight topological classes. In Fig. 3 we show four of
the classes; the other four classes are obtained by
inverting the order of the three lines on one side of
the diagram; for example,

aa ba
xx ~ xx
bb ab

For visual clarity we have introduced the notation

'M Z

v y =B,(p„,p„, p~, p„,p„p.),
W X

which, for typographical convenience, we shall write
in text material as [„' „' "].

Only the first three classes of diagrams in Fig. . 3,
consisting of a total of seven distinct diagrams,
contribute to the limiting distributions. To see this
we use the symmetry properties of the dual ampli-
tudes discovered by Plahte. " Using these proper-
ties we can express each of the 18 diagrams as a
simple multiplicative factor times any given single
diagram with some trajectory intercepts modified.
Thus, we have as representative results, "

a a~

Disc~2 b b

xx

a 0
sinv(n„+ n,„—n„„-)sinn-(n~ + n, „- —n,„-,) Disc~2 x x

sinn(n„—n„;)sing(n~ —n~„)
(2Va)
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Discjtf2 b x
xb

aa
sinw(n„+ n, „- —n„„-) D.Disc@2 ' X x

sinw(n „—n.b„-)
(2.Vb)

Disc~2 X X

ab

aa
sinw(n„„- —n, „- —n,„-)sinw(-n -)sinw(-n, „-)aha ax bx ax bx .Dis c

sinw(n„„- —n,„-)sinw(n„„- —n, „-)sinw(-n, „- —n, „-)

(2.Vc)

To derive the above expressions we have used
Plahte's linear relationships [see his Eq. (3.3)] .
In general, for the six-point function these are re-
lationships between five different diagrams, but
taking the discontinuity reduces them to relation-
ships among three diagrams, which in turn can be
reduced to relationships between pairs of .diagrams
by taking imaginary parts. The sine factors are
very easily obtained in this way. Determining the
modifications of the trajectory intercepts requires
some labor but fortunately is irrelevant to what
follows.

The importance of Eqs. (2.V) and their analogs is
that they relate all the diagrams to Disc„b[; "„-',].
In the asymptotic regions of interest [Eqs. (2.1)-
(2.6)], the standard integral representation for this
function is defined and the function is real. The
sine factors thus contain all the information on the
phases of the diagrams. As they- stand these fac-
tors are infinitely oscillating and do not have a
weQ-defined asymptotic limit. To give meaning to
the asymptotic limit along rays in complex n„,
n,„-, and n, „-, we adopt a phase convention, fixing
the phases of n„, -n,„, -n, „- (and nlrb, -n;„-
-n;„) to have the same sign when they are asymp-
totic. This choice of phases will be justified fur-
ther in Sec. IV. We only remark here that the same
problem arises in defining the asymptotic behavior
of the four-point function at fixed momentum trans-
fer or fixed scattering angle at high energy.

With the above phase convention it is straightfor-
ward to verify that the diagrams contribute in the
various kinematic regions as follows:

(i) Fragmentation of a:

xx
~ ax

bb bb
xa, aa
bb bb

(2.8a)

Fragmentation of b:

aa aa
xx, bx, xb, bb
bb Xb bx xx

(2.8b)

(ii) Central Region:

x x
b b

(2.8c)

The contributions of diagrams other than the ones
listed vanish exponentially due to the sine factors
when the variables are taken to infinity in the com-
plex plane. The fact that the diagrams contribute
as shown above is very satisfying, since they are
precisely the ones which have the required Regge
behaviors to produce limiting distributions accord-
ing to Mueller's analysis [see Sec. I (i)-(iii)] .
Thus, for example, the four diagrams contributing
to the fragmentation of a are the only four diagrams
with Regge trajectories in the bb channel. (Note
that these diagrams provide the signature factors
for the Regge trajectories in the ax and ax channels
entering in the triple-Regge vertex, since the sine
factors reduce to the usual Regge phases. ) Also,
only one diagram of the 18 has the required double-
Regge behavior and it is the only one we find con-
tributing in the central region.

III. LIMITING DISTRIBUTIONS

In this section we present and discuss the explicit expressions for the limiting distributions [Eqs. (1.3),
(1.4), and (1.6)] in the DRM. The derivations are given in Appendix A.

We assume the standard form for the dual six-point function. ' Thus, for example,

x x = Jl t dx, dx, dyx, "» '(1 —x,) "« 'x, "bx '(1 —x,) "az 'y " '(1 —y) "«
0 0 ~0

x (1 —x y) aax az aa (1 —x y) aax az aa (1 —x x y) +aa +bb +aaz +aax (3.1)
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(i) Fragmentation Region. In the fragmentation region for 5 we obtain directly from Eq. (A3) and the
definitions (1.2} and (1.3) the contribution of [; „-' ,'] as follows:

"=(:..)"(-'-)"'(-'")'
bx bb aax

x dy, dy, e(1 —y, —») y,
0 0 &ax

bg bb ~aaz bb
+ aax+ aax

~
~

&ax &ax &ax

From
a M'

Q (3b. Sf1b

ax y
ab and ™ax

y
a%7

n M-' ' n M
(3.4)

and the analog of (2.3), we see that f", is a function of the required variables (p~ and p,(). In obtaining
(3.3}we have assumed o.„-= c(v, where o.v is the trajectory dominating in the total cross section

V
lr

ab F(+ + 1) ab
(3.5)

This natural assumption is necessary to obtain a finite limiting distribution. As discussed in Sec. V, we

feel that the most realistic choice for av i.n our model is the P trajectory.
The contributions to fb of the other three terms can be obtained by permuting 5 and x and/or 5 and x in

(3.3) [except in the first factor (a/n„)" ] and thus have a, very similar form.
Near the phase-space boundary, i.e., the triple-Regge region (iii), we have from (3.3) and the relation

M'+ rn '+ m, '+ m ' = S,+ S —+ Sb-,

V Sb bx' Sb b&

0 0

Performing the integration explicitly and observing the phase definition (2.1), we find for the sum of the

four diagrams"

F(-&Xb» —c(b„+Qv + 1)
(3.6)

From (3.6} we see clearly that the opposite phases of s„and s~ are necessary to insure the reality of pp, .
Expressions for f", and h", can be obtained by interchanging a (a) and I) (h) in the above.
(ii) Central Region. As discussed in Sec. II, f„gets a contribution only from the diagram [; „"-',]. From

the definitions (1.2) and (1.4) and the results (A8) and (3.5), we have

f*(),)= ~' dzz "*'(1 —z) -* ' Dist.,»»„,»;»= )
I' o(v+ I K

0
(3.7)

wher«=p~ ™„.In (3.7), 'U is the usual two-Reggeon-single-particie vertex":

y, "' 'exp —y —y +
~ 0 0 x (3.8)

(3.9)

In order to obtain the finite limiting distribution (3.'I), we have made the natural assumption that n„=a„--
= QV

As p~' z- ~, f" has the behavior

f (P,)b= DmI'(c(v+1)2 «» "»»» '"v '(p )-'"v 's 'b&'--
The distribution has a remarkable exponential cutoff in transverse momentum, restricting p~' to values
around —,

' (GeV/c)', in qualitative agreement with experiment.
We have computed the function f* to study its behavior at low values of p, ' and to make a cursory com-

parison with experiment.
We plot the function f" for two choices for the intercept nv in Fig. 4 and two choices of the mass of the

produced particle in Fig. 5 (for a trajectory slope of 1/GeV'). The curves are normalized to unit area.
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FIG. 4. Transverse momentum distribution for particle
production in the central region for particle mass squared
0.02 and vacuum trajectory intercepts -0.5 and 0.5. The
curves are normalized to unit area.

Io s ) I I I I I t I ) I i I

0.2 0.4 Q.6 Q.8 I.O I.2
p

FIG. 5. Transverse momentum distribution for particle
production in the central region for particle mass squared
0;02 and 0.5 and vacuum trajectory intercept 0.5. The
curves are normalized to unit area.

We find that for a~ = 0.5, a value which we prefer (see Sec. V), the average value of p~' for m„'=0.02 is
(p~') =0.10. This value is determined more by the sharpness of the low-p~' distribution that the asymp-
totic behavior e '~L . As shown in Fig. 4 the distribution is less sharp for lower intercepts. This is sug-
gested by the asymptotic form (3.9). The distribution is also less sharp for larger masses (Fig. 5). For
m„'=0.5, (p~') =0.16. The average values of (p~) for m„'=0.02 and 0.5 are 260 and 360 MeV/c, respec-
tively, with nv =0.5. The distribution for m„'=1.0 (not shown) differs only slightly from the distribution
for m, '=0.5. Figures 4 and 5 were calculated with a„-„=a„-„-=0, but they depend only weakly upon this
parameter as might be expected from Eq. (3.'f). We have not studied the p~~ dependence of the transverse
momentum. distribution in the fragmentation region.

Experimentally, the momentum distributions are quite a bit broader. " Average values of p~ for pions
range from 300 to 500 MeV/c and the distributions fall off less rapidly at large p~ . Crabb et al. ' report
an exponential falloff of e "~~ for the w' distribution in the range 1 &p, ' & 4 (GeV/c)', an exponential rate
slightly greater than half of ours for this range. Nevertheless, considering the limitations of the model,
chiefly its neglect of unitarity, we find the qualitative resemblance to experimental distributions to be
quite impressive.

IV. DUALITY

A consequence of duality for the four-line DHM
amplitude is the following: The discontinuity of the
amplitude near the pole at a, =N behaves like

which for large N is

~Nag

(
)5(a, —N) (4.1)

DiscB(-a„—n, )= w
' 5(o., -N),F(o., +N+ 1)

r N+1 r a, +1
On the other hand, the discontinuity of the Regge
asymptotic form is
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p$Disci'(-o, ,)(-n, )"& =
I'(o. , + 1

(4.2)

Clearly the integrals over (4.1) and (4.2) from o.',
=N- —,

' to n, =N+ —,
' are very nearly equal.

In the same way for sufficiently large N the nar-
row resonances in M' in the six-point function will
give a good approximation to the Regge behaviors
(i)-(iii) and thus the distributions given in Sec.
III.' Each such resonance corresponds in the
phase space of particle x to an ellipse which for
zero width is a 6 function with a weight equal to the
differential cross section for producing the reso-
nance. In the center-of-mass system of a and b,
the ellipse is a circle of radius

~"2(M' s m ')
2QS,b

where A. is the usual symmetric function (see Fig.
6). Thus, if N is large enough, we expect the
limiting distributions to agree with the resonance
contributions on the average.

As the total energy s„ is increased, each given
resonance ellipse moves toward the boundary and
new ellipses appear at the center. From the above
discussion we thus expect each ring to trace out an
approximation to the complete limiting distribution
as it moves from the center to the edge. Thus one
might hope to obtain the full distribution from an
experiment at one fixed missing mass. The ques-
tion is, of course, how large that missing mass
must be. We discuss this question in general terms
below.

In Fig. 6 we have indicated the regions near the
boundary of phase space which correspond to the
Regge and fixed-angle behaviors of the four-line
amplitudes. Consider first the Regge behavior of
a+ b —x+ M' at fixed s,„-. A given narrow reso-
nance at n =N gives a contribution

1

d3p/~ p ayp ~~ai ab t bvI
x t2g ab bb

(4.3)

This Regge behavior should hold if s„»N. If a
limiting distribution is approached in the fragmen-
tation region of a, (4.3) must become a function of
the nonasymptotic variables s„/N and s,„-; thus

(4.4)

which agrees with (1.6)." Thus the assumptions of
duality, two-two Regge behavior, and existence of
a limiting distribution imply the triple-Regge be-
havior. We note that the Regge behavior (M')"v in
the six-line amplitude is responsible for the term
(M'/s„)"» in the triple-Regge analysis. It is there-
fore expected that the resonances in M' will repro-
duce this behavior only for large ¹""We remark
that the narrowness of the forward peak should be
correlated with the concentration of the single-
particle spectrum around small values of p~ in this
region.

The behavior in the remaining phase space is as-
sociated with the fixed-angle behavior of the two-
two amplitudes. Experimentally, two-body cross
sections fall exponentially in energy at fixed angle

Circ fes corresponding
to reson nces

Regge-
fixed s~g

~A-)i A~
AA

WML a
fragmentation /pl centra) 7jj(+ fragment

n. n. r of a x iieet XX XX) X)i XXX)r of b
in, X X /xv'xi x/i/i/%AA MM

V. Xl'
Y VV
/X /X /I

Regge-
fixed sb-„

FIG. 6. Center-of-mass
momentum phase space for
particles at a given s,b.
The regions indicated on
the boundary are the appro-
priate regions of the four-
line amplitude.
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(o0', 180'). One might expect that this explains at
once the experimentally observed limitation on
transverse momenta. However, it must be borne
in mind that the central region of the limiting dis-
tribution is a region of high M' with s=M', i.e.,
energies near the threshold for producing the
missing-mass resonance, rather than with s»M',
i.e., far from threshold, as. is conventionally
meant by asymptotic behavior at fixed angle. In the
absence of applicable experimental data we return
to the DRM to study the relationship between the
asymptotic behavior near threshold and far from
threshold at fixed angles and large missing mass.
The behavior is in fact somewhat different. At

P~] =0, the behavior near threshold is e
agreeing with the limiting distribution, whereas for
g»M' it is e ~""' ~~ . To study further the rela-
tionship between these behaviors we have examined
the simpler case of the five-point function for
a+ b- a+x+ 5, where the corresponding behaviors
are e ~-L and e '"' ~& . The results of a calcula-
tion of g„(p~) [corresponding to f(p~)] for various
N is shown in Fig. V.

Each curve has a gradually increasing logarith-
mic slope c in e '~j- . For N=1, the wide-angle
slope c =4 ln2 has practically been reached at v= 1,
but for N= 10, there is only a small departure from
c =1. The deviations are consistent with a theoret-
ical evaluation of the correction to c = 1 in this
model, i.e.,

c= 1+( xX/)"' +O(x/X).

Although the s»M' fixed-angle behavior does not

N =IO

-6
N=5

-8
0

N=l

FIG. V. Plot based upon the five-point dual-resonance
model, illustrating the rate at which contributions from
various resonance cross sections approach the limiting
curve. The curves for resonance spins N =1, 5, and 10
are shown. The limiting curve is N =.

explain the limitation in transverse momenta, we
find the existence of the two different exponential
behaviors very intriguing.

Finally, we return to the important question of
the definition of phases in Eq. (2.V). Consider for
simplicity the residue of the lowest pole in M' in
the six-point function (N = 0). Similar arguments
apply to higher poles. The full residue for the sum
of all permutations" is

[B(-o,,„-, a~„)+B-( n-, ~, o,„-)+B-( n-, ~, n~„-)] [B-( n-;„, -n„-,)+B-( n;w& n;„)-+B(--n~~, u~„)]-
isn(wa, „+a,„-) sinw(a„+ n,„-), , sinw(o. ~ o.,-„) sinw(o. ;;+ n;„)+ '" + '" + ~ex~ ~rx ~singe, ~ Sln7rCK, ~ l

Sing e ~ singe &

(4 8}

where we have suppressed some modifications of
trajectory intercepts. %'e note that the sine factors
are undefined unless some choice of phase is made.
In the wide-angle region we believe the appropriate
choice is to let n„, -o.,„-, -o.~„- (and a~, -n,-„,
-n;„) have the same phase. " Then all the sine fac-
tors vanish exponentially. Considering the smooth
connection discussed above between the behavior in
the central region and at fixed angle, it is especial-
ly appropriate to make the same choice of phase in
the central region. This again causes the sine fac-
tors to vanish exponentially. ~

V. CONCLUSION

Instead of applying the Mueller analysis to the

six-line amplitude to construct the production spec-
trum in the DRM, one could sum explicitly the con-
tributions from multiparticle production, repre. -
senting the 2-n scattering amplitudes with the DRM.
Because the amplitudes are not unitary, one does
not expect the-results to agree. By the same token,
one would not expect the imaginary part of the for-
ward 2-2 amplitude to agree with the sums over the
partial cross sections computed from the 2-n am-
plitudes.

Is it possible then to justify working with the six-
line amplitude at all'P The work of DiGiacomo et
al."suggests that the agreement between the two
approaches may be better than one might have ex-
pected. In their treatment of the DRM, zero-width
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resonances are taken to be the limiting case of
narrow-width resonances that are explicitly unitary
in the Breit-Wignbr sense, i.e., the residues of the
resonances are taken to be proportional to their
widths. With this interpretation, the tree graphs
containing direct-channel resonances satisfy uni-
tarity near the direct-channel poles. Thus these
authors were led to look elsewhere for "Pomeran-
chuk" contributions, namely, to contributions from
loops arising from trees without direct-channel
resonances.

We suggest, however, that such a treatment ne-
glects an important multiperipheral effect in the
2-n amplitudes, which is seen most clearly if one
displaces the poles from the real axis. Then the
n-particle production amplitudes in the DRM have
a multi-Regge asymptotic behavior for large sub-
energies. If they are approximated in this way,
they satisfy the criteria for a multiperipheral mod-
el of n-particle production. With an arbitrary
choice for the strength of the vertices, it is likely
that such amplitudes, when integrated and summed
over n, would produce an output pole different from
the leading input pole. In the multi-Regge sense,
therefore, we suggest that unitarity need not be
satisfied by the tree graphs with direct-channel
resonances. We agree with DiGiacomo et al. that
including other graphs is likely to produce a
Pomeranchuk effect even when the Pomeranchuk is
not incorporated in the tree graphs themselves. We
believe that the dual features of the six-point func-
tion are best suited for a treatment .of "non-Pomer-
anchuk" effects in production distributions. There-
fore, we are justified in using the six-line ampli-
tude only to the extent that, having neglected the
Pomeranchuk effects, the results of the two ap-
proaches can be made consistent with a judicious
choice of the trajectory intercept.

How seriously should one take our results? If one
insists upon an experimental application, we sug-
gest that the most realistic choice for the leading
vacuum pole in our expressions is the P' trajectory.
Since, at sufficiently large energies, the Pomeran-
chuk trajectory will prevail, our results should

apply only at intermediate energies, where the P'
still has strength, or in combinations of cross sec-
tions which exclude the Pomeranchuk trajectory.
However, any experimental application will be
hampered, because our expressions inherit the
usual difficulties of DRM's. For example, tachyons
cause singularities in the fragmentation distribu-
tion, and other DRM's beside the one of Ref. 9 can
be constructed. We believe, therefore, that our
results will be chiefly of theoretical interest. Nev-
ertheless, we suggest that such features of the
model as the exponential cutoff in transverse mo-
mentum have the same general validity as the high-

energy- two-body features of narrow forward peaks
and an exponential falloff at wide angles; indeed,
the coarse agreement with experimental distribu-
tions is further indication that the model is quali-
tatively sound.

Note added. In the final stages of this work we
received preprints of two studies independent of
our own of single-particle distributions in the dual-
resonance model, by Gordon and Veneziano" and

by Virasoro. " Gordon and Veneziano discuss the
contributions to single-particle production in the
spirit of Ref. 27 and emphasize the importance of
loop-type diagrams. They restrict their explicit
calculations to the fragmentation regions and ob-
tain results similar to ours, although they do not
obtain an explicit form for the discontinuity in M',
except in the triple-Regge region. Virasoro obtains
expressions essentially equivalent to ours for both
the fragmentation and central regions for a particu-
lar choice of trajectory intercepts and masses.
However, on a number of points, particularly on
the question of which diagrams contribute in the
central region, his interpretation differs from ours.
He calculates the contribution of [;,' *„-] and notes
that this gives a finite contribution in the central
region only for particular choices of the trajectory
intercepts. His result agrees with ours (Appendix
A) if the sine factors are neglected. However, with
our interpretation of the sine factors, regardless
of the intercepts, the only diagram contributing in
the central region is the one that satisfies Mueller's
requirement of double-Regge exchange. We find
this more appealing.
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APPENDIX A: CALCULATION Op LIMITING DISTRIBUTIONS

Vfe give here the details of the calculation of the appropriate asymptotic behaviors and discontinuities of
the dual six-point functions necessary to obtain the limiting distributions (1.S)-(1.6). Our method is first
to calculate the appropriate asymptotic behavior [see Eqs. (2.1)-(2.6)] and then to take the discontinuity in
M', i.e., we take the discontinuity of the Regge asymptotic form of the amplitude.

(i) Fragmentation Region. We calculate the contribution of the diagram [; *„-', ] in the fragmentation re-
gion for h (the contribution of the other three diagrams can be obtained by permuting fp and 7 and/or h and
x [see Eq. (2.8)]). For this diagram the standard dual six-point function is

'a a
Xx =J J dx, dx,dyx, "» '(l-x, ) "« 'x, "oa '(1 —x) "aa 'y " '(1 —y) "« '

0 0 ~0

g (I —X y) aaaa++a{{++ad (I X y) aaaa a{Ta+a{aa (I —X X y) a{aa {da$'+d{aaa+d{a{Ta,
(Al)

We take the asymptotic limit c{, n„, n~, n,„, {x;„---«, where the integral representation (A1) is de-
fined and then continue to the desired region {x, {x„,n;a -+«and o.„-, n;„- -«[see Eqs. (2.1) and (2.2')].
In this limit we observe that the dominant contribution to the integral comes from y= 1. Using the usual
techniques, i.e., substituting y = I+z/o{ and taking the leading-order term, we can do one integration to
obtain

a a Oo 00

x x „-, , I'(-o.„-)Jt [ dz, dz,z, "» '(I+z, )"aa "a» "«a z, aaa '(I+z, )a&a'a&~ "«*

y(I+Z +Z ) {dair -a5{a+aa{aa+aaa( O{ O{ Z ~ Z )a{a{{

where we have made the change of variables z, =x,/(1 —x,), z, =x,/(1 —x,). We immediately observe that
in the limit we have taken, the right-hand side (A2) is purely real. As we continue o., {x„,and n;a to
their respective physical regions (2.1), an imaginary part develops due to the last factor in the integrand.
Care must be taken when we take the discontinuity in o. so as not to enclose singularities in o.„and a;~
(see discussion of Sec. IIA). Of course, the diagram we are considering has no singularities in these
variables, but the other three diagrams do. A detailed study shows that for all four diagrams the discon-
tinuity in n(M') is given by

aa
Disc~8 x x

bb

+0 40

Q Q Cf~e «CXyP + Cfog» + Otg gg
ce (AS)

+m

with the appropriate permutation of b and x and/or h and x. In writing (AS) we have made the further
change of variables y, = -(o.,„-/n)z„y, = (na, /n)z, -We rema. rk that the integrand of (AS) is purely real
and any imaginary part comes from the factors ( a„/n)"-» and (-e;a/n)"» appearing for the other three
diagrams. Although individual diagrams may be complex, the functions f," and h," are purely real as re-
quired since the sum" of four diagrams is taken.

(ii) Central Region. There are two ways of calculating the asymptotic behavior in the central region.
We can obtain it by taking the a»-, n;, --« limit of the results above for the fragmentation region for 5 (or
the c. -, {x- - —« limit for the fragmentation region for a). Alternatively, we can take the bmit (2.4) di-
rectly on the six-point function. These two ways give the same result. Here we use the second method as
it leads directly to an elegant expression.

It is convenient to begin with the choice of variables corresponding to the tree diagram shown in Fig. 8:
a a
xx =

~t ~[ dx, dzdx, x "« 'z aa« 'x aa& '(1 — ) "« '(1 —z) aa{{r '(1 —x) "'"
04& Jo

1-x,z —x,z+x,x,z)x (1 —xgz —xaz +xgxaz) (1-x,z)(l —x,z)
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where we have taken ~,„-=~,-„,o.,„-=u;„.
The asymptotic behavior is first obtained in the limit o., 0.,„-, o.„„---~. The important region of integra-

tion is x„x,=0. The usual exponentiation procedure easily gives

aa I
, (-a -)"-(-,-)"" ds '(1- ) " "U — „-;

)0
(A5)

where

K = naxQb-/Q (0
and

'U(a„a„'x)= f de, de, e, ' 'S, ' 'exp(-S, —S, + ' ')
0 0

(A6)

(A7)

is the usual two-Reggeon-single-particle vertex function. " Considered as a real analytic function of x, 'U

has a branch cut for 0 &x&~. This branch cut through (A6) gives a cut in n for 0.&n &~. Therefore, we
have

aa
Disc~2 x x

bb

K
, (-a -)"-{-a,-)"» de*" * '(1 —s) ' * ' Diseei a,,—, „-;*=

)0

(A8)

where we have now replaced K by K since they are asymptotically equal. Further, from (A7), we easily
obtain

7rDisc„u(n„n„x) =,
1) dy, y, "& '(y, /x - 1)"be "

= ve x &4'(a +1, -a +n +1 x),

which can be written in a symmetric form:

Disc„'U(n„a„x) = Ke " ' ' x 4(n, +1, —n, +n, +1;x)+ ' ' x ~&4(a, +1) —n, +n, +1;x),F(a, —n, ) F(n, —n, )
F(n +1) ' '

F( ,n+1)

(A9)

where 0 and 4 are the usual confluent hypergeometric functions. "
To obtain the asymptotic behavior for large z =P~'+ m„', we make use of the asymptotic behavior of 4,

which yields

Disc„'U(n„a„x)„-,„Kx "& (A10)

and of the fact that z= —, dominates (A8). This yields Eq. (S.9). We note that in the fragmentation region
for b, large P, corresponds to large n,„=a;„.-For large n,„-, Eq. (AS) has a. dominant behavior coming
from y» y, = 2, which is easily seen to give a factor

2™ai
0

2Ay~ 2Q~g1- (A11)

This factor provides a cutoff in transverse momentum in the fragmentation region and goes smoothly over
to the behavior e "in the central region.

We have already argued in Sec. II that only the diagram computed above contributes in the central region.
However, it is interesting to use Plahte's relations' to examine more closely the behavior of the other
diagrams. We find, for example,

aa
Disc„2 b b

xx
sins(n. b+ n,„—n.~) isn( vnb+ Q~-—n,—;„)

Disc g2
Sln7I'(a b

—n b )slnv(n II
—"n-b„)-

aa
x x
b b

where, on the right-hand side,
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&bb- ™aa+~xx ~ ™xxb &xxb —»~

& b
—&b-+a. b- —1,

&ab ~ ™bx+&ai »

&am bx + &bx + &aa +xxb»

(A12)

and

+aax +bx+ bx++aa ~ ™xxb

aa
Disc„a b x

xb

sinn(n„+ n, „-- n, ~) isc~2
sins(n„—n„„-)

aa
x x p

bb

where, on the right-hand side,

&xb ~ ™bx+&bbx»

:&ax ab &bx + &abx»

&aalu- ~ ™bx+Otbx++aa &xxS- ».

(A13)

Suppose we apply the replacements (A12) and (A13) to (A8) to obtain the behavior of these diagrams in the
central region. 'z Owing to the replacements of n», except in special eases like n(0) =-m'=1, these dia-
grams will have a different dependence on the asymptotic variable e„-.' Regardless of the sine factors,
only the diagram [; "„- &] can have, in general, the behavior (-n„-)"'&=( n~) v,-which is required to give
a finite, nonzero limiting distribution.

APPENDIX B: BEHAVIOR OF RESONANCES IN MISSING MASS

We calculate the contribution of a given resonance in I in the six-point dual amplitude and show that
for large mass it agrees with the limiting distributions of Sec. III and Appendix A, thus confirming the
duality of the resonance and Regge behaviors discussed in Sec. IV.

In order to simplify the computations, we consider only an illustrative example with the following parti-
cular choice for the nonasymptotic trajectory functions:

Qt ——Qbb —Ck ——A — — ——CM -b —Qbb —Qbb- — 1.

In this case, Eq. (3.1) becomes

x

xx = dxdxdyx, '1 —x, 'x 5' 1-x & 'y '1 —xy 1 —xy"
0 0 0

from which one easily obtains

r(-n„+N- I)r{-n„,+N-I ) r(-n-.„+I)r(-n- + I)
F(N- I+1)r(-n,„- —n „+N- I) F(I+1)r(-n- —np„+ l) ' (a2)

Inspecting (B2) for large N, one can see that the main contribution comes for both N and N- I large
Therefore, we take I=zN, (N /) =(1 —z)N -and make the replacement

N

-Nf dz.
t-o 0

Then, using Stirling's formula, we obtain

, z»-~ z& ~N»-gZ»-zN
For the fragmentation of b we must take the further limit n,„-, n;,- -~ in (83). We then have

aa 1
W dZ cy ~ » ~- ~Ex
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One can show that (B4) is equivalent to (A3) for the special choice of trajectories (Bl).
In the central region we must take o. —,e,„-,0.;„,o.~„--~ with fixed ~. It is easy to see that

(B5)
aa

F CfZ K/g (y g)Resa=~ » vrge ~ (1 )
~

cental

which agrees with (A8) for the choice (Bl).
The dual expression (B2) for the discontinuity in I' is also useful for studying many other features of

limiting distributions, for example, the symmetry properties (2.7).
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Explicitly,
tX -+cR - Q -$ & -b 1aa» xxo xxb

2b~+[-abb+aaa+axx —Axxb(mb ) Ofxxb (mb ) —11,

~x 5' ~bx+O'box -1
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For reasonable masses arid intercepts both brackets are
negative so that the diagram in (AS) has a higher power.
However, for example, for sufficiently negative inter-
cepts the second bracket is positive.
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By an explicit calculation of the high-energy behavior of the three-point function in the
A.ps theory, through terms of order A, s, we demonstrate that the eikonal approximation for
generalized ladder exchange fails in that model, for this vertex function. In a given or-
der, it underestimates the exact asymptote.

The high-energy behavior of Feynman graphs and
of field-theoretic amplitudes is currently studied
with the help of the eikonal approximation. " This
technique has been extended from its original do-
main of applicability, fermion-vector-boson mod-
els, to other field theories, in particular the XQ'

model. ' The latter model has two important fea-
tures which make it an attractive theoretical labora-
tory: (1) The (hopefully) inessential complications
of spin are absent and the Feynman rules are cor-
respondingly simple; (2) Regge-type behavior has
been established in this theory. Unfortunately,
there is no proof that the amplitudes of this model,
when evaluated in the eikonal approximation, bear
any relation to the high-energy asymptote of the
exact expressions, even in perturbation theory. In-
deed, a recent investigation by Tiktopoulos and
Treiman4 of certain scattering graphs, involving
crossed ladder exchanges, indicates that there may
exist groups of Feynman diagrams whose high-
energy behavior is not necessarily given by the
eikonal approximation.

The purpose of this paper is to publicize the fact
that the generalized ladder exchange graphs, con-
tributing to the three-point function (vertex function)
in the A.P' theory, when calculated to fifth-order
perturbation theory, possess "leading logarithms"
in the high-energy region which are not properly
given by the eikonal approximation. This result
makes use of an old calculation, performed some

I (p, q)=X+ X

=P Q

FIG. 1. Generalized ladder graphs, through A,5,
which contribute to I'(p, q).

years ago by one of us (R.J.) in connection with the
evaluation of the high-energy behavior of the vertex
function in a spinor-vector-meson theory: quantum
electrodynamics. ' For the latter theory, the eikon-
al approximation correctly describes the high-
energy asymptote, at least order by order in per-
turbatioh theory. '

The use of the eikonal techniques to calculate the
vertex function is just as plausible as the analogous
computation of the scattering amplitude sirice the
eikonal approximation is correct in this context for
spinor-vector-meson theories. ' Because our cal-
culation is in a (relatively) low order of perturba-
tion theory, all the contributing ladder exchange
graphs can be analyzed completely, and it is evi-


