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We suggest that the equal-time commutators between the axial charges and the space com-
ponents of the currents should be modified. %e then present a model which provides a natural
explanation for the value ( = —1 for the ratio of form factors in X» decays and, in addition,
leads to the usual good results of current algebra.

I. INTRODUCTION

Quite successful calculations dealing with strong-
iqteraction processes have been carried out over
the past few years. ' The two main assumptions
employed ig these calculations have been:

(1) the hypothesis that equal-time commutators
(ETC) between current operators may be ab-
stracted from simple models and postulated to be
exact, and

(2) the hypothesis of the partially conserved
axial-vector current (PCAC), i.e., the assumption
that the relevant matrix elements are slowly vary-
ing between q'=0 and q'= -m, ' when ()[2/f, m, ')
x B„A„"(x)is used as an interpolating pion field.
Here A„"(x) denotes the axial-vector current and q„
is the pion momentum.

On the other hand, the application of PCAC and
current algebra to processes involving weak and
electromagnetic interactions has only been par-
tially successful, and in particular, has led to pre-
dictions for the K„decays and the decays m -2y
and q-Sg which are in striking disagreement with
experiment. Notice, however, that there is an es-
sential difference between current-algebra calcu-
lations for strong interactions and similar calcu-
lations for weak and electromagnetic processes, in
that, while the former make use of only the ETC
between the time components of currents, the lat-
ter require in addition the specification of ETC be-
tween their time and space components. It is
therefore plausible that the failure of the calcula-
tions for these weak and electromagnetic decays
may be due to a deviation of the ETC between the
time and space components of currents from their
usually assumed values. "

Motivated by the preceding discussion, we allow
for additional terms in the time-space current
commutators. We then present a model in which
the usual good results of current algebra are main-
tained, and which in addition leads to a successful
description of the K» decays. Unfortunately, the
usual results of current algebra for m - 2y and
g-Sx also remain unaffected. "%'e now proceed
to state our main assumptions.

ot"(o) =+Jo'xx, [)'1(o), o,A;(x)],

o',"(o)=+jo', [~,'(o), o, ~„"( )]:
(1.4)

(4) We shall make use of a slight extension of the
PCAC hypothesis. Before discussing this general-
ization, let us first note that the time-ordered
products T('d~A~(x)Zf (y)) are not covariant' due to
the presence of the extra terms 8~@ and T~~ in Eq.
(1.4). Therefore, a seagull term must be added to
covariantize the off-mass-shell amplitudes. [The
seagull contribution vanishes on the mass shell

(1) Following Gell-Mann, we shall assume that
the usual ETC between the time components of the
16 vector and axial-. vector currents Jt(x) hold,
l.e.,

[q"(x,), v,'(x)] = if"8 1'v,'(x),

[q"(x,),A 8(x)]= if"8 1A,"(x),

[q,"(x,), VB(x)] =if"»A 1(x),

[q, (x,), Ao~(x) ]= if"~ 1vol(x),

where V&(x) and Aol(x) are the time components of
tile vector and axial-vectol clll. 1elite, wllile q"(x,)
and q, (x ) are the corresponding charges.

(2) We assume, as is customary, that the vector
and axial-vector currents J„"(x)transform as octets
under SIJ(3), i.e.,

[q (xo), V„'(x))=if"'"V„'( )x,

[q"(xo), A8(x)] = if"8 F1(x). (1.2)

Actually it lnay be shown" that Eq. (1.2) follows
from Eq. (1.1) and covariance if the vector current
18 conserved.

(2) In dealing with ETC between axial charges
and space components of currents, we make use of
the most general form for these ETC which is
compatible with Lorentz covariance and Eq. (1.1).»'
Therefore, we write

[q, (x,), Vf (x)]=if"81A~1(x)—S~"(x),

Iq;(x.),A'(x)]=if""V,'( ) —x&,'"( ),x

with
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since it appears multiplied by the kinematical fac-
tor (q'+m, ').] Since a seagull is required by co-
variance we are naturally led to interpret PCAC as
the assumption that, if (v 2 /f, m, ')B„A„"(x)is used
as an interpolating pion field, the scattering ampli-
tude is a slowly varying function between q'=0 and
q'= -m, ' in the presence of the "minimal" seagull
addition which is dictated by covariance.

There are two possible ways of making such min-
imal additions of the seagull terms. ' For example,
consider the case of S~s". Denoting the seagulls by
Pe"(x)6'(x —y), these are

(a) P, "(x) =0, while Poa and Ss" are the compo-
nents of a four-vector, or

(b) P8"(x) =0, while PB"(x)=-S,"(x).
The choice (a) corresponds to the case in which the
extra term S~ contributes to the soft-pion limit,
whereas the choice (b) trivially reproduces earlier
calculations. Let us stress, however, that in
either case the presence of the terms S8" will lead
to restrictions on the scaling properties of current
divergences. '

In the following sections we limit ourselves to the
choice (a) for the addition of seagull terms. In
Secs. II and III we present a model for the terms
S," and T8", and show that the introduction of
these terms leads to an understanding of the K, 3
decays. We then show in detail in Secs. IV and V
that the model also yields the usual good results of
current algebra.

II. THE DECAYS E~ glv AND g ~ m' lv

The relevant matrix element for K» decays is
given by

III. TRANSFORMATION PROPERTIES OF
SPACE COMPONENTS OF CURRENTS

In Eqs. (2.3) and (2.4) we have obtained some of
the matrix elements of the terms S~ . In this sec-
tion we consider specific forms for S~B and T~~ .

and

[q", (x,), V„'(x)]= if'«(I+ ~,)A«(x)

[q,"(x,), A a(x)] if"=«(I+ ~,)V„'(x)

(3.1)

(3.2)

Combining Eqs. (2.3) and (3.1) we obtain X,= -1,
whereas Eqs. (2.4) and (3.1) lead to X,= 0. In other
words, A., and A.,' must be dependent on SU(3) indi-
ces in order that Eqs. (3.1) and (3.2) be compatible
with Eqs. (2.3) and (2.4). Moreover, commuting
Eqs. (3.1) and (3;2) with q, (xo) and making use of
the Jacobbi identity, it can be shown that the choice
A.,= -1 leads to a value for A.,' which is given by

X,'= -X,/(I+ ~,) = (3.3)

Thus, the simple modification of only altering the
scale of the usual commutation relations by the in-
troduction of the parameters A., and A.,' is physically
unacceptable.

B. The Model

We now add more terms to the right-hand side of
Eqs. (3.1) and (3.3) and assume, as the next sim-
plest possibility,

A. An Unacceptable Ansatz

Let us assume as our first ansatz for these
terms the following equal-time commutation rela-
tions:

(»'(p) lv„" "(o)lx (q))

=-(I/~2)[f. (p', f)(q+p)„+f (p' i)(q- p} J

(2.1)

[q,"(x,), V8(x)] =if"8 «(1+ A.,)A«(x)

+i«,f 8«B, v«(x)

and

(3.4)

with f = -(P —q)'.
Making use of the soft-pion limit and the ETC

(1.1) and (1.3), we obtain

q„[f,(m»', 0)+f (m»', 0)]

[q", (x,),A,'(x}]=if "(1+Z,')V,«(x)

+iX,'d "3, «(x}, (3 5)

where u«and v«are members of a (3, 3)$(3, 3)
representation of SU(3)ImSU(3). Thus we have

= q —' ——«ls"' "'(o)
I
&'(q)&

(2.2)

[q"(x,), u8(x)] =if„a«u«(x),

[q"(x,), vs(x)] = if„8«v«(x),

[q, (x,), ua(x)]= id 8«v«(x), -

(3.8)

(3.V)

(3.8)

(I~
I
S„"' "'(o)

I &'(q)& = iq„(f»/2)- (2.3)

A similar calculation for the 71» decays yields

(II I
s&"-*"(0)I»'(q)& = o. (2 4)

Assuming that ( —= (f /f, ) = -1, as seems to be the
case experimentally, we then obtain

[q,"(x,), va(x)]=id„s«u«(x). (3.9)

In the above equations the indices I3 and y in d„&&
run from 0 to 8. It should be noted that Eqs. (3.4)
and (3.5) are the most general expressions involv-
ing V„", A,", B~u, and B~ v which are consistent
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y,(I+y,')(f syf sp
—fbs, f y, )

= A.,'(db s yd„y p
—d„s ydb y, ).

(3.12)

Application of the well-known identities satisfied
by the coefficients d sy and f„sy reduces relations
(3.11) and (3.12) to

(1+X,}(1+Zi) =1 (3.13)

with P, C, and T invariance.
We can now commute Eqs. (3.4) and (3.5) with

Q (xp) and Q, (x,), respectively, and use the Jacobi
identity to derive possible relations between (A„A.,)
a.nd (A.,', A.,'). On commuting with Q b(x,) we obtain
only the usual relations between the structure con-
stants f sy and the constants d„sy. These are

fbsyfny p
+ fbnyfy s p fbyp ~nsyr

(3.10}
dbsyf yp + fb ydysp d syfbyp'

On commuting Eqs. (3.4) and (3.5) with Qb(x, ) we
derive

( I+&y)( I+~ )i(f bsyf yp fbypf sy} = fb yfysp

(3.11)
Rnd

Incidentally, one may note that from Eqs. (4.3) and

(4.4) it follows that the vacuum state is not SU(3)-
invariant.

In the GOB model the matrix elements of the di-
vergences of the axial-vector currents between the
vacuum and single-meson states are given by

« I3„&„"'(o) lv(q)&

= [(~2 + c)/rr 31&f1lv' ' '(0) lv(q)& = f.m, '

(4.5)

Rnd

&0 I3„A'„"'(0) IK(q))

= [(~2 —';c)/rr 3 ]&n lv" "(0)IK(q)& = f,m, ',

(4.6)

where c is a measure of the ratio of SU(3) breaking
to that of SU(2)SU(2) breaking. We shall assume
that co -v2 and co 2 P2, because either of these
possibilities would lead to a conserved axial-vector
current and hence to A., =A., =A.,'=A.,'=0. We empha-
size that we need only make use of Eqs. (4.5) and

(4.6) to obtain the A.'s in the GOR model, and hence
do not require in this determination the full set of
assumptions which a,re usually made in that model.

From Eqs. (4.3)-(4.6) we obtain

y,'(1+ x,) + z, = 0. (3.14)
(v 2 ——,'c)

(4 )m»' [(c+R2) —(m„'/m»')(D2 ——,'c)] '

In the next section we present estimates for the
A.'s in some simple models.

IV. EVALUATION OF THE X PARAMETERS

We expect the parameters A., and A.,' to be rather
small. However, we do not expect the terms in-
volving A., and A.,' to be negligible, because their
contribution could lead to a large, negative value
(= -1) for the $ parameter in K» decays. In order
to obtain numerical estimates, we study the com-
mutators of Eqs. (3.4) and (3.5) in the Gell-Mann-
Oakes-Renner (GOR) model' and in the quark
model. '

We begin by writing Eqs. (2.3) and (2.4) in the
form

f (1+x,) + x,&Q I
v' "

I
K' (q)) -=0

Rnd

(4 1)

f.~g+ ~s&II Iv' "lv'(q)& = 1. (4.2)

Thus the matrix elements of the pseudoscalar den-
sities are

c+ W2 (W2 ——,'c)
v 3 [m, '(c+v 2) -m, '(v 2 —-',c)] '

Rnd

m, ' (v2 ——,'c)
m»' (c+ v 2)

1 2 —pc

(4 9)

(4.10)

We note that A., and A.,' are of order (m„/m»)' and

hence terms proportional to A,, and I,,' may be ne-
glected.

Let us next consider the quark model, and as-
sume that the pseudoscalar densities v satisfy the
equal-time commutation relations of the qua. rk
model. Using a saturation scheme for the matrix
elements of these commutators, we may solve for
the matrix elements of the v" given in Eqs. (4.3)
and (4.4) and thereby obtain another estimate for
the A. parameters.

The equal-time commutators for the scalar den-
sities u" in the quark model are

and

&I1 lv' *'lv'(q)& = -(y,/~. )f. (4.3} 888
( )d', " s(y)d'y =-DS '

]t Vy( )d'x.
t6 nr

&I1 Iv' "IK'(q)& = f(l+ &,)/&, . - (4.4) (4.11)
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[tt'(x), Qs' "]= -(t/~3) v"" (4.12)

Moreover, the u transform as members of a
(3, 3)@(3,3) representation of SU(3)S SU(3). [See
Eqs. (3.6)-(3.9).] We therefore have

The solutions for E, , E, , and Ey obtained from
1 2

Eqs. (4.17), (4.18), and (4.19) are used to com-
pletely define the matrix elements (4.16). Then,
using Eqs. (4.14) and (4.15), we solve for the A.

parameters in Eqs. (4.3) and (4.4) and obtain the
following sets of solutions.

I." (x) C '
] = (t/2 ~~ )v (4.13) Solution 1:

On evaluating matrix elements of the commutators
(4.12) and (4.13) between the vacuum and a pseudo-
scalar meson state, we obtain

~, =-S ./(7m, +5,), ~, =~1/(7m, +S .),
(4.20)

X,' =m, /m», x,' =+1/(7m»).

and

(fl lv" "l~(q)& = (~3/2)f. &»(q) l~'I»(q)&

(Qlv""IK (q)& =(-v&)f (K (q)IM'IK (q)&.

(4.14)

(4.15)

Solution 2:

z, = -5m„/(7m»+ 5m, ), x, = +5/3(7m»+ 5m, ),
(4.21)

X,'=m, /m, X,'=T5/(21m ).

and

--,E '+ -'E,' = 0,

4FBF8 =0.

(4.18)

(4.19)

We now evaluate the matrix elements of Eq.
(4.11) between single-particle states and saturate
the commutator with single-particle intermediate
states. Let us define

(g, y~ '~8, a}=(4m y}
~ Qy„'"'),88',

(4.16)

where F„& are the reduced matrix elements. Fol-
lowing Lee's procedure, ' we derive relations be-
tween the F„& by saturating the commutator with
octet and singlet states. [We assume the absence
of exotic mesons belonging to the 10 and the 2'7

representations of SU(3).] We obtain

(4.17)

Solution 3:

X, =-m, /(3m»+m, ), A.,=+1/5(3m»+m, ),
(4.22)

X,
' =m, /3m, A,,' =+1/(15m ).

Solution 4:

»., =-m /(3m»+m, ), A»=+1/3(3m»+m ),

A.,'=m, /Qm, A.,'=+1/(9m ). (4.23)

The content of this section may be summarized
as follows: We have shown that both in the GQR
model and in the quark model A., and A.,' depend on
the ratio m, /m» and hence may be neglected. On
the other hand, the constants A., and A,,' are dimen-
sional constants which are proportional to (1/m»),
where n = 2 in the GOR model and n = 1 in the quark
model. The terms proportional to A., and A.,' are not
negligible and their presence leads to a natural ex-
planation for the large value of the $ parameter in
the K» decays.

V. APPLICATIONS

The applications discussed in this paper will include an evaluation of K,4 decays, the nonleptonic hyperon
decays, the CP-conserving nonleptonic decays of K mesons, and pion photoproduction. In each instance we
show explicitly that the modifications of the ETC between time and space components of currents expressed
by Eqs. (3.4) and (3.5) do not significantly alter the results based on an application of the usual current-
algebra commutators and the soft-pion limit.

A. The E&4 Form Factors

The matrix element of the axial-vector current. in the K,4 decays is defined by

('tt (q)w (p)IA~g(0)IK (k)&=i(2tt) '(8qopoko) 't'(m») '[F,(q+p)~+F3(q-p)»+F, (k —q —p)»],

where the form factors E„F„andF, are functions of the variables

s=-(q+p), t=-(k —q-p)', and q=k (q-p).

Following Weinberg, ' we reduce out both the pions and use the PCAC relation

a„A„(x)=(f,/v 2)m„'cp (x)

(5.1)



BEHAVIOR OF SPACE COMPONENTS. . . 419

to obtain

2/22 3

~2f ~
( 2 2)(p2 2) &2 "(f); ~'(i ) IA'~(0) IK'(&))

' 4 xd yg '~"+~i 0 T 3~A„x; B,AB y;A~ 0 K k
4

The time-ordered product in (5.2) can be expanded as follows:

T(5„A„(x);3.A,', (y);A', (0)) = a, a„r(A„"(x),A„'(y), A', (0)}—5(x, —y, )T([A,'(y), a„A„"(x)]A&',(0)}

—-', 6(x, —y, )T~ + [A,"( ), Ae(y)]A~ (0)
~

(5.2)

5(x3 —y3)T([A3 (x),A.'(y)]A'), (0)}2
gy g~ 0 0

——,'5(x, ) 5(y,) ([A 8(y), [A,"(x),A'&(0)]]+[A,"(x),[A,'(y), A~(0)]])
—6(x,)+[A,"(x),A/„(0)] 8„A3(y)}—5(y,)T([A3(y), A)'(0)] 3„A„"(x)). (5 3)

We utilize the commutators of Eqs. . (1.1), (1.2), (3.4), and (3.5) to simplify the time-ordered product (5.3).
As is usually done, "we neglect the first three terms Th.e first term is of order (q p) and can be ne-
glected; the second term is the o term and its contribution is expected to be small; for the third term we
write

a--2'5(x, —y, )7'~ + [if„„(1+~, 5„,)V„'+id„„),5„,3„u'] 5'(x —y)A', (0) ~,

where the 5„;(i =1, 2, 3) terms arise from the commutators of Eqs. (3.4) and (3.5). The divergence of the
conserved vector current is zero, and the above expression is again of order q' and hence can be ne-
glected. The fourth term includes a K-meson pole and cannot be dropped. The fifth term has two double
commutators and it is straightforward to show, using Eqs. (3.14) and (3.15), that its contribution to the
physical K«decays is unaltered by the presence of the extra terms in the commutators (3.4) and (3.5). The
last two terms do have extra terms proportional to derivatives of the scalar densities u, which originate
in our modification of the usual time-space commutation relations.

On retaining only terms of order p and q, we obtain

1/22 3

&(q

=-'.(f „f„ f „f„„)&f}IA'&.(0)IK'(h))

& '(P)~[f„„(1+~,5„,.)V'„+~, 5„,d.„a, ']~K'(a))

f,m, 2(2v) 3/2(2q, ) '/2

( )
&w"(q)~[f3,(1+X,'5„;)V'+X'6„d()y, 8 u']~K3(k))

+-,'(d —d)„Jd'&e-""'(air(ld. „O+qd„,.)V„'(~) d. „~;d„,. ~„(~))d',(O))13'()))&.

(5.4)

The matrix element of the vector current between a K-meson state and a pion state is given in terms of the
K» form factors [see Eq. (2.1)]. For the present calculation we shall use the value $ = f &/f, = -1 for the
ratio of form factors. However, it may be shown that our results hold for all values of E, (See the .discus-
sion at the end of this subsection. ) We also know the matrix elements of the scalar densities I between
meson states, since by an application of the soft-pion technique they may be related to the matrix elements
of the pseudoscalar densities v between the vacuum and one-meson states. ' Then, using Eqs. (4.3) and
(4.4), we may express these inatrix elements in terms of the A. parameters. We n'ow evaluate the contri-
bution of the last term in Eq. (5.4).
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Consider the matrix elements

I!()() ,fa=x. ' -(D*(T(()...) )) „,.(.)A„!(o))(K'())) (5.5)

)„,.M„&(),() fd=xe '' *(G(T(z, ll„. )„'u'(x)A~&(0))(K~(k)), (5.6)

Again following Weinberg, "we apply Low's procedure for evaluating these matrix elements to O(p) and

O(q). The matrix element MI„ is essentially the one evaluated by Weinberg. " The matrix elementM'„), 5„;
can be expanded in a power series in k and P and we have

5~(M~y(k, p) =(2v) (2ko) ' ' — "
2

"' +5„(a,+ krak, a, +p~k„a, +k~p, a4+p), p, a, + ~ ~ ~ )

where the constant g is defined by the matrix element

&F'(p) la„a'IP'(k)) =ig„.(k —p)„.

(5.7)

(5.8)

On contracting with p„ the left side of Eq. (5.'l) contains only terms O(p') and hence is negligible within
our approximations. (The 5„; factor requires that there be no ETC terms in p,M„),.) On the right side of
Eq. (5.7) the pole term is O(p') and hence it is also negligible. Thus all the coefficients a; in Eq. (5.7) are
zero and the term p, M"„),5„; does not contribute to the K«decays. So all the terms in Eq. (5.4) are known

up to O(p) and O(q). It is now straightforward to extract the form factors in the various K,4 decays after
covariantizing the expressions using the prescription discussed in Sec. I.

The final expressions for the form factors are given below, with A =m„/f„and B=m~fi(/f, '.
(1) IY'- w'v'Iv(. .

E,' = 0, E2 =)!2[-(1+)(i)A+Xi B/2], E3 = (1+)(.,')(B/&2)[k ~ (p —q)/k ~ (p+ q)) .
(2) K —s'w'lv, :

E, =-A, E", =0, and F", = B/2. -
(3) K -n')! lv, :

E,' = -(1+X',)A, F,' = (1+ X,')A+ X,'B/2, E,' = ——,'B[1+(1+X,)k ~ (P —q)/k ~ (P+ q)].

(5.9)

(5.10)

(5.1 1)

We have already shown in Sec. IV that the parameter A, ', is negligibly small. We are thus able to repro-
duce the results obtained by Weinberg" even though we use g = -1. In particular, we obtain iF', i

= iE2
and the decay rate for K'- z'r e'v, is given by"

I'(K'-w'v e'v, ) =2.53x 103 sec '. (5.12)

This agrees with the experimental result of Ely et al."based on approximately 300 events, which is
I", =(2.60+0.30)x10' sec ' with four possible solutions for F,' /E,', namely, -1.61+0.15, 1.33+0.17,
-1.66+0, 15, or 1.12+0.13.

It may appear surprising at first glance that Weinberg's results are reproduced in our model even though

we make use of Eqs. (3.4) and (3.5) rather than of the usual ETC between time and space components of
currents. However, this may be easily understood upon noticing that he makes use of the Callan-Treiman-
Mathur-Okubo-Pandit (CTMOP) relation" while we, on the other hand, also allow for a large negative
value of the g parameter, as suggested by recent experiments. In fact, if one were to assume that ( = -1
in Weinberg's derivation, one would not obtain results which agree with the experimental ones. The effect
of the extra terms in Eqs. (3.4) and (3.5) is to compensate for the deviations from the CTMOP relation so
that Weinberg's results hold. Let us note that although we have presented our derivation only for the value

g = -1, the same results may be obtained for all g. To show this it suffices to note that Eqs. (4.3) and (4.4)
are then correspondingly modified, and the compensation referred to above still occurs.

B. The Nonleptonic Hyperon Decays

We shall discuss the nonleptonic hyperon decays within the framework of the current x current model.
The weak-interaction Hamiltonian in this model is given by

= (G /)) 2 )(J)),J (5.13)
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(5.14)

=-(v&/f„){&'l[q,",II.(0)ll& &+»m [~&(V'+~.')If.~,']JI &'« ""&&(P')l&(x.)[fe„&px),&.(0)11&"(P)).
Cp ~0

O'„=J'„(leptonic) + cos0 (V„+A„)f""~+sin0 (V„+A„)i4' "~.

Following Sugawara and Suzuki, "we evaluate the decays 8"(P)-8 (P')+ w~(q) in the soft-pion limit from
the following identity:

»m [-f(2q,)'~'(2v)"'{&'(0')~ v'(q) I& (o) I~"{f))]
C~ ~0

The Hamiltonian (5.13) is CP-invariant and the terms responsible for the strangeness-changing nonlep-
tonic decays are symmetric under the T Itra-nsformations" [i.e., symmetric under the interchange of the
indices 2 —3 in the SU(3) tensor notation]. From this it follows that only the ETC term on the right side of
Eq. (5.15) contributes to the s-wave parity-violating (p.v. ) decay amplitudes. The retarded commutator
terms in Eq. {5.15) contain baryon-pole terms which contribute only to the P-wave parity-conserving (p.c.)
decay amplitudes. "

With the modifications of the usual current commutation relations [see Eqs. (1.1), (1.2), (3.4), and (3.5)]
the usual chiral properties of the Hamiltonian no longer hold:

(5.le)

Despite this, the sum rules for the p.v. amplitudes derived by Sugawara and Suzuki follow in our model. In
order to demonstrate this, let us consider for simplicity the decay modes in which a neutral pion is emit-
ted. The ETC of Eq. (5.15) is given by

(-~2/f. )[Ql, &.(p v )]
(fasi-ne cos 8/2y ) ([(S'4+P24) —(S"+P")]+5 [x (P"-P")+X'(S'~ —S")]

+ 5„,X,[2[3„v',A'„}-[3„v',A'„] —2(3„v', A'„] +fa„v', A, ,']]
+ 5„,~,'[[3,u', V„']+(3„u',V'„H I, (5.1'I)

S"'=]V" V') (5.18)

The matrix elements of the symmetrized products of currents occurring in Eq. (5.17), evaluated between
single baryon states, yield the p.v. decay amplitudes. (Before evaluating the matrix elements, these sym-
metrized products are made covariant by the "minimal" additions of seagull terms, as discussed in Sec. I.)
We note that the terms proportional to A.,' do not contribute to the matrix elements because, by a partial
integration, they can be expressed in the form {u,d„V~8], and such terms are zero by the conserved-vec-
tor-current (CVC) hypothesis. All the other symmetrized products S", P"', and (3„v",A„] can be ex-
pressed as 2'I and 8, SU(3) tensors. We have therefore reproduced the conditions under which Sugawara
and Suzuki' derived their sum rules, viz. ,

a(A') = -H2W(a', ),

A(= ) =v2&(:-',),

&2&(Z,')+X(Z-) = -A(Z', ),

{5.19a)

{5.19b)

(5.19c)

2A(= ) -A(ao) =(-',)"'A(Z ) = —&3m(Z,') -(-,')"'A(Z', ). (5.19d)

The amplitudes in Eqs. (5.19) have been expressed in the standard notation. The ampIitude A(Z', ) obtains
contributions only from the 2V-piet tensors contained in Eq. (5.1V). In the limit of octet dominance A(Z', )
=0, and the Lee-Sugawara relation"

2X("--)-a(a') =-&3&(Z,') (5.20)

now follows ~'fro mEq. (5.19d).
All the decay amplitudes can be expressed in terms of three paraxneters which correspond to the 2V, 8, ,
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8, matrix elements of Eq. (5.17) between single baryon states. These parameters can actually be evaluated
if the saturation scheme of Chiu, Schechter, and Ueda" is adopted. The procedure is to evaluate the sym-
metrized products of currents by inserting a complete set of intermediate states and assuming that the
octet and decuplet baryon states alone saturate the sum over intermediate states. Further assumptions
have to be made regarding the behavior of various form factors of the currents at large momentum trans-
fer, before numerical estimates can be obtained. It has been shown in Sec. IV that the coefficients A,, and

are small and hence te rm s proportional to these coeff icients can be dropped

forthwith�.

The matrix ele-
ments of. the terms f 8& v", A&s] = -(v", B&A&8) are model-dependent to the extent that the matrix elements of
v between baryon states are not known. However, if we assume that the f/d ratios in these matrix ele-
ments and in the matrix elements of the axial-vector currents are the same, and are close to (

—', )'~', then
these terms will show octet dominance irrespective of the nature of the form factors. " The contribution
of these terms must now be added on to the contribution from the usual S ' and P ~ terms.

So far we have shown that the modifications introduced in. the current commutation relations do not alter
the results of Sugawara and Suzuki for the s-wave decay amplitudes. Since the ETC terms do not contrib-
ute to the p-wave amplitudes, these modifications also do not affect the parity-conserving amplitudes.

C. The Nonleptonic Decays of E Mesons

Throughout the following discussion we neglect CP-violations in K-meson decays and we assume that the
weak Hamiltonian responsible for the decays K- 2n and K- 3n is octet-dominant. A satisfactory theory of
octet enhancement for the decays K- 3n. does not exist; however, for K- 2p the saturation scheme of Chiu,
Schechter, and Veda" has at least yielded a qualitative understanding of this effect in this case. If we also
assume, together with Hara and Nambu, "that the weak Hamiltonian is a sum of scalar and pseudoscalar
densities which have the quark-model' commutation relations with the charges Q and Q,", then the well-
known results of Hara and Nambu, and of Abarbanel" for. the decays K- 3z obviously remain unaffected.
To see this, we note that our assumptions (3.4} and (3.5) regarding the ETC's of current components do not
affect the commutator

[Q,",& ] =[Q", (qgq)+&(q~, r,q)1.

In particular, the current-algebra predictions for the slopes S defined by"

(5.21)

(5.22)

remain unchanged. In Eq. (5.22) A„ is the amplitude averaged over the Dalitz plot, Q is the energy re-
lease in the reaction, and y is the Dalitz-plot variable corresponding to the energy of the "odd" pion.

Let us now study the effects of our modification [Eqs. (3.4) and (3.5}]of the usual current commutation
relations on the calculations based on the current&& current model. Since experiments have shown no sig-
nificant violations of the n.T = —', rule, '3 we will adopt the point of view of Hara and Nambu, "and either (a)
drop the 27-piet terms in the Hamiltonian of Eq. (5.13) constructed from charged Cabibbo currents, or (b)
introduce neutral currents to express the octet Hamiltonian in the form

H (&)
g d (j(cf) j(6)) (5.23)

where g is an effective weak-interaction constant. We next recall that in the soft-pion limit the K-3g de-
cay matrix elements are given by

lim [(2q,)' '(2p)' '(v" (q, ), vs(q, ), v~(q, ) ~H (p.c.) ~K (h))] = -i(v 2/f, )(v (q, ), v~(q, ) ~ [Q,",H„(p.c.)] ~
K (k)).

~1.p ~0

(5.24)

Using the ETC for the currents defined by Eqs. (1.1), (3.4), and (3.5) we can evaluate the commutator of
Eq. (5.24). As mentioned before [see Eq. (5.16)] the usual chiral properties of the Hamiltonian no longer
hold. Thus octet dominance of the currentx current interaction no longer ensures that the matrix elements
of the commutator in Eq. (5.24) will exhibit this property. We shall therefore have to assume that the 27-
piet parts of the matrix elements of the ETC occurring in Eq. (5.24) vanish. We then obtain the Hara-
Nambu" constraints on the decay amplitudes for the currents current Hamiltonian, whether or not we in-
troduce neutral currents:

A(K' —v w'v'; q(w ) = 0) =A(K' —v'v', v,', q(v') = 0)

A(K,'- v'v'v; q(n') =0)=0, (5.25)
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A(K' - w w'w', q(w') = 0) =A(K' - w'w'w', q(w') = 0)

=-f(I/f. )&.'.-I [e."-"',H.(p.c.)]IK'& =A(K'), (5.26)

A(K', - w'w'w; q(w') = 0) =A(K', —3w'; q(w') = 0)

=- (&~/f. )(.'.-l[@.'",H. (p. ')]1K:&=A(K:). (5.27)

We first note that if the amplitudes are expanded in terms of quadratic functions of the meson momenta,
with the condition that in the physical limit the amplitudes are linear in the energy of the "odd" pion,

A(K'(lt) - w" (q,), ww(q, ), w~(q, ))=a+ bk'+ c(q,'+ q, ') + d(q, ') + e[(k —q,)'+ (h —q,)']+f()o —q, )',

then the constraints (5.25), {5.26), and (5.27) lead to the usual predictions for the slope parameters"

(5.28)

S(K',- w'w w') =S, ,—= -4Q/mwo= 0.30,

S(K' - w'wowo) =S,o,= -4Q/mr+,

(5.29a)

(5.29b)

S(K' - w'w w') = S, , =- 2Q/mr+. (5.29c)

These results are in excellent agreement with the experimentally measured values. It should also be noted
that the above results are independent of the magnitudes of the constants A(K') and A(K', ) of Eqs. (5.28) and
(5.27).

We now evaluate the commutators of Eqs. (5.26) and {5.27). If the usual current commutation relations
were used, we would be able to relate the amplitudes for K-3g, and K- 2g. However, in the exact symme-
try limit in the currentxcurrent model the CP-conserving K- 2z amplitudes are zero. Thus an application
of current algebra leads to the unsatisfactory x'esult that in the symmetry limit the K- 3p amplitudes are
also zero. The usual way of avoiding this difficulty is to invoke symmetry-breaking effects to say that the
K- 2m amplitudes do not actually vanish. On the other hand, the application of the commutation relations
of Eqs. (3.4) and (3.5) leads to a different situation. Using the Hamiltonian of Eq. (5.23), we obtain

[Q,",H~o)(p. c.)]=igd, „„((f„„p(V'„',[(1+5„, )t) Af +)).,5„„8,no]}

(5.30)

where d „z includes terms with p=0 and d„„o=(-',)'~'5„„. Just as in the case of hyperon decays, we shall
1

ignore terms proportional to the parameters A., and X, which are negligible. Making use of a partial inte-
gration, we have (V„, 3„u)= -(3„V„,eJ and we can therefore drop terms proportional to X, on invoking the
CVC hypothesis. Retaining only terms which transform as octet tensors under SU(3), we have

[Q", , H~')(p. c.)]=-2fo gH~ )(pv. )+i gdo„„5„,X'[(d„, o(A„"', 3,up]+ ( ', )'~'(At-', 3,uo))+(v, —v,)]

(5.31)

In the above expression we have separated the con-
tributions from B&u and B„u', and also made use
of the coefficients d 8& to project the octet parts
out of the symmetrized products of operators.
Octet dominance of the matrix elements of the
commutator of Eq. (5.31) then leads to the predic-
tion that

A(K') = -A(K,') (5.32)

only for the Hamiltonian of Eci. (5.23). In the case
of the Hamiltonian constructed out of only the
charged Cabibbo currents the relation (5.32), which
is a consequence of the hT =

~ rule, follows only if
in addition we assume that

(2)1/2((3 uo A(4'45) ]): ((3 uo A(4+'bio) )) (5 33)

for the matrix elements between a K state and the
2g final state.

As usual, in the exact symmetry limit the matrix
elements of the first term in Eq. (5.31) vanish.
However, since the matrix elements of the terms
proportional to X,' are not related to the physical
K-2g amplitudes, the K-3p amplitudes are non-
vanishing. %'hen symmetry breaking is introduced,
the decay amplitudes are given in terms of the
amplitudes for K - 2m and the above unknown ma-
trix elements. An evaluation of these matrix ele-
ments is in progress at present.

D. The Kroll-Ruderman Theorem

The Kroll-Ruderman theorem' states that, up to
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the first order in photon momenta, the scattering
amplitude for processes involving photons is given
by the Born approximation. For pion photoproduc-
tion this result also follows by making use of usual
current-algebra ETC and the soft-pion limit. " It
is the purpose of this section to show that our mod-
ification of current algebra does not alter this fact.
To see this it suffices to note that the ETC which is
relevant for these processes is

[Q„l", (o)] = [9„~,'(o)+ (i/v 3)V'„(o)l (5 34)

We make use of Eq. (3.4) to evaluate the above
commutator, and note that for these cases we
should consider the matrix element of Eq. (5.34)
only between states of equal momentum. In addi-
tion to the usual current-algebra term we may have
possible contributions from the terms

&Nl(f~, [f...+ (l/v3)f, ,]&„'

+i~,[f.„+(i/v3) f.„]a„~')IN).

(5.35)

These terms naturally vanish since A., is negligible
and (N~B„v~N) is zero for zero momentum transfer.
The Kroll-Ruderman theorem thus follows in the
usual manner. "

VI. CONCLUSIONS

Arguments based on Lorentz covariance indicate
that the ETC between the time and the space com-
ponents of currents may have terms, in addition to
the usual terms, proportional to the space compo-
nents of currents. ' These additional terms would
affect all earlier calculations involving equal-time
current commutation relations, which arise in the

soft-pion limit. We have presented a model for
these terms [Eqs. (3.4) and (3.5)], and we have
shown that the model leads to a simple explanation
for the large negative values of the $ parameter in
K f 3 de cays . We have demonstrated that the pres-
ence of such terms is sufficient to ensure that
Weinberg's results" for K„decays hold, whatever
be the value of (. Furthermore, the Sugawara-
Suzuki sum rules' for the nonleptonic decays of
hyperons are maintained. The results for the non-
leptonic decays of K mesons would suggest that the
current&& current model for the weak Hamiltonian
which includes neutral currents is preferred over
the Hamiltonian constructed out of charged Cabibbo
currents, because one additional assumption is
necessary in the latter model in order to maintain
the results of the b, T = —,

' rule. This point is under
study at present. The proof of the Kroll-Ruderman
theorem based on the soft-pion limit and current
algebra also remains unchanged.

Thus the modifications in Eqs. (3.4) and (3.5) of
the usual current commutation relations do not
alter the successful results of current algebra. A

possible way of experimentally detecting the pres-
ence of the additional terms in these commutators
would be to study the scaling properties of current
divergences. ' It can be shown' that if the dimen-
sions of the current divergences are less than two,
such modifications must be absent.
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Following Mueller, we relate the single-particle production cross section for the process
a+b x+ anything to a discontinuity of the six-line amplitude a+ b+ X -a+ b+ X. Using the
dual-resonance model for the six-line amplitude, we obtain an explicit form for the produc-
tion cross section at high energies. The formula exhibits the expected features of limiting
fragmentation, an invariant central region, and triple-Regge asymptotic behavior. In addi-
tion, it has a universal cutoff in transverse momentum of the form e 4~&-L in the central re-
gion, where b is the universal trajectory slope. We discuss for particIe production some
general consequences of duality in the missing mass. For example, we relate the behavior
of two-body scattering amplitudes at wide angles to the transverse-momentum dependence of
production cross sections. Finally, we discuss the possible experimental relevance of our
results.

I. INTRODUCTION

Despite their phenomenological shortcomings,
dual-resonance models' (DRM) have proven to be
an extremely valuable theoretical laboratory for
investigating the consequences for scattering am-
plitudes of the requirements of analyticity, cross-
ing, and Regge asymptotic behavior in the absence
of constraints imposed by unitarity. It is remark-
able that two-body DRM scattering amplitudes pos-
sess such phenomenologically plausible high-ener-
gy features as narrow forward peaks and an expo-
nential decrease at fixed wide angles, even though
achieving thorough agreement with experiment
seems to be impractical. '

Mueller' has discovered an ingenious method for
describing single-particle production at high ener-

gies in general terms, using Regge-pole phenome-
nology. He has shown that single-pole dominance
in Regge exchanges at high energies leads to a
limiting distribution of produced particle momenta,
i.e., the distribution has the property of limiting
fragmentation, an invariant central region, and
triple-Regge behavior. ' However, the Regge as-
sumption alone does not provide an explicit de-
scription of the shape of the limiting distribution,
and in particular does not explain the experimen-
tally observed cutoff in transverse momenta. One
must look to specific models to explore these ques-
tions.

The DRM has the Regge behavior required to pro-
duce a limiting distribution. Accordingly, we have
applied the DRM to a study of the single-particle
distribution.


