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A T -matrix perturbation theory for the Faddeev equations is developed in two different ways
giving slightly differing results for the first-order correction to the ground-state energy of
the three-body system, and both expressions differ from the result recently obtained by Fuda.
The application of the theory to the system of three identical spinless particles is discussed.

I. INTRODUCTION

When solving the Faddeev equations, ' a separable
two-body T matrix is often used as input, since
this reduces the problem (after angular momentum
decomposition) to one of solving one-dimensional
(possibly coupled) integral equations instead of the
more general t&o-dimensional equations. In many
applications the potentials one wants to use are not
separable, and consequently the corresponding
two-body T matrices will not be separable, and
thus some separable approximation, T„ to the
actual T matrix must be used. The difference be-
tween these two, Tp = T —T„ the perturbing part
of the T matrix, may not be negligibly "small, "
and it is often useful to be able to calculate the
first-order correction to the ground-state energy
of the three-particle system.

Fuda' has written down such a perturbation ex-
pansion, but he uses a separable T matrix that
comes from a separable potential, while we take
advantage of the considerable freedom in the par-
ticular breakup of the T matrix into separable and
nonseparable parts. Let V= V, + V, with V, sepa-
rable. Then

T = T~ + T2+ Tj 2&

where T, is the solution of the Lippmann-Schwin-
ger (LS) equation for V„T, is the solution for
V„and T» contains both V, and V,. Since V, is
separable, so is T„and it is this that Fuda calls
T ~ ThUS for Fuda Tp'= T2 + T&2 However, T-,

+ T» is also separabl e,' ' and thus it is possible
to identify T, as Tp. The later breakup is advan-
tageous, since T, includes some of the effects of

II. THEORY

We first write the homogeneous Faddeev equa-
tions in the form

(2.1)

where

14)= Pp I (2.2)

(2.3)

with T; given by

T;= V+ VGOT;. (2.4)

In the above equation V,- is the potential between
particles j and k [throughout this paper (ijk) = (123)
or some cyclic permutation thereof], and G, is the
free-particle Green's function given by

V„and Tp may be "small" even when V, is not.
Yaes' has also developed a perturbation expres-
sion, but he emphasizes expansion in terms of
the potential.

In Sec. II we derive two relations for the first-
order correction to the energy, both of which dif-
fer from Fuda's, and in Sec. III we discuss how
the formulas may be applied in order to find the
first-order Coulomb correction to the ground-
state energy for a system consisting of three iden-
tical, spinless, charged particles.
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("o(Z) =
0

(2.5)
since taking the Hermitian conjugate of E(l. (2.11)
gives

(2.6)T(z) = T,(Z)+Z T,(z),
t

where we assume that the solution of the Faddeev
equations for the T matrix T0 is known; i.e., we
know l)))o& and E„where

(Eo -Eo) lfo& = To(zo& lgo&. (2."I)

If we now expand l)I)&, E, T,(E), and T~(E) in pow-
ers of X about their unperturbed values, we obtain

with II0 the kinetic-energy operator. Thus T,. is
just the T matrix, in three-body space, for parti-
cles j and k. We.note that E(I. (2.1) looks like a
coupled-channel Schrodinger equation except that
the "potential" T(E) is energy-dependent.

We now write

&)I) I[E —H —T (E,)]=0. (2.16)

~[~] = &ANIL (E) l~&, (2.18)

Thus from E(l. (2.15) we have, for the first-order
correction to the energy,

)) (t) .I=)'o.) )I t).& . &). -);z ).
(2.17)

If [eTo(z)/Szjz z is small comPared to 1, we re-
produce Fuda's result.

We can derive another equation for the first-
order correction to the energy from a variational
principle. ' We define

Itj'r& = If/+A. I(l&/+A. 'I(l)g+ ~ ~ ~,

E=E +A,E +A, E + ~ ~ ~

T()(E) = T&)(zo)+uzi
sT,(z)'

(2.8)

(2.9)

where

I,(z) =M[z -a, —T(z)],

with

T(Z) = T,(z)+ T,(z).

(2,19)

&o E,sT.(z) ~ s'T, (z)~'

8=80 BE IB=&0

(2.10)

[z, —If, —T,(z,)]I(j,&=0, (2.11)

with an analogous expansion for To(E). Using these
expansions in E(l. (2.1) and comparing coefficients
of different powers of A, , we obtain

Then 6J =0 gives

i(z)ly&=0 and &qlL, (z) =0, (2.20)

which are just the Faddeev equations.
An important property of variational principles

is that they give second-order accuracy for some
quantity when the trial function is good to first
order. Let

l(l)&= le&+I5$&, E=E,+5E, (2.21)
[Eo Ho To(zo)]14/

+E, 1-- ' —TP E0 =0,BTO

0

(2.12)

plus higher-order equations. We note that Eq.
(2.11) is just the unperturbed Faddeev e(luation.
After a little manipulation, E(l. (2.12) will give us

E„ the first-order correction to the energy. We
now define the "conjugate wave function, "

&T(& I, by

&%I=&el M =(&t.I+&col &e, l+&C. l, &C, I+&0.l»

(2.13)
where

(0 1 1
M= 101 I.

(1 1 OJ

If we now multiply E(I. (2.12) on the left by &(, I, we

obtain

Ei T('o 1- sz )1&o -&Il'olTo(zo)lko&=0 (2.15)
g0',

where

(E, —ufo) I(j)o&= To(Eo) I to&

(E —If.)I(j&= [T.(z)+ T (E)]l(j».

Then

(2.22)

&o =&toll (Eo) Iyo&

=(&el-«yl&«z —«)(lg- I5q&)

BJ
5E (I) g + (hig-her-order term)BE

BL=-6E g0 g0 + higher-order term .E @=&0

Thus, since

J.= &y. l«z. ) l~~ =&q, l T,(z.) ly.&,

we have to second order

)o=(),l)&(&.&l)t& (), )-
8@ )& ~

(2.23)
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FIG. 1. (a) Graphical representation of (g IT&21 g ) .

(b), (c) Two different graphical representations of

We notice that (2.23) differs from (2.17) by the
extra term (»~/BE)s s in the denominator. The

0

(b)

FIG. 2. (a) One half the sum of graphs (a) and (c) of
Fig. 1. (b) Symmetrized form of the perturbing T matrix.

reason for this is that in the derivation of (2.17) it
was assumed that T~ was "small" compared to T„
where no such condition is required in the deriva-
tion of (2.23). Thus, if T~ is small compared to
T„we expect E, given by Eq. (2.17) to be small
compared to E,. On the other hand, we expect
that Eq. (2.23) will be useful when oE is small com-
pared to E„whether or not T~ is small compared
to T,.

III. APPLICATION

In this section we will develop Eq. (2.17) or Eq. (2.23) for the case of three identical spinless charged
particles. For this special case we have

&el TIN&= 6(&e'17; Ie'&+ &O'I 7'. Ie'&) (3.1)

(3 2)

(3.3)

(3.4)

Then Eq. (2.23) becomes

&O'I T»10'&+ &O'I T» IP&

&y'I(», /sE—)s=s, Iq') &q'I(». /sE—)s=s, Ie'&
'

We give in Fig. 1 a graphical representation of the two terms in the numerator of Eq. (3.3). From the
second graphical representation of &g'I T» lg'&, we see that

-'. (g'I »T14' &+0&'I T»14'&)

can be represented as in Fig. 2. We can thus write Eq. (3.3) as

&0" I T»14"&

a&4'I A' &0"Il».«)-»E]s=s, I@'&
'

where we must now use the symmetrized T matrices for Tp and Tp.
For three identical spinless particles we have

(p, p, p, I T, lp, p, pg= (2a)'6(k -k')(2s)'5(q, —q,')f, (k, , k,', E —k'/12 '—,'q,.'/2p), ,
— (3 5)

where t, (k, k, E) is the two-body 7' matrix for particles j and k (i.e., the solution to the two-body
I ippmann-Schwinger equation), E is the two-body internal-energy variable, p=m/2 (m= mass of each
particle), and as usual

(3.6)k=P|+P +P k = (Pg Ps) qi = (Pal+Pa 2P.).
We also note that the g"s all have the same functional form g, so that the Faddeev equations reduce to a
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single homogeneous integral equation,

3 /

4Ãs q) E ka/2 aqa/2 (2+)a ts(~t qI + a 4 E 4C /2t()(j'(q + a q y q ) )

where

(j(pi, pa pa) = 4{ku ql)+ 4(l a, qa)+ (1(ka, qa)

(3.7)

(3.3)

t,{k,q) = a[t(k, q) + t(k, -q)]

is just the symmetrized two-particle T matrix (we will suppress the subscript s in what follows).
Using the above relations, we have

((' I l(")'f*"' ="'" "l(.'( *—=-'t(. . * — t(.)'(a, ( .—l /'( ).t')( a =—
*l q.„al —*'t(,).

If we let

x= gg„y=k, -k,', z=f, +$,',

and use the fact that

(j(k, q ) = g(-k, q ),

we get

(('(lT' l()= fd'~d yd'z((-,'a'+-,'y+-', z, -I+ -',
) + la)

(3 9)

(3.10)

(3.1i)

(3.12)

l~ l~ l~ l~ 3~ l~ l~ ~ 1~ l~~ ~p(ay + azp ay + azpz() a& /p)$(zx —gy —az~ -x —ay+ az)~

(3.13)
with an analogous expansion fol {il) l(BTa/BE)z=z l(j) ) similarly we have

(0'll)'&) (2~)'f d's &'~((E=+-') ) )((v +!E, E) (3.14)

The nine-dimensional integral ean be reduced to six dimensions by noting that the integrand depends only
on x, y, z, x y, x z, and y z. Similarly the six-dimensional integral can be reduced to three dimensions
as the integrand depends only ony, z, and y ~ z. Note that we are not restricting the perturbing part of the
T matrix to act in only the 8 wave, and thus the integral will necessarily be more cumbersome than Fuda's.

We now let ta= t„ the Coulomb T matrix. For t, and Bt,/BE we could use an integral representation of the
Coulomb T matrix' given by

t,(k„k„z)=4~V, [1+1{x)]/(k,-k, )',

where

t'dt
( ) (l t)a (l t)a

(k,' —2pz)(k, a -2VE)
(-2(uz)'ta ' -2pz(k, -k, )'

(3.i5)

(3.16)

For identical particles of charge q, V, = q', and the Coulomb T matrix has no poles as a function of E.
There are, however, singularities at k, =k, and at E= k,a/2p, and E = ka'/2p, . The latter singularities do not
occur in Eq. (3.13), since E =E, aa'/t(, is always —below threshold and the singularities at k, =k, are
smoothed over in the integration. '
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