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Equation (9) allows us to evaluate the 7o scattering
amplitude in tree-graph approximation:

M(o(k)~n(q) + (D)) =M (k*,1%, 4*) =M (K?,q°,p*)
=g[(d-1)(¥* -p* - &)
+d(p,? - k)], (10)

For on-shell pions we obtain Ellis’s result”:
MR, 1%, 0,2) =g[(2 -=d)u,? - ¥?]. For off-shell
pions, our amplitude differs from Ellis’s because
our assumption of PCAC relates our pion fields to
his by the canonical transformation e~%°, Our
PCAC assumption also requires that our amplitude
M satisty

M(py®, 1 e )M (12,0, 1,7) = 0, (11)

since the left-hand side of this equation is just the

coupling of the ¢ pole in the 77 scattering amplitude
at the Adler point.? Indeed, from Eq. (10) we see
that

M(pe® 1y e ™) = g lp (1 = d)
and
M (py?,py”,0) =0,
If we demand that M (¥*,p?,4%) be as smoothly
varying as possible, i.e.,

oM oM
ap? —aqz"g(l -d)=0,

then we find that d=1.° This value of d also pro-
duces a second-order zero in the coupling of the
o pole in the -7 amplitude at the Adler point.
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The elastic amplitude describing a scattering of a free particle on a two-particle bound
state is here considered as a function of cosf, where 0 is the scattering angle. The two-body
interactions were taken to be s-wave and sepairable. Our results are: (1) The on-shell
amplitude is analytic inside a Lehmann ellipse for all real energies, except for a finite in-
terval on the negative E axis, and (2) for negative energy, the off-shell amplitude is analytic
in the whole cosf plane, apart from possible real left and right cuts, and in the Lehmann el-
lipse. Its asymptotic behavior in cosf is determined by the leading Regge trajectory.

I. INTRODUCTION

The study of multiparticle scattering amplitudes
is essential not only for the calculation of cross
sections, but also for the establishment of com-
plete S-matrix theory and dispersion relations.

In nonrelativistic potential scattering, dispersion
relations in the total energy for fixed directions of
the individual momenta have been proved for three-
_particle amplitudes.!

Analytic properties in the scattering-angle vari-
able for the three-particle amplitude were studied
by Immirzi,? and by Hartle and Sugar® Immirzi,
using the invariance of the three-particle Green’s
function under rotation, has established a' Lehmann
ellipse in the cosé plane, in which the off-shell
elastic amplitude describing a scattering of a parti-
cle off a two-particle bound state is analytic for all
values of the total energy E. Hartle and Sugar have
generalized Immirzi’s result, and have also estab-
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lished the analyticity properties of the amplitude in
the finite cosé plane, provided E <0. In both Refs.
2 and 3 the two-particle interactions were taken to
be Yukawian.

In this paper we discuss analyticity in cos6, for
the three-particle amplitude for which the two-body
interaction is separable and of s-wave type. There
are two advantages in treating this kind of ampli-
tude. Firstly, this amplitude satisfies an integral
equation,* and hence the mathematical problem
concentrates on the study of the kernel and the in-
homogeneous term. Secondly, it is possible in this
model to obtain some information about the asymp-
totic behavior of the amplitude in the cosé plane.
This knowledge is important for the construction of
the Mandelstam representation.

Our technique will be elementary; we will obtain
a bound on the partial-wave amplitude for large 1,
where ! is the angular momentum of the three-
particle system. This estimation will be used to
obtain the regions in which the partial-wave ex-
pansion and the Sommerfeld-Watson transform are
absolutely convergent.

In obtaining the Lehmann ellipse, no continuation
to complex ! is needed, and the only tool used is
the estimation of partial-wave amplitudes for large
integer I. On the other hand, one should continue
partial-wave amplitudes to complex ! when trying
to construct analytic properties in the whole cos6
plane. This problem was first discussed by Aaron
and Teplitz®° when obtaining Regge trajectories for
negative energy. Besides being faced here with the
problem of unique continuation permitted by
Carlson’s theorem, there is a pathological (- 1)'*!
factor appearing in the Born term if exchange po-
tentials are present.

It was shown by Drummond® and by Anselm ef al.”
that in the absence of special features one cannot
define signatured two-body amplitudes that satisfy
a unitary condition in which the intermediate states
contain more than two particles. On the other hand,
Aaron and Teplitz have shown that in the separable
approach, this problem is solvable. They have de-
fined signatured amplitudes, and have shown that
they satisfy the same integral equations as the non-
signatured ones, but with signatured Born term
and kernel. In obtaining the large-I behavior of
partial-wave amplitudes, we will follow their
technique closely.

Our results may be summarized as follows. (a)
The on-shell amplitude is analytic in cos@ inside
a certain ellipse for all real E, except for a finite
interval on the negative E axis. (b) The off-shell
amplitude is analytic in the whole cos#@ plane —
except for real cuts ~and inside a certain ellipse,
for all E<0. (c) For E <0, the asymptotic behav-
ior of the amplitude in cos#@ is determined by the

leading Regge trajectory.

Two results of this paper are therefore claimed
beyond what is already contained in Ref. 3. First-
ly, we obtain analytic properties for the on-shell
amplitude for E <0, while there they are found for
the off-shell one, and secondly, we get some
knowledge about the asymptotic behavior in the
cos 0 plane, although this is done only for large
negative E.

In Sec. II we describe the model and write the
integral equations for the total and partial-wave
amplitudes, while the asymptotic form of the lat-
ter for large [ is derived in Sec. III.

The analytic properties in cos6 are derived in
Sec. IV, and some conclusions are drawn in Sec. V.
Two problems of mathematical technique are dis-
cussed in Appendices A and B.

II. DESCRIPTION OF THE MODEL

The model which we consider deals with three
identical, nonrelativistic spinless particles with
unit mass, interacting through a separable s-wave
potential. Because of the interaction, a bound
state (denoted by d, with binding energy «?) of the
two-particle subsystem may be produced. Our
aim is to investigate the elastic amplitude des-
cribing the scattering of a free particle (denoted
by #) on the d bound state, i.e., the process

n(K) +d(-k)~n(&’) +d(-k"), (2.1)

where k (k’) is the momentum of » before (after)
the collision. This amplitude will be denoted by
T(k,k’, E), in which E is the c.m. energy of the
three-particle system. The on-shell condition re-
lates the magnitudes of k and k’ to the c.m. energy
through the relation (with 7=1)

k2 =k =5 (E +a?), (2.2)

which shows that below threshold (E < -a&?) the on-
shell momenta are purely complex. For s-wave
interaction, the physical amplitudes are functions
of E and

cos@=F -15', (2.3)
that is,
T(E, cos#é)
=T(k[5 (E +a?)]' 2, R'[%(E +a®)]'2 E +i0).
(2.4)

The separability of the interaction in momentum
space implies the representation

v(q,d")=2g*@)g@"), (2.5)

in which § (§’) are relative momenta of the two-
particle subsystem before (after) interacting, A
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is a strength parameter (determined by the re-
quirement that the bound state be present at the
binding energy o?), and g(d) is the d-state form
factor. In the case of s-wave interaction only,
g(@) depends on ¢® alone and we have chosen it to
be of Hulthén type:

g@) =N/ (g +B?), (2.6)

where B is a constant giving the d state a compos-
ite structure, and N is determined by the normali-
zation of the d wave function.

The model discussed here is obtained also as a
special case of the Amado model,® in which all
wave-function renormalization constants are zero.

In any case, T'(k,k’, E) is the solution of the in-
tegral equation

T(k, k', E)=B({&,k’, E)
+ f B, &, EYr(E -% k') T&", K, E)dK",

and the propagator 7 can be shown* to be given by

482 (B+a)X(B+ix'?)(a +ix'"?)
TN? (x +a?)(Ex"? +a +28)

7(x)= (2.9)
It has a simple pole at x =-a? (because of the
presence of bound states at that point) and a cut
from O to » as a result of the possibility of the d
breakup.
One now defines off- and on-shell partial-wave
amplitudes by the decomposition

T(k, k', E)= Y5 (21+1)T,(k, k', E)P,(cos6),
1=0
(2.10a)

T(E, cosf) = 33 (21+1)T,(E)P,(cos6),  (2.10b)

1=0
and, of course,

T,(E)=T,([+ (E + a®)]'2, [ (E + a?)]'2, E +i0).

(2.7 (2.11)
where the Born term B(k, k’, E) is given by In the same way, one defines off- and on-shell
e e . partial-wave Born terms B,(k, k’, E) and B,(E),
= g*(k’ - 3k)g(Gk’ = k) respectively.
Bk,k’, E)= ——— 2.8 ,
(5, k', E) E-3R+k?+(&-k')] (2.8) For a pure exchange potential, we have
LN ( Q.(4) Q(B) Q,(C)
Bules ¥ E)= Gy U B ae -2 Gopc-B) G-0B-0)) 212
where
F+r?-E R+ +p ik + k"% + B
A BT O (2.13)
B, is not singular at #k’=0 or when A=B, B=C, or C=A.
If k=k’, as is the case for B,(E), then B=C and Eq. (2.12) is replaced by
Nz(—l)l +1 A-B
By(k, kb, E)=p5g—ap \ QW - Q(B) + 57— 1[BQ,(B) - Qx-l(B)]>, (2.14)
where a contiguous relation has been used in order to express the derivative of @, .
From B,(k, k', E), we define the signatured Born term
Bi(k, k', E)=%(~1)""'B,(k, k', E), (2.15)

which is free of the (-1)' factor. The signatured amplitude was shown in Ref. 5 to satisfy the integral

equation

Ti(k, k', E)=Bj(k, k', E) +fwB,*(k, k", E)YT(E —%k”z)T,*(k”, k', E)’?dk"".
1]

(2.16)

Equation (2.16) for E >0 is solved in two steps.? First, the quantity Ti(ke~'?, k', E), in which k’

=[% (E +a?)]'”2, is found by the integral equation
Tl*(ke-iwy k';E) =Bt*(ke-‘¢, k', E) +f

0

me(ke-w, k"e"w, E)T(E —%k””e'zi")T,*(k"e""’, k', E)e'"%dk! =317,

(2.17)

The angle ¢ is chosen such that Bf(ke™*’, k’, E) will be regular for 0 <k <. It is not difficult to prove
that Eq. (2.17) is a Fredholm equation for integer I. Second, the solution of Eq. (2.17) is used to obtain

the physical amplitude by the quadrature

Ti(k, k', E) =Bk, k', E) + e~ f " Bk, ke, E)T(E k%) Tk e, k', EYe'*dR"",
0

(2.18)
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in which & also is put on-shell.

The solution of Eq. (2.16) for E <0 and real momenta is much simpler. In the range —a?<E <0 the only
singularities are those of the propagator, and one can remove them either by the contour-deformation
technique discussed above or by transforming the equation into a nonsingular one.® As for E <-a?,

Eq. (2.16) is regular.

III. THE LARGE-/ BEHAVIOR OF THE
PARTIAL-WAVE AMPLITUDE

In this section we will determine the large-! be-
havior of Tj(k,%’, E). The discussion will be divid-
ed into two parts, according to the possible values
of E, I, and the momenta. (The signature sub-
script will be dropped where no confusion may
arise.)

A. E> 0, | = Integer, and On-Shell Momenta

For z&[~1,1] and integer !, one has'
Qt(z)x—'?m [z+(zz—1)1/2]"'1/2l'1/2, (3.1a)
Q'(2)~1Q,(2). (3.1b)

As long as we remain on the first sheet of the
function w=z + (2% - 1)'/2, we have |w|>1, as dis-
cussed in Appendix A. Consider now the Schmidt
norm of the kernel: '

My(k, k', E)= B,(ke~*’, k' e~ E)

XT(E—-‘:—k”ze'z"”)k"ze'z“’, (3.2)
1,(E)sf°°f°° | M, (k, k", E) Pdkdk"". (3.3)
V] o

Since Eq. (2.16) is a Fredholm equation, the in-
tegral is (absolutely) convergent, and we may find
the limit of /;(E) for ! -« by integrating the limit
of the integrand. From Eq. (3.1) we get

lim Z,(E) = 0. (3.4)

1>

This implies that the large-1 behavior of
T,(ke~%’ k', E) is determined by that of
B,(ke”*’,k’, E). When T,(ke~*%, k', E) is put

into Eq. (2.18) and the limit / -« is taken, the
integral vanishes faster than B,(k, 2’, E). Conse-
quently, T,(E) has the asymptotic behavior of
B,(E), namely,

T,(E) ;5. B, (E), (3.5)

! =integer, E>0.

B. E<. 0, Re(/)= - %, and Real Momenta

This case was discussed by Aaron and Teplitz in
Ref. 5. Equation (2.16) remains Fredholm for all
complex [ such that Re(l) > -3, and the kernel as
well as the inhomogeneous term are analytic in 7.
Therefore, the solution T,(k, k’, E) is analytic in I.
As for the asymptotic behavior, they have proved!?

Tl(k’k’: E)t:w Bt(k: k,’ E)’
Re(l)= -3, E<O0, k&’ real.

(3.6)

Note that in the range —o®<E <0, the results are
applied also for the on-shell amplitude as a spe-
cial case.

The case in which E <-0? and the momenta are
on-shell (i.e., complex) is discussed in Appendix B,
in which it is shown again that

T,(E); 5 B, (E), (3.7
I=integer, —-+a®<E<-a? andE<E,=-38%-a?.

For B,(k, k', E) we have, according to Eqs. (2.12),
(2.14), and (3.1),

By(kyk' E), 5, 1" V2e=10¥1/2 | pypr (3.8a)

By(k, b, E), 3, 11277012 (3.8b)
where

y= :rgx,lc arc cosh(4, B, C). (3.9)

IV. ANALYTICITY IN THE cos6 PLANE

We now arrive at the goal of our discussion,
namely, the derivation of the analytic properties
of T(k,k’, E) in the variable z =cos6. The technique
we shall adopt here is identical to that used in the
two-body potential scattering.!®

Consider first Eq. (2.10b), for E>0. At large
integer 7 one has

cexp[(l+3)Im6]
|sing |2 | 1+% |22

| P,(cos8)| <

and therefore, by (3.8b), the summand is bounded
by
cexp[(1+3)(Im6 - ¥)]
| sin6 |12

Thus, the partial-wave expansion for T'(k, k’, E)
is absolutely convergent provided Im6 <y, i.e.,
within an ellipse (in the cos6 plane) whose semi-
major axis is equal to coshy.

From Eq. (2.13) we have for on-shell momenta

_E 3a? D 3p2
T4 +4(E+oz")’ B=C=y4 YW E

[27+1]. 4.1)

A (4.2)

As long as E does not belong to the interval
A=[-38 - a? —+0?] (4.3)

[which exhibits the left cut of T,(E) in the E plane] ,
one has |A|[,|B|>1 and the semimajor axis of the
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Lehmann ellipse is given by
a=min(|A[,|B]). (4.4)

Along the same line, we arrive at the conclusion
that T'(k,k’, E) for negative E and arbitrary real
momenta is analytic in cos6 inside a Lehmann el-
lipse with semimajor axis given by

a=min([Al7'Bl,'Cl)- (4.5)

For this T'(k,k’, E) we will now find the analytic
properties in the whole cosé plane. This is done
by considering the integral

T()\ k,k',E)
H= f COSTA Px-l/z(—cose)xd)\, (4.6)

where T(\, k, k', E)=T,,,s,(k, k', E) and, as usual,
the contour I encircles clockwise all physical
points but not the Regge poles of T'(\, k, k', E).

If His convergent, the sum of the residues gives
us T(k,k’, E). We want now to deform the contour
T into the imaginary X axis. The Regge poles, if
they exist, will contribute real cuts in cosd, whose
branch points lie outside the Lehmann ellipse. It
remains therefore to investigate the background
integral.'

From the bound

AP _, jp(—c0s86)

<C|sing[-*/2| |12
COSTA
x exp[— |Re® ImA|+IméRex],

it follows from expressions (3.8) that the integrand
in (4.6) is bounded by

C|x]exp[- |RefIma |+ (Im8 — y)Rex].

It is therefore permissible to deform the contour
of integration so that I" becomes the A imaginary
axis, on which the integrand is bounded by

CMIe-IReeImxl_

Provided Ref+0, the integral for H is absolutely
convergent and represents an analytic function of
cosf, with possible cuts on the ray 1 <cosf <.

Since we have already established analyticity in-
side the Lehmann ellipse, the possible cuts actual-
ly lie on the ray

y <088 <. (4.7)

The nonsignatured amplitude is obtained from the
signatured one by the relation

T(cos@) =3[ T*(cos8) + T*(—cosH)
+T~(cos8) - T~ (-cosb)], (4.8)
and may therefore have additional cuts at
-0 < €080 < —7. (4.9)

This cut is a direct consequence of the exchange

|

nature of the potential in Eq. (2.12).

The above derivation predicts the cuts in cos#,
but tells nothing about the location of the branch
points. However, these points may be found by
brute force, on iterating Eq. (2.7). We do not en-
ter into the detailed calculations, since a similar
technique has been used by Hartle and Sugar.® It
can be shown that each term in the iteration series
contributes a branch point whose distance from the
physical region is larger than that of the previous
term. The first singularity is therefore the near-
est pole of B(k, k', E).

V. CONCLUSIONS

For the on-shell amplitude, we have established
a Lehmann ellipse in the cos plane in which it is
analytic. The foci of the ellipse are at +1, and the
semimajor axis is given by

a=min(|A[,|B]),

where A and B are given in Eqs. (4.2). There is
no Lehmann ellipse for E€ A, where A is given in
(4.3).

The off-shell amplitude T'(k, k’, E) for E <0 is an
analytic function of cos6 in the whole cosé plane -
except for real positive and negative cuts —and
inside the Lehmann ellipse.

An obvious advantage of our method over the
others is the possibility of establishing the asymp-
totic behavior in cosé once the leading Regge tra-
jectory is known. For example, it was shown by
Aaron and Teplitz (who used a method suggested
by Tiktopoulos'®) that the integration contour I’
in Eq. (4.6) may be deformed to be the line Rex
= -n for any positive integer n. Since the leading
Regge trajectory approaches -3 as E—~ -, this
implies a (cos6)~2 behavior for large cos6 and
large negative E. The difference between our re-
sults and those of Refs. 2 and 3 is due to the spe-
cial feature of the separable approach, in which
the scattering off a bound state is treated very
much as a two-body problem would be. The num-
ber -5; appearing in the equation for semimajor ax-
is results from the inequality of the » and the d
masses. However, the main difficulty, which ap-
pears both here and in Ref. 3, is the impossibility
of deriving analyticity in cos6f in the whole cos#é
plane for E >0. This is disappointing, since other-
wise one could prove a Mandelstam representation
for the three-body amplitude. The intractability
of three-body problems above the breakup thres-
hold is clearly model-independent.
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APPENDIX A: THE FUNCTION w =z +(z*- 1)"*

In two-body potential scattering, one encounters
the function w=z + (2% —1)!’2, in which z is real and
greater than 1. For example, in the case of the
Yukawa potential, z is equal to 1+pu%/2k% In order
to investigate w for complex z, it is convenient to
explore the properties of the inverse function (the
so-called Zukovski’s function!®)

=3w+1/w). (A1)

Setting w=7e'®z=u+iv, one has

u2 v 2

Bo+1/nF  Ee-1/7)F

The circle » =c is therefore mapped on an ellipse
with semimajor axis 3(» +7~!) and with foci at +1.
In particular, the circle |w|=1 is mapped on the
segment [~1,1].

It is easy to see that the unit circle [w|<1 is

=1. (A2)

mapped on the whole z plane less [~1, 1], and since

zw)=2z(1/w), the domain |w|>1 is mapped in the
same manner. As for the function w, it has two
sheets connected by the interval [-1,1]. The first
sheet is mapped on the domain |w|>1, while the
second one is mapped on |w|<1. In our calcula-
tions z always lies on the first sheet, and hence
we have [w|>1.

APPENDIX B: THE ON-SHELL AMPLITUDE
BELOW THRESHOLD

In this Appendix we will prove that at large
(1ntegral) 1, the behavior of T, (E) for

-—a <E <-a? and E <-3f% - o? is determined by
that of B, (E).

It turns out that the region — 4 a®<E < -a? ex-
hibits no problem, since one can solve Eq. (2.16)
for real positive k2, and then integrate again to get
the amplitude for on-shell 2. The proof of the as-
ymptotic behavior is the same as the one carried
out in Sec. III for E>0. Note, however, that one
cannot use this argument for complex ! since the
argument A defined in Eq. (4.2) is negative, and
one needs the formula

Q(-2)=-e*""Q,(2),

which holds only for integer I. The situatibn for

k" PLANE

FIG. 1. The cut of the half-on-shell Born term
B,(k, k", E) in the " plane for E <~38% —a? (solid line),
and the integration contour of Eq. (2.17) which avoids
this cut (dashed line).

E <-3p% - a® is more complicated. For example,
for 4 L

k2 +5a®+5E
T R[5 (E +a?)]2

consider the function @,(z) appearing in the half-on-
shell Born term. In the k plane, @,(z) has two
cuts, given by

k=(1/V3){(E +a?) 2z +[E(z - 1) +a®(z — 4)]'/2},

(B2)
These two cuts

z (B1)

where z is in the range [-1,1].
are shown in Fig. 1.

It is therefore necessary to replace the contour
of integration in Eq. (2.17) with a different contour,
which is also shown in Fig. 1, and avoid these cuts.
Observe that unlike the ray ke~i%, this path is de-
pendent on the value of E; but the problem is
solved and one again arrives at the conclusion that

T,(E), 5.B,(E),
E<-38-0? (B3)
l=integer.
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We consider theories in which the explicit breaking of the chiral symmetry SU3xSU3 of the
energy density ©, is of the form € u,+egug, where €;, €3 are real constants and u; and ug
are scalar densities in the representation (3,3) +(3,3). We propose an extension of this pic-
ture , in which the SUx SUs-invariant part of © has the form 8y, +€quy, where 8, is UgxUs
invariant and the SU3XSUj-invariant scalar ug breaks UyxUjy in a specific way. Specifically,
it is assumed that the ninth axial charge F} transforms u, into a pseudoscalar v4 according
to ilF},uql =kv,, where ilF},v, =—kuy. (The parameter « labels the representation.) Given
this group structure, the analysis of Okubo and Mathur may be extended to find allowed do-
mains for the symmetry-breaking parameters €,, €g, €9 and the vacuum expectation values
o), gy, and (ug). The positivity conditions now restrict (g so that the allowed domains
occupy certain volumes in a three-dimensional space.

I. INTRODUCTION

Many authors have attempted to understand how
the approximate hadron symmetry SU, XSU, is
broken. In addition to the conventional problem of
assigning correct group properties to operators
which explicitly violate the symmetry, there is the
problem of describing the “spontaneous breakdown”
of the symmetry. Apparently the dynamics under-
lying the low-mass spectrum is such that even
when the explicit symmetry-breaking terms are
removed, the solutions do not belong to representa-
tions of the chiral group, but rather to some sub-
group, usually supposed to be SU,. In this picture
the vacuum is not chiral invariant even in the
symmetry limit and the associated massless
pseudoscalar octet is the principal manifestation
of the symmetry.

Perhaps the most promising model’-® (rather,
class of models) ascribes the explicit symmetry
breaking to scalar components (u, and ;) of the
representation (3, 3) + (3, 3). Introducing coupling
parameters €, and €, we may write the energy
density ©,,(x) in the form

O00(%) = Ogo(X) + €qttg + €5k, (1.1)

where y(x) is invariant under SU,XSU,. The
representation (3, 3) + (3, 3) is usefully described
by the nonet of Hermitian scalar densities »; and
pseudoscalar densities v; (i=0, 1, ..., 8) which obey
the (equal-time) commutation relations

LFs, us] = if st
[Fi, v;] = fi 1508
[Fi57 uj] = _idijkvk)

[F}, v;] =id, ;40

(1.2)

In order to compare the solutions of (1.1) with
their counterparts in the symmetric limit, it is
necessary to have some understanding of the ana-
lytic behavior of the solutions as a function of the
parameters €, and €;. In particular, we wish to be
able to turn on the symmetry-breaking terms adia-
batically without drastic alteration of the nature of
the solution in the symmetric limit. As emphasized
by Dashen,® this really means that we have to study
the solution as we turn off the symmetry-breaking



