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Symmetries which are not exact but which leave the vacuum invariant cannot be imple-
mented locally. In this note we consider simple nonlocal symmetries. For the in- and out-
fields, the nonlocality involved can be simply some trivial scale transformations that ac-
company the internal-symmetry index transformations. In particular, with proper relative
normalizations, a set of in-fields q?},"(o) will transform irreducibly under the norilocal group.
If one assumes that the vector currents V(0) behave like vector-meson fields Ok ;,(0), as
far as the vacuum to one-vector-meson matrix elements are concerned, one finds tanfy

-=tanfg(m d,/mw)2 and %mp T'(p—~ee)=m,I'(w—ee)+mgyI'(p —~ee), both previously derived from
Weinberg’s first sum rule. If one assumes that the weak axial-vector currents behave like
the pseudoscalar meson fields 9, $g1 (0), as far as the vacuum to one-pseudoscalar-meson
matrix elements are concerned, one finds m,/my = (fg/f,)tanby.

I. INTRODUCTION

Internal symmetries of the isospin-invariance
type are usually assumed to act locally; that is, if
G is an internal-symmetry transformation, and if
A and B are any two fields that are relatively lo-
cal, then

[GA(x)G™, B(»)]= 0 for (x-y)?<0, (1)

where the bracket denotes a commutator or an
anticommutator as appropriate for the type of
fields. Often it is also assumed that G leaves the
vacuum invariant. It has been shown recently! that
each such G must commute with the Poincaré
group, and hence with the Hamiltonian. There can
be no mass splitting within a multiplet for a local
internal-symmetry group, if the vacuum is unique
and invariant under the symmetry transformations.
The strong-interaction symmetries such as
SU(3) certainly cannot be exact, although often one
likes to treat the vacuum as being invariant under
an SU(3) transformation. Then by the above result
the symmetry cannot be implemented locally.
Furthermore, even if one allows the vacuum to be
noninvariant, there is another inconvenience when
the symmetry is not exact, associated with the non-
existence of space integrals over the fourth compo-
nent of nonconserved local currents.? Ordinarily
these integrals are thought to define the symmetry
generators. Since, in practice, we often use the
symmetry operators to derive not only relations
in the limit of perfect symmetry, but also devia-
tions from perfect-symmetry results, such as the
Gell-Mann-Okubo mass formula, to say that some
of the symmetry operators are ill defined except
in the limit of perfect symmetry is not very useful.
This can be gotten around,? but is inconvenient.

>

For these reasons we would like to consider nonlo-
cal symmetry operations that do not obey Eq. (1).

Since we have no a priori notions as to what kind
of complicated nonlocal effects need be considered,
we will start by looking for simple nonlocal sym-
metry transformations on the asymptotic fields.?
Once these transformations are defined on the in-
fields, then in principle the transformations of
interacting fields are determined by the expansion
of the interacting fields in the in-fields.

One type of nonlocal transformations that one

‘may consider are those generated by the lightlike

charges.* In the free-quark model with mass
splitting, these charges still transform some com-
ponents of the fields locally, but transform the
other components nonlocally. The lightlike charges
do not commute with some of the homogeneous
Lorentz transformations. We will not study the
nonlocal transformations generated by lightlike
charges in this paper. Instead we will study a
more trivial type of nonlocal symmetry, which
acts simply on the in-fields, and which commutes
with the homogeneous Lorentz group.

II. SYMMETRY OF THE ASYMPTOTIC FIELDS

To be specific, let us first consider just a set of
pion in-fields, satisfying the equations of motion

© +m02)¢o(x) =0,
@O +m,?) ¢, (x) =0,

with the charged-pion mass m, not equal to the
neutral-pion mass m,. We omit the subscript “in”
on the in-fields throughout this section, since all
the fields are in-fields.

It is easy to write down the nonlocal and local
conserved currents:

(2)
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Although the usual proof that the space integral
of the fourth component of a conserved current
determines a charge operator® does not hold for
nonlocal currents, in this specific case one can
verify that the integrals [d3xJ; (x) do define oper-
ators. We will denote them by 7* and I®, to distin-
guish them from the usual isospin operators. The
point is that in [ * only the combination of creation
and destruction operators a'a appears, and not®
the combinations aa and a'a’. This circumstance
is analogous to the case of lightlike charges.

The charge operators f, satisfy the commutation
relations

[ii!ij] =i€ljkik7

and generate the group SU(2);,. The transforma-

tions under SU(2);, of the in-fields, normalized by
the usual convention (0|¢, (0)| 7, p) (27)*/2= 1, with
(n,pln',p’)=2E,5%p-p’), are as follows:

0, [fs’ ¢¢(x)]=i¢i(x),
(P < x) [i-n ¢+(x)]=07

[f3’ ¢o(x)] =

[Iu q’o(x)]
(3)
[£,, p-(0)]= =vZ 22 %( x) [7-, $-(0)]=0,

=\/'2—7mn—:¢o (;n—%:x>

We see that (a) the triplet of fields ¢,(0) = ¢,(0) and
$,(0) =(m,/m,)¢ ,(0) transforms like an [= 1 multi-
plet under SU(2),,, and (b) an SU(2);, rotation can
be accompanied by a simultaneous scale transfor-
mation in the space-time coordinates. The cor-
responding transformations of the plane-wave
states, whose normalization we have specified
above, are

[i—, o, (x)]

i+ l”-i —.> = —ﬁ(m
L7, B) = V2 (m,/my) 1%, (my/mo)B) , (4)

o/m 1) l'”o, (mo/m1)5> ’

f3""+7 ﬁ> = '77+7§> ’
and similarly for other combinations.” In short,
the states [7°,B) = |1, B), (7", (m,/mo)D)
=(m,/m,) |7, (m,/m,)p), and [#7, (m,/m o)D)
=(m,/my) |77, (m,/my)p) transform like members
of a triplet under SU(2);,, and we have

IS

(0lp "0(0) [#%, ) =(0 ld;"t(o) [, (m,/m)p),
°, 51,5 =(7*
The operators f{ act additively on multiparticle
in-states. They commute with the Lorentz trans-
formations, but, of course, not with translations.
It is easy to check that the equations of motion (2),
as well as the action A = [d*x £,(x), where £, is the
free Lagrangian density with mass splitting, are
invariant under SU(2),,.
These considerations allow a straightforward ex-

tension to include fermions, such as the proton-
neutron system. One finds, for example,

I, ¢n<x>}=(%)m zp,,(n—le ).

The extension to SU(3),, is also straightforward.
Thus the usual statement that the mass operator
transforms like certain tensors in the derivation
of the Gell-Mann-Okubo formula is, from our
viewpoint, better formulated as the assumption
that it transforms like these tensors under SU(3);,.
The SU(3),, generators exist in the presence of
mass differences, so that there are no ambiguities,
and the noncommutivity of these generators with
translations, and hence with the (mass)? operator
P,P", is explicitly allowed for.

If we treat the vector mesons as particles also,
and consider the space of in-states for the vector
mesons, then, since they do not obey the Gell-
Mann-Okubo mass formula very well, we must al-
low for the noncommutivity of the mass operator
with the Casimir operators of SU(3),, as well.
Thus the physical vector mesons will be a mixture
of an SU(3),, singlet state |s) with an SU(3),, octet
state [8). Since SU(3), is to be well defined re-
gardless of the noncommutivity with the mass
operator, we must define|8) and [3) to be orthogo-
nal; hence [cf. Eq. (5)]

|3, b) =cos6|@, B) +sinb|$, (m 4 /m ,)p),
G’;ﬁ) +COS€[&, (m ¢/mw)5>

In terms of an octet and a singlet vector fields,

(m/mB 1, mymo)sy. )

Iéy 5) = —Sin@'

‘we have

$5(0)=cos6®,(0) +sin6 ¢, (0),

35(0) = -sin6,(0) + cos6,,(0), ©®

which satisfy (0]$(0)[8,B) =(0($%(0) 3, B) =0.

III. LEPTONIC DECAYS OF PSEUDOSCALAR
AND VECTOR MESONS

It is clear that SU(3);, cannot commute with the
physical S matrix having nontrivial interactions,
because of the requirement of momentum conser-
vation in reaction processes. Thus the generators
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of SU(3),, are in general different from those of
SU(3),,- It is an interesting but difficult dynamical
question as to whether the generators of these two
groups together satisfy any simple algebraic rela-
tions, or whether there exists another group which
interpolates between SU(3),, and SU(3),,. We do
not know the answer. A more modest question is
how the interacting fields transform under SU(3);,,
as far as the one-particle matrix elements
(0|$(0)|1) are concerned. Since a one-particle
in-state is the same as a one-particle out-state,
the action of SU(3),, on it is the same as that of
SU(3)o- We may ask whether the linear terms in
the in-field expansion of a set of interacting fields,
such-as the weak and electromagnetic currents, are
more SU(3)-symmetric in terms of ¢, or in terms
of the usual ¢,,. Admittedly the difference is just
in trivial relative normalizations, but numerically
these differences can be quite large..

.The vacuum to one-hadron matrix elements of the
currrents that are measurable correspond to those
that occur in K, and 7,,, and in the decay of vector
mesons into lepton pairs (in the approximation
where the vector resonances are treated as parti-
cles). With field-current identities® the vector
currents J¥ are proportional to m 2ok or [P?, L],
where ¢ denotes the vector-meson field of parti-
cle type a. In any case, we are only going to look
at the one-particle matrix elements, and dimen-
sionally the currents are of dimension O¢k. We
will therefore consider the terms linear in ¢ 1’
in a normal ordered in-field expansion of the usual
vector currents V%, in the form

VE(0) = c[P2, pt,(0)] ++ -+, (7a)
VE(0) = ¢g[P?, &‘g. n(0)]++2+, (Tb)
VE(0) = co[ P, ¥ 1n(0)]+++ . (Te)

We wish to see whether it is possible to have the
same constant ¢, for the whole octet. Similarly,
for the weak axial-vector currents which appear in
the effective weak Hamiltonian in the form

Hwk=—‘/% [(0™ +@™ ) +(0F +ak")+ 1*]-[H.c.],

we consider the symmetric form for the one-pseu-
doscalar-meson terms, with the same constant f:

ar (0)=ra, i, (0)+---,
@ (0)=fo,k 1, (0)++-+, (8)
where 3,$(0)=i[ P,, $(0)]. Equation (7) is to be

compared with the usual definition of the five pa-
rameters f,, fy, fp, and 6y, 65 through

VE(0) =f, ™ m 20l (0)+- - -, (9a)

VE(0) = 3V3Y*(0) =3 V3 fy Y[ cos by m* ¢}, (0)

-sin BY“mwzw#n(O)] teee,

(9b)
V5(0) =2 B*(0) = 5 f»™[sin 05 my2 o, (0)
+€08 05 m 2wh (0)]++-.
(9¢)

Comparison of Egs. (7b) and (7c) with Eqgs. (9b)
and (9¢) shows that

tan6=tan6y (m,/m ),
tand =tan6yz(m ,/m,), (10)
tan6y =tanfz(m 4 /m )%

Equation (10) has been derived from Weinberg’s
first sum rule,® and is also consistent with the
current-mixing model.® Oakes and Sakurai have
emphasized® that Eq. (10) means that the orthogo-
nality of the transformation between singlet and
octet states, and w and ¢ states, can no longer be
maintained. We see that, from our viewpoint, on
the contrary Eq. (10) is a consequence of this or-
thogonality as expressed under Eq. (6). The trans-
formation between (9, ¢,) and (@, ¢) is orthogonal,
although that between (V,, V,) and (@, ¢) is not be-
cause of the P2 factor in Egs. (7). Equations (7a)
and (7b) also imply a relation between f, and f,
yielding a relation between decay rates,

3m ,T(p—~ee)=m,T(w-ee) +mT(p~ee). (11)

This relation has also been derived from Wein-
berg’s first sum rule.’ Both Eq. (10) and Eq. (11)
are in reasonable agreement with the experiments.!*

.We see that both follow naturally if the relations

between V! (0) and 34 ,, (0) are of the symmetric
form in Eqgs. (7).

Equations (8) are to be comparéd with the usual
relations in terms of Cabibbo’s angle 6,, and the
PCAC (partially conserved axial-vectaor current)
constants f, and f,

1" (0)=cosf, f,8,m,(0)++--,
a{f*(0)= sinf, fxd, K (0)+ - --.

Comparison of the relative ratios gives

M1 _ (tan6,) Lk . (12)
my .

Equation (12) is also reasonably accurate numeri-
cally.'?

We now proceed to evaluate critically the signifi-
cance of the numerical agreements between Eqs.
(7) and (8) and the experimental results.

(a) The first question is how arbitrary are Eqgs.
(7) and (8). These equations are based on the
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criterion that no symmetry breaking is to be in-
troduced through multiplicative constants, ¢, and
f being the same within each octet. Deviations
from symmetry enters through the P? and P, fac-
tors only, that is, through the noncommutivity of
SU(3);, with translations. Although any arbitrari-
ness in powers of P? will correspond to multipli-
cative factors of mass ratios, covariance and lo-
cality require that the arbitrariness can at most
correspond to integral powers of P?, and hence to
even powers of mass ratios.

In the case of Egs. (7), not only is the power of
P? appearing there (i.e., first power) rather “nat-
ural” as argued before, but also, since the differ-
ence between ¢;, and ¢, is proportional to one
power of mass ratios, if is not possible to write an
equation corresponding to Eqgs. (7) using ¢, in-
stead of ¢,, and a universal ¢, that will lead to
Eq. (10) and Eq. (11). Thus, as far as the one-vec-
tor-meson matrix elements of the vector currents
are concerned, SU(3);, does appear to be a better
symmetry than the ordinary SU(3), and this is inde-
pendent of any possible arbitrariness in the powers
of P?in Eq. (7). At the very least, the formulation
in terms of Eq. (7) is simple and requires fewer
distinct parameters to adequately describe the
experimental results.

The situation is somewhat different with respect
to Egs. (8). The powers of P? and P, appearing in
Eqs. (8) also seem reasonable enough. However,
while @ and G.'u( are the currents which appear
naturally in the weak-interaction Hamiltonian, the
success of the Cabibbo theory and current algebra
imply that it is on the other hand (cos6,)™' @] and
(sin6,)"* @ which belong to the same octet with
proper relative normalizations under the local
SU(3). As long as f/f, is approximately unity,
then not only the equations

= foy i o (
. 8)
af:(=f3uK4n ot

with the same f, are in good agreement with the
experiments, but also the equations

(cosb) '@ =co my, + -+,

’

(sin,) ' @f = co, Ky + -+, @)

with the same ¢, are in approximate agreement
with the experiments. For this reason, although
Eqgs. (8) do give better results, we do not argue
that the agreement between Eqs. (8) and the K;,/m;,
decay-rate ratio is a strong indication that SU(3),
is a better symmetry for the one-pseudoscalar-
meson component of the axial currents. Rather,
we regard Eqs. (8) and (8') as suggesting an inter-
esting viewpoint that the need for the Cabibbo angle

arises from mediating between the nonlocal SU(3),,
and the usual local SU(3). From this viewpoint the
significance of the relation (12) is not to suggest
an alternative to the Cabibbo theory (as attempted
in one of the papers in Ref. 12), but rather to es-
tablish a connection between the magnitude of the
Cabibbo angle and the mass ratio which appear
naturally in the relations between ¢ and ¢, -

(b) The main difficulty at the present time of
further testing the usefulness of the SU(3);, sym-
metry is to go beyond the vacuum to one-particle
matrix elements. Some higher matrix elements,
such as those of the weak vector currents between
pseudoscalar mesons relevant for K,; and 7,, de-
cays, can still be reduced to vacuum to one-par-
ticle matrix elements at the soft-pion point, if
one assumes some current commutation relations.
Equations (8) can then lead to results for K,, and
™5 essentially equivalent to those in the one-angle
Cabibbo theory. However, to deal with symmetry
relations among genuine three-point and higher-
point functions, one must be able to either write
down the nonlinear terms in the in-field expansion
of interacting fields, or have some algebraic re-
lations between the generators of SU(3),,, SU(3).y »
and the Poincaré group. So far we have been un-
able to arrive at a satisfactory formulation.

(¢) Equations (7) and (8) have been written for
x=0. More generally, if one defines ¢;(x)
=e'P* ¢, (0)e~*P*, one will have, for example,

@) =fo,mp(x)+---,

X ()= fo, Ky (x)+--.

Since #;,(x) and K; ((m,/my)x) belong to the same
octet, according to the discussion in Sec. II, to
have the one-meson components in the same SU(3);
multiplet one must compare @](x) not with @ (x),
but with @f((m ,/m)x). This may appear to some
as very unnatural. We wish to emphasize, how-
ever, that this circumstance is entirely reasonable
from our viewpoint. After all, the one-meson in-
field components in the axial currents are relevant
for such matrix elements as (0|@; ) and (0|Gf [K).
An internal symmetry is useful because it relates
such matrix elements. However, there is no way

to relate (0| @] (x)|m,p) to (0| @f(x)| K, D) for general
x with only Clebsch-Gordan coefficients, since
these must correspond to different functions of

x no matter what p and p’ are. (This is true as
long as the three-momenta are not infinite. The
use of an infinite-momentum frame is related to
the lightlike charges, which also generate nonlocal
transformations.) On the other hand, (0|@;(x)|7,D)
and (0@ ((m,/mg)x) |K, (my/m ,)b) correspond to
the same function of x, and therefore at least have
a chance of being simply related for all x. Even
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when the symmetry is inexact, in practice one often
deals with the first-order approximation in which
one-particle states transform into one another.
Presumably one would like the first-order approxi-
mation to be as good as possible. From this view-
point we see that so far as the one-meson contribu-
tions are concerned, it is natural to compare aﬂ(x)
and @[((m ,/mg)x). Once we do consider such
nonlocal relations and the group of such transfor-
mations, we see that a definite multiplicative fac-
tor of mass ratio must appear concurrently with
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each nonlocal transformation, and this leads to
some interesting consequences, as we have dis-=
cussed in Sec. III.
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