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A proof of the Z =0 condition for compositeness is examined. In a previous criticism of
this proof a paradoxical result was pointed out. It is proved that this result can be under-
stood by precisely explaining the meaning of the equality of the elementary field and the Haag-
Nishijima-Zimmermann field for the composite bound state.

It has been claimed by Fried and Jin' that Jou-
vet's Z =0 condition for compositeness' can be ob-
tained by a rigorous argument when the Haag-
Nishijima-Zimmermann (HNZ) field coincides with
the elementary field. Before discussing their ar-
gument let us briefly recall the HNZ construction
of a local field. If in a field theory we have a one-
particle state ~Qp) and if some product of the
fields, for instance P,(x)P,(y), is such that
(O~P, (x)P~(y)~gp) w0, then we can construct an HNZ
field

-( ),. T(4.(x - '4)e (x+--'4))
(1)&~0; Pspacejike (01$ ( ~2()py(2$) leap)

for the particle represented by ig-). (See W. Zim-
mermann, Ref. 3, for details. ) However, this con-
struction is by no means unique; any other product
of fields with a nonvanishing matrix element be-
tween the physical vacuum IO) and lp~) gives an-
other HNZ field —this multiplicity being just a
consequence of Borchers's theorem4 on the non-
uniqueness of the interpolating fields in field the-
ory. One usually calls "the" HNZ field the sim-
plest one, namely (1).

Now, the argument of Fried and Jin consists in
calculating the vacuum expectation value (0~[/(x, t},
s, p(x', t)]l0) = iB5(x —y), and in showing that B=~.
Since it is known that for an elementary field, B
is the inverse of the wave-function renormalization
constant of the field, they conclude from B=~ that
the renormalization constant of the field p(x) van-

ishes. There are two ways of interpreting this
result. The first one is to consider that there is
no elementary field corresponding to the state
lP-) in the theory. Then (1) is just a, definition of
a local "composite" field for that state and the
Fried and Jin calculation would be correct with
their definition of Z, for a composite particle, as
B '. This conclusion is valid if expression (3}of
their work is divergent. We note here that it can
be explicitly verified in solvable models that this
need not be the case. (See Ref. 5, p. 199, remark
a.) Let us also remark that the commutator
[P(x, I},S,P(x', t)] is not in general a c number in
this case, as can be seen by direct computation
(for instance in the Lee model), and that B ' does
not correspond to the renormalization constant one
usually considers in the Z =0 theory. Indeed the
content of the Z =0 condition has to do with the fact
that it relates a theory in which there is no ele-
mentary field corresponding to a particle state
~(I}&), and another theory in which there is an ele-
mentary field corresponding to lP-). It is the re-
normalization constant of the elementary field in
the second theory which vanishes in the composite
limit as we have discussed in detail in a recent
paper. ' This distinction is partially made by Qs-
born' in a discussion of the Fried and Jin paper but
we do not agree completely with his results. We
will return to this particular point elsewhere.

The second way of interpreting Ref. 1 is to sup-
pose that there is in the theory an elementary
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g' "
d

lf(~)l'(~' -p')"'
4~2 „w+mN —mv

(2)

field (b(x) corresponding to the state
I (t(~), and that

(b(x) = (t((x). It seems to us that this is the point of
view of Fried and Jin since on page 1153 of their
work they state that the divergence of their for-
mula (3) has been used by Nishijima to prove re-
lation (1) of their paper. With the first interpre-
tation, relation (1) is just a definition of a local
field for the state

I
(t(-) and there is nothing to

prove. This second point of view has been taken
by Cordero' and by Brandt et al.' in their analysis
of Ref. 1. In Ref. 9 the study is done in the No
sector of the Lee model, which is sufficient for
clearly understanding the situation. We consider
the Lee model with a stable V particle and we re-
call that the self-mass 6 v=Z(m „-m„)and the

Vf&

renormalization constant Z of the V field are given
by (for calculations and notation see Refs. 5 and

10)

g' "
d

If(~)l'((d' -p')"'
4v' „((v+m„—mv)'

Let us denote by (t(„(x), (l(„(x), and A(x) the fields
of the V, N, and 0 particles, respectively. One
has (Ol(I(„AI V~) e 0, where

I Vy) is the one-particle
state of particle V, so we can construct an HNZ

field (I(„(x) for this state which in momentum space
will be given by [see also formula (6) of Ref. 9]

bv(p, t) =
~~2 d'q d'k 6(p —q —k)

x b„(q, t)a(k, t). (4)

Now, Brandt et al. remark that the proof of Fried
and Jin is erroneous due to dubious interchange of
limits. The fact that the Fried and Jin proof is not
correct is clearly exhibited in their paper, but the
reason why this is so is not given. What they have
done is to reproduce the proof in the Lee model.
They first remark that when 5v = and Z ~ 0 it
follows from the equation of motion of the Vparti-
cle,

Z i — mv bv p t =&»v p t —
3&2 d'qcPk5 p-q-k b~ q, t a k, t,- f(~»)

«l[5, (p, t), 4(p, t)]10&

6(- -,
)

Z
' "dk k'I f(k)l'

2ff5 v (d j},

=Bb(p -p'). (6)

One can then verify that if the form factor f(k) is
such that

I f(k)l —k"t2 as k-~, with -1 ~ a &0,
then from (3), Zw0; from (2), 6v=~; and from (6),
B=~. So we arrive at a paradox that clearly in-
validates the Fried and Jin proof. Let us see now
how this situation arises. Defining

p(P) = (»)'~ I(0l0 (0)IZ&'6(P p, ), -
and similarly defining (6(p} (replacing p» by (t(v),
one easily shows that

(ol((, (p, t( (,'(p'. 0(lo& = &tp -p'( f0( )d

and Z ' = fp(a}da when Z as defined by (3) does not
vanish. [This is the case discussed in Ref. 9; see
also Eq. (5}.] One also has that propagator Ss(s)

that bv(p, t) =b„(p, t). The next step is to calculate

«i[br(P, t), bv(P', t))10& =Bb(5 -P'),
to put B=Z ' because of the relation bv =bv, and
to conclude that if B=~, then Z =0. This last step
can be done exactly in this model using (4) and one
obtains

in momentum space, i.e., the Fourier transform
of (Ol T((j(v(x)(t(vt(y)}IO), is given by

fp(a)(s+a —ie) 'da,

and the corresponding formula holds for Ss(s)
with Pv and P replacing Pv and p. We can
then compute o(a) =p(a) —5(a —m ) and 8(a) =t}(a)
—5(a —mv) by calculating the imaginary parts of
the propagators Ss(s) and S„'(s) for -s &m„+p.
One obtains

(s+mv)o(-s) =o(-s) ('I)
(mv —m„)' '

For the purpose of our discussion let us everywhere
replace the form factor f(u) by f(&u) =f(&u)e(A-u),
and let us denote (when necessary to avoid
confusion) the new quantities so defined by bvA,

Z~, etc. It is clear that we will recover the origi-
nal theory when A -~. Moreover we suppose that
I f(k)l —k ~' as k —~, -1 ~ o &0, so that when
A-~ we will have Z WO and 5v=~. In this limit-
ing procedure we keep the observable mass mv
fixed and finite, and we see then from 5v
=Z(m„, —mv) that mv, (A) —~ when A- ~.

Now, from (7) we deduce that when A —~ we have
lim o (a) =o(a); then Z ' = glim P(a)da, which is
finite, and we do not obtain for the left-hand side
of (6) the result Bb(p -p') [where B is defined by
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the right-hand side of (6) and is divergent in the
limit]. But if we integrate first, i.e., we compute
fP(a)da before taking the limit A-", we see from
P} that the integral will diverge. More precisely
the divergent contribution to the integral will come
from the term (m„,') 'Jp(a)alda which will behave
in the limit as A for -1 & n &0, and as A(lnA) '
for n = -1, which is precisely the behavior of B
computed from (6} in the limit A —~. [We note
that we have used the facts that p(a) -a" ' a,s
a —o0 and m„-A" for -1 & a (0, m -lnA for
n = -1, as can be seen from (2).] This then shows
that the computation of the vacuum expectation
value of the anticommutator is ambiguous, and that
one does not necessarily obtain Z ' from (6) [see
Ref. 9, formula (V)]. Let us now explain the ori-
gin of this difficulty.

The reason for expecting that (6) should give
2 '6(p —p') is the equality b„=b„ that Brandt et al.
deduce from the equation of motion (5) when bv=~.
Indeed this relation can be shown to be valid in
perturbation theory to all orders for the perturba-
tion expansions of the vacuum expectation values
of T products of the fields. " But one must be care-
ful to interpret b~ = b~ in other cases; indeed, as
has already been remarked by Zimmermann, "this
equality can only hold for matrix elements between
vectors ln& and I@ such that the left-hand side of
the equation of motion (5) divided by 5 vA tends to
zero when A-". Calling IN„., 8p&t'& the scattering
states of the N8 sector (see Ref. 10) and E(t) the
left-hand side of (5), one easily verifies that the
matrix elements

&01«)IV;&, &0I~(t)l&;, 8„-), &V„-I~(t)IV~&,

&Ng', 8f I~(t)l&g, 8r&, and &~plHt)l&;, 8P, &

all give zero in the limit A -~ when divided by
5vh, so that b„=b„holds in the weak sense we
have explained in these cases. Furthermore, in
the definition of the spectral function p(a) only the
matrix elements between IO& and

I Vp& and INg, 8p&

appear, so that we must then obtain the same func-
tion when computing it with b~ instead of b~, as we
have directly verified [recall that p(a) = lim P(a)].

~(t) ~(t )'
Oval 5vA

(6)

For the relation b =b to hold in this case, the sum
of the last three terms on the right-hand side of
(6) should vanish when A-". But one easily veri-
fies that the first two remain finite in the limit,
while the last one diverges. In fact, this is neces-
sary since we know by direct computation that
(bb t

& =B=", so that another infinite quantity must
arise to cancel B and give the finite results Z '
for (bbt & Let us. show that the last term diverges
in the same way as 8 (and in the same way as
limJP(a)da, a,s expected). We get for the leading
divergence

A-
(,„)2 daalf(a)l', (9)

where we have used p(a) -a 'I f(a) I' as a-". Com-
parison with B as given by (6) proves our assertion.
We conclude then that we cannot replace b~ by b~
in the anticommutator, and that consequently one
should expect the result BcZ '.
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Let us consider now the case of the anticommuta-
tor. The question is whether we are allowed to re-
place b~ by b„ in the expression

&0I[b,(P, t), b,'(p', t')}I0&I'-,"
We first remark that &[b, bt }&=(bbt ), where we
have used a convenient short-hand notation. From
the luation of motion (5) we see that b =b
+F(t)/5v~, and using this relation we obtain
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