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An attempt has been made to derive covariant Feynman rules for the massless Yang-Mills
field, starting with canonical methods of quantization. In this paper we will summarize the
techniques involved in such a program, along with a few preliminary results. Working in the
radiation gauge (8;b& =0), we find that there is an infinity of noncovariant vertices. We ob-
tain a noncovariant set of rules to describe them to any order. Working with the suggested
set of rules, we first prove that all tree diagrams can be described by a covariant set of
Feynman rules. Secondly, to order g2, we find that the one-loop diagram can also be made
covariant. However, apart from the usual three-vector and four-vector vertices, the co-
variant loop contains an extra vertex of vector-scalar-scalar type and the scalar loop occurs
with a weight factor of —2 with respect to the vector loop.

I. INTRODUCTION

In recent years, considerable attention has been
given to the problem of obtaining covariant Feyn-
man rules for the Yang-Mills field. ' Because the
Lagrangian for the massless Yang-Mills field
obeys non-Abelian gauge symmetry, canonical
methods of quantization are complicated due to
the nonlinear nature of the constraints on the in-
dependent dynamical variables. Therefore, other
less conventional methods were employed in de-
riving the Feynman rules for the field and accurate
rules were suggested, first by Feynman, ' ' and
later by Fadeev and Popov, ' Mandelstam, ' DeWitt, '
and Fradkin and Tyutin. ' Massless limits of mas-
sive gauge fields have also been studied' in this
connection, but the resulting rules are found to
violate both unitarity and Lorentz invariance and
hence are incorrect. The method of canonical
quantization, though complicated, is an unambig-
uous and more conventional procedure, and it
serves to elucidate rather clearly the role of con-
straint equations in the derivation of the rules.

The present paper is devoted to a study of this
procedure. In this first of a series of papers, we
will summarize the techniques involved in such a
program, including a treatment of the constraint
equations, and we will report a few preliminary
results for tree and one-loop diagrams.

We will work in the radiation gauge [S;b;.(x) =0,
i.e., the field is transverse] and first isolate the
independent dynamical variables, which will be
postulated to satisfy the canonical commutation
relations (CCR). In this gauge the interaction
Hamiltonian is an infinite series in the coupling
constant, each term of the series being noncovari-
ant. Since we are. working in a noncovariant gauge,
the propagator is also noncovariant and contains
the so-called normal-dependent terms. ' First of
all, we will suggest noncovariant rules for tree
diagrams. However, we will prove them only up
to order g' since all the essential elements in the
proof are exhausted by fourth order. Going to
higher order requires only a very complicated
combinatorial analysis. We solve this problem
in Appendix B. Using these noncovariant rules,
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II. INTERACTION HAMILTONIAN IN
RADIATION GAUGE

We will work with the SU(2) gauge group, al-
though generalization to an arbitrary group is
trivial. The gauge field b„ in that case is an iso-
vector field and the Lagrangian for the b field only
interacting with itself is the following':

4 fPV fPV7

where

fpv = Spbv Svbg +gbp &&bv. (2.2)

The corresponding gauge transformation for the
field is

we will show that in the case of tree diagrams to
all orders in the coupling constant, the noncovari-
ant terms drop out, giving rise to a covariant set
of rules. We work only to order g' in the case of
one-loop diagrams and demonstrate that in this
case also, the noncovariant (or normal-dependent)
terms cancel out. The resulting covariant rules
for the loop are then found to have an extra vector-
scalar-scalar vertex (of p jjjj type), in addition to
the usual triple- and quadruple-vector vertices.
The extra vertex occurs only within the loop (the
scalar loop) and has a weight factor of -2 relative
to the vector loop. This result agrees with those
obtained previously by others (see Refs. 2-6),
using different methods. Since this procedure
seems to work, we would like to extend it to higher
orders with more loops in future publications.

In Sec. II, we write down the field equations, iso-
late the independent dynamical variables, and de-
rive the interaction Hamiltonian in interaction rep-
resentation. In Sec. III, we suggest the non-covar-
iant rules for the tree diagrams and give a proof
of the same to order g4. Using the suggested rules
in Sec. IV, we show that in the case of the tree dia-
grams, the noncovariant terms can be dropped. In
Sec. V we treat the loop diagrams. In Appendix A
we present a proof of tht. classical Hamilton's equa-
tions for a Yang-Mills field in the radiation gauge,
which does not seem to exist in the literature. In
Appendix 8 we prove the noncovariant set of rules
suggested in Sec. III to any order in the case of
tree diagrams, using combinatorial methods.

and the canonical momenta are

ag-, =if4), @4=0.
i&j84b, j

(2.6)

Vfe will work in the radiation gauge; i.e., the
fields satisfy the following condition:

&;fj;(x)=0, i.e., b; is transverse. (2.7}

Notice that 7r& has both longitudinal and trans-
verse parts; we separate the two parts as follows:

jjj hajj + e july (2.8)

where e; jj,' =0 and P is a scalar under the rotation
group. The field equations in (2.5) contain a dy-
namical part, giving the time evolution of the sys-
tem and a constraint equation. The constraint
equation is

I

8]pq = -gbg && m'g. (2.9)

Using Eq. (2.8), we can rewrite (2.9) as
t&0+gbjxsj4 = gbj&«-j

where

a=gej'.
i

(2.10)

l~
1+gal 'M (2.12)

~gQ (-g6 'M)"b, -'y, (2.13)

where we have purposely dropped the space-time
dependence of all the functions such as jjej, 1. By
now, we have isolated the independent dynamical
variables b& and 7r&,

' the longitudinal part of canon-
ical momentum depends on b& and n& through Eq.
(2.13).

The Hamiltonian is

From Eq. (2.10), we see clearly that the con-
straint equation is nonlinear. However, we can
write a formal solution for this. For that purpose,
we define an operator

M -=b;& &] (2.ii)
and write y = -b, &&fr,'. The formal solution for jtj

is

bq —fjq+ —Vq oj (x),
where

V& = p~ay+g~acyb&

(2.3)
K= d'xX x,

where the Hamiltonian density

36(x) = jj; b, —S(b„b„.. .) .

(2.14)

(2.i6)

=-(ej +gbj, x)„.
The field equations are

g~fPv+ ghee Xfgv=0

(2.4)

(2.5} X(x)=-,'v, %, +-.'f„ f„, (2.i6)

Using constraint equations (2.9) and also perform-
ing partial integrations, we can write Eq. (2.15)
as follows:
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where we have dropped all terms which are ex-
pressible as divergence of something, since there
is an integration over space. We can separate the
longitudinal and transverse parts of m& and rewrite
Eq. (2.16) as follows":

One can check using the CCR that

,'= & b, . (2.23)

We are still in the radiation gauge and the b&'s

satisfy the free-field equation and therefore have
the following plane-wave decomposition:

X(x) = gs; m;+ 4f;; f;; —2P n. P
&~t ~t

because

7r', ~ s, y d'x=0.

(2.17)

(2.18)

b'„(x, t) =
a, &=i.2

r a j(Q ~ x -(ut) af -i(k 'x -ut)
XLg~ ~g + Cy ye ]p

Notice that Q= 0(g); therefore, in the absence of
interaction P —=0. At this stage, it might be in-
teresting to check whether the classical Hamilton's
equations are satisfied by b; and m,'. They indeed
do satisfy Hamilton's equations, as we show in
Appendix A.

Now we postulate the following canonical com-
mutation relations among b, and m,'-, following the
guidelines of quantum electrodynamics":

where

e„(k, X}=(e,i(k, X), 0}

with

k; e((k, X)=0,

e, (k, ).)e, (k, X) = 6,, —

(2.24)

(2.25)

(2.26)

[b;(x, f), w,''(y, t)]=i6„6I;(x-y),

where

6,', (x —y) =(6„—s, s,/a)6'(x- y).

(2.19)

(2.20)

The fields are transverse, as is clear from Eq.
(2.25). The interaction Hamiltonian is given by

If,„,= J
d'xz;„,(x) = d'x[X(x) —X,(x)],

IIp d x 2lff x 7Tj + 4gj j gag x (2.21)

where

g;~
——8)b~ —8~b]. (2.22)

We will now go to the interaction picture, where
canonical commutation relations rema, in unchanged.
To avoid clumsiness, we denote the field variables
in the interaction picture also by the same quan-
tities b, (x;, f) and v,'(x;, f)

The free Hamiltonian in this picture is

where

36»t(x)=Mb, . xb,. g, , +48'b,. xb, b&xbj ——

(2.27)

If we use the expansion (2.13) for P, we can see
that X;„,is an infinite series in powers of cou-
pling constant and therefore has an infinite num-
ber of noncovariant vertices. Note that if we work
in the same gauge in the case of quantum elec-
trodynamics of charged particles, we have only
one noncovariant vertex. "'"

III. NONCOVARIANT FEYNMAN RULES

To get the Feynman rules, we have to use the K», (x) given in Eq. (2.27) in the Dyson expansion for the
S matrix and do the Wick expansion for the T products. For the purpose, we have to know the vacuum ex-
pectation values, given below'.

i~ (~-3)
(O~T(bq(x;, t)b'„(y;, t')}~0)=

(
)", , . d'k 6„,—kpkv —k 7}(kvqv+kvqv)+k'@pe,

k' —(k ~ q)' (3.1)

where 17„=(0,0, 0, 1) =-6„,.
This is obtained by the usual procedure using the plane-wave decomposition (2.24) and choosing the pro-

per contour in the 0, plane, and also using the fact that

krak„—(k q)(kgb„+k q ) v+qkq„
k' —(k q)'

v

Also, we have

(3 2)

ia (v v)-
(0~7'(s„b'„(x)b',(y))~)= -.J, d'kk. 6„„-k pkv -k ~ 7i(k p qv+ kvq„) +k'qp qv

k' —(k q)' (3.3)



(3.4)

(3.5)

The third term in Eq. (3.5) is however an infinite series, as noted earlier:

It is easy to see that (3.1) denotes the propagator (see Fig. 1). Furthermore, since the polarization is
a purely spacelike vector with fourth component zero, the first two terms in (2.2"I) can be effectively
written as -', gb„x 1„~g„„and —,

' g'bp 1, ~ b„&&1„, having the diagrammatic representation as in Fig. 1(b) and
Fig. 1(c). Therefore we can also rewrite the interaction Hamiltonian as follows:

Xl= ggb~ ~b, 0;pp+gg b~ ~by bp xb~+XI. .

(3.5)

Propagator
k,

tu. ,a' v, le
krak~-kvf(kpvfg +kI vfpg. )+k qpavfs

k~-l& - +" kg-(k )"9

„papua
'abc

„(p,k, q) = (-g)e'abc
p.a X,

8~„(p-k)&+8,), {k-q)~ + 8) (q-p)„

(C) 4-Vertex

al~p I a5~~5

I
g, l'e

'g '& aaIa2 aasa4(8 lf s8mf 4 8I II 48' Res)

aoIas «4aa (8iuI&48/ sP 2 8iaIf'~8&s/ 4)

+eaala4~aaes (8/ IPR8P 4p 5-8p Ip58 4p.2)

{k,icu)

(d) Outgoing meson

(e) Incoming meson ,-icu) e„(k,) )

(f) Coulomb-type propagator (-I )
'9p. '%

ke-(k &)'

FIG. 1. (a)-(f) represent the correct Peynman rules for tree diagrams to all orders, with the understanding that (f)
must be inserted in all combinations in place of propagator (a), to give rise to different diagrams to any particular order
in g. [Please note that a dot stands for an q& and an unslashed and undotted line stands for the propagator -i6,&6»/
(k 2 -ie).] For the case of- loops, we conjecture that the same Feynman rules remain, with the understanding that (1)
proper symmetry numbers be multiplied to the loops involving all propagators of the type shown iri Fig. 1(a) (see Ref. 8
for a definition of symmetry number), and (2) whenever there is a loop with all propagators in it being of the type shown
in (f) and having only 3-vertices attached to it, a fs.ctor ~ is to be multiplied to such a diagram. This conjecture is veri-
fied in case of the one-loop diagram to order g and the general proof will be considered in a separate paper. In (e) and
(f) the arrow over k denotes that it is a space vector, as opposed to the notation throughout the paper.



FIG. 2. All possible topological structures must be considered.

We suggest the following rules, which arise from Eq. (3.6).
For every propagator of the type Fig. 1(a), there should be a diagram with a propagator -it)„t)„/

[jP —(Ir q)'] shown in Fig. 1(f) in the case of tree diagrams, which we call a Coulomb-type propagator.
We prove this result to a fee lower orders in the foHoming paragraph. The general proof to all orders is
given in Appendix B.
(a) To order g'. Equation (3.6) becomes (since fta=0)

X,(x) = --,'g ',&-'(b„x e,b„) (b„xs,b„). (S.'l)

It is clear that in momentum space, b, ' becomes 'I/[)'I' —(II I))'] and b„x8 b„ais equivalent to e„(p)e,(tf)

XI'»1(p, q, k)t)1 or the diagram shown in Fig. 2(a). Therefore, to order g', we have the diagram shown in
Fig. &(b), as suggested by Fig. 1. Note that the factor —,

' goes away in the actual calculation.
(b) To order g': One will have the following terms coming from XI (x):

-4g d x d Y gP„X ' b~ x xbP x 4 bf)fx80bf„' byxBobg y )—ig d g h. Mh, b~ X80bP ' bPXBob„),

M =b; x Bg -=bp & 8p (3 8)

since b0=0, or M=-,'b„xB„, vrhich Ineans

(3.9)fMg= a(f ba && Bag —8 f b xg).

Equation (3.9) follows because B„b&=&tbt =0. Now it is clear that the first term in Eq. (3.8) gives rise to a
diagram of the type shown in Fig. 3(a). In the second term, the 4 "s give the propagators 1/[k' —(II I))'],
the expression b& &&Sab„gives «„(p)c,(q)l &„1(p, q, k)I)1, and M in momentum space corresponds to

e,(q)q, t) 11'„,1(P„ tt, k),

sllowII lll Flg. 3(b). As a I'eslll't we ge't Flg. 3(c)r tlllls substantiat1ng oui' clalIII to ol'del' g
(c) To order g'. We will work out the rules to yet another order because a new type of term appears in

this order which gives rise to the suggested rules. The contribution to the Dyson expansion to this order
from Eq. (3.5) is the following:

/ + (-I) /-- + a ~ ~ ~ (, ) x V /
/

(b) ~= = == + all parmatatlaas/

r~== ==i
FIG. 3. Verification of the proposed penman gules in

the case of tree diagrams.
FIG. 4. Verification of the px'oposed Feynman mles in

the case of tree diagrams,
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!fg'Jtd'xr(& 9W 'M& 'X(x) X(x))--g'„d xd'y~(g. b &&b.(x)& M& X X(y))

+~g d xd y b~ b~ b~&&b„xh 'y gx —Sg d xd yT 6 'y y x6 'y ~ y y

(3.11)

We did not write down the contribution of the first two terms in Eq. (3.5) since they would give rise to the
usual diagrams shown in Figs. 1(a)-1(e). Note that in Eq. (3.11), the first term has a weight factor -„
whereas to substantiate the rule postulated, we will have to have a weight factor of 2 there, as can be seen
using Eqs. (3.9) and (3.10). Also, if our claim is correct, we ought to have the diagram shown in Fig. 4(a),
which is obviously not manifested in Eq. (3.11). To see how one gets these two results, we have to look at
the last term in Eq. (3.11). If we make a Wick expansion of the above term, we will first of all get all
possible contractions of a pair. Among all these contractions, there is one term of the following type:

--'g'X4
l ~ ...&. .. e. ..e,&, .'& '(k'„'&,k'„)(x)b'„'(x)& '(k"&,5'„')(y)b (y):&0]r(a,b; (x)8,5;o(y))[0) d xd y.

(3.12)

Using (3.4), one sees that

e~a. (~-&)
( ig ( ) ( ))i )

E'g~'g 's e 4 (k k k2 )
kUk k 'g(kp'g +k 'g )+k 7fpg'

0 P 0 a y a5~10 (2v)4 k2 k' (k q)2-
(3.13)

The k ks term within (3.13) makes a contribution to the diagram in Fig. 4(b), whereas we have an extra
term left out which, taken along with (3.12) after using the fact that q b= 0, gives us the following extra
term:

+i
(

d'xd'yd'ke"i' ' 5„—,, ', :4 '(b„x&,bq)xb, (x) '& '(box&Py)xb, (y):

which is equal to

(3.14)

—,'ig~ „d'x: d, '(b„&&5,b„)&&5„(x) 6 '(b„xB,bq) bx„( )x: +i g d x: 6 'Mb, 'M6 'X(x) X(x): . (3.15)

Thus, replacing the last term of Eq. (3.11)by Eq. (3.15), we see that we get the correct weight factor,
substantiating our claim about Fig. 1(f), and also we get the diagram shown in Fig. 4(a). Therefore, we
have proved that the rules suggested are indeed correct to order g'. Here we would like to comment that
we have checked the correctness of the rules through order g', but continuing to arbitrary order n be-
comes a difficult combinatorial problem, which we solve in Appendix B. Also, we would like to remark
that there is no new type of term formed in higher orders.

IV. COVARIANTIZATION OF TREE DIAGRAMS
TO ANY ORDER

The purpose of the present section is to show
that all the noncovariant terms cancel each other
in the case of tree diagrams. To show that, we
will need the following theorem, which we prove
at the end of this section.

Theorem 1. Let

T„„„'' .".(.k„k„... , k„)e„(k,)c„(k,)" e~ (k„)

stand for a set of a/l tree diagrams with n external
particles, with polarization vectors e~ (k,), . . . , etc.,
sotopic spins a~, ..., ~„, and momenta k

constructed out of vertices 1"„~z, I"„,)„and prop-
agators i5„,5„/(k-' —ie) (to be called henceforth
a covariant tree). If we replace any number of
e„.(k;)'s by the corresponding momenta, i.e., k,„,
then the result is zero, i.e.,

a a '"a "~a
1 2 l n

~~V ~2u '"""&V
t V

"
V V

xt„(k„,)" e~ (k„)=0.

(4.1)

This result is diagrammatically shown in Fig. 5,
where the crosses stand for momenta. Note that
this general result is not true in the case of mas-
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Ek

k v,b q,g,c

I
I
I
I

+ fSeeeeem ~~~ ~I

FIG. 5. A-diagrammatic representation of Theorem 1.
(All possible tree diagrams of this type must be con-
sidered. )

sive gauge fields even if all the external polari-
zations are taken to be transverse. ' As a partic-
ular case of this result, we have the following
identities

p~ I"„'„'~(p,k, q) e„(k)e ~(q) = 0,

p„k,I"„",~(p, k, q)e„(q) =0,

(4.2a)

(4.2b)

P„k,qual"„", g(P, k, q) =0.

Proof. It is easy to see that

P I"„,„(P,k, q) = g e„,[k'6„~ —,'k, (k —P—) ~]

(4.2c)

k ~ e(k) =0 and k'=0, (4.4)

we have proved Eq. (4.2a). Multiplying Eq. (4.3)
by k, on the right-hand side, we get

p„k,F'„",g(p, k, q)

g&o~lk q &+g-& 'W [q 6 'g 2qx(q p) ].— —

(4.5)

Therefore, when q is on the mass shell, the right-
hand side vanishes and Eq. (4.2b) is proved. Equa-
tion (4.5) is also shown diagrammatically in Fig. 7,
where the first term in Fig. 7 stands for the first
term in Eq. (4.5). Equation (4.2c) is also easily
proved to be correct.

As a first step towards proving the covarianti-

+a&..~[q'6.~- kqx(q- p).] (4.2)

This is diagrammatically shown in Fig. 6 (see Ref.
"I). If k and q are on mass shell, since

FIG. 7. Effect of multiplying crosses to two legs of a
a-vertex.

zation, we have to show that all diagrams having
propagators of the type ( f)q-„q„/[k' —(k q)'] can-
cel. It is trivial to see to order g'. They have
opposite sign [see Figs. 1(a) and 1(f)] and they
automatically cancel. The proof to any general
order can be seen as follows: Consider a branch
of a tree having n propagators and other branches
going out of it as shown in Fig. 8, where the boxes
stand for the rest of the tr'ee diagrams attached to
the branches.

First, let us break the propagators of the type
shown in Fig. 1(a) in the following way:

Fig. 1(a) =st'„'„(k)+ „, "(' )„ (4.6)

and let us call the first term a type-"1V" and the
second term a type-"A" propagator, and the one
in Fig. 1(f), a type-"E" propagator. Writing all
propagators in the form shown in Eq. (4.6) and

multiplying the various terms, we will have dia-
grams with all type-A propagators and products of
various numbers of N- and A-type propagators.
Also, there will be diagrams with products of N-
and E-type propagators and E- and A-type prop-
agators. Our aim is to cancel all diagrams with
A- and E-type propagators and be left with those
with N-type propagators only. Let us first take
the case when there is no N-type propagator pre-
sent in the branch under consideration. Then there
will only be diagrams with E- and A-type propa-
gators. There will be one diagram with all A-type
propagators. Then there will be (",) terms with
one E-type and n —1 A. -type propagators with an
extra relative minus sign with respect to the first
diagram, and so on for two and more E-type prop-
agators. On adding all these up, we obtain a dia-
gram with all A-type propagators with the following
weight factor:

where

I
I

I

I
I

/cp
II

~b, k

I
I
I

I

+ —x---I

= + ~abc (k-q)2 I

I I

I I

I I

+ = +—I--~I

Qfld

Ipg
I
I

kb
= «bq ~»

FIG. 6. Effect of multiplying a k& to a 3-vertex. (The
cross stands fork& in all figures in the paper. )

FIG. 8. A general noncovariant tree diagram to any
order with propagators of type shown in Fig. 1(a).
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'Neb
pcP + = +

FIG. 9. Decomposition of an N-type propagator.

1 + j. + 1 +

(4.V)

Therefore, we have proved that all such terms
cancel. Now let us look at diagrams with one N-

type and n- I both A- and E-type propagators. The
N-type propagator could be at various places. Hut
for eRch posltlon of the N-type propagatol, there .

always exists a complete set of A- and E-type
propagators which add up to give zero in the man-
ner shown in Eq. (4.V). This can be generalized to
any number of N-type propagators. Thus, in the
particular branch considered in Fig. 8, we have
only N-type propagators. Then, we can examine
each of the branches coming out of this main
branch and apply similar considerations. There-
fore, after all this has been done, it is easy to see
by inspection and a moment's thought that in all
tree diRglams, we will have Only +-type plopR-
gators and there are no I'- or A. -type terms at all
in tree diagrams. Therefore, from this point on-
wards, our Feynman rules for tree diagrams will
be those given by Fig. 1(b)-1(e) along with the
pl opRgRtor

-i5, g kgb' -k q(kgqy+k, qg)
0' —i e "" &' —(0 q)'

(4.8)

This is represented diagrammatically in Fig. 9.
In the next paragraph, we will show that the re-

maining noncovariant terms will drop out in the
case of tree diagrams by virtue of Eq. (4.1).

To prove the above assertion, we first break up
and multiply out all the terms in the various prop-
agators. Then, there will be one term in which
all the 5„„-type terms are multiplied and this is
the term which we want at the end. Among the
rest, we will have the following types of terms:

(a) Terms in which there is one or a number of
k„'s (denoted in Fig. 9 by a cross) or crosses
attached to one leg or legs of a complete set of
covariant trees defined in Theorem 1 with other

FIG. 10. A typical diagram to order g after the de-
composition of the N-type propagator has been made.
Notice that, in this diagram, there is a cross sitting on
one leg of an external covariant tree diagram. There-
fore, when we combine all diagrams where the legs of
the external covariant tree are permuted so as to give a
complete set for it, this diagram will vanish by Theorem
1.

legs being external (i.e., multiplied to polariza-
tion vectors). Such terms will drop out because
of Eq. (4.1), when we consider a complete set.

(b) Of course, one might think that one could
also have a dot attached to an external covariant
tree. But, as shown in Fig. 9, every dot is accom-
panied by a cross. Therefore, the cross accom-
panying the dot will be attached to the leg of a
covariant tree [where we call a 3-vertex a covari-
ant tree also, since it satisfies (4.1)]. If all the
other legs of this tree are external lines, then, of
course, Eq. (4.1) will eliminate it. If not, then let
us examine the other legs of the covariant tree to
which it is attached. If Rll the legs have crosses
planted on them, then we just have to take a com-
plete set, Rnd then by Theorem I the result van--
ishes. There is of course the possibility that, of
the n legs of the tree, m (m&0) could be planted
with crosses and n-m could have dots on them.
In that ease, the dots have crosses accompanying
them and the same considerations are now applied
to this new cross and the covariant tree on whose
leg the new cross is planted, until we reach the
situation in which the cross is on the leg of a co-
variant tree, all the rest of whose legs are attached
to polarizations, and this gives zero by Eq. (4.1).
This then proves the assertion that all the nonco-
variant diagrams vanish. To illustrate the case
(b), we draw a typical diagram to order g' in Fig.
10, where we see that there is a cross on the leg
of an external covariant tree. Thus, in this sec-
tion we have shown that with the set of noncovari-
ant Feynman rules suggested in Sec. III, the tree
diagrams can be described by a covariant set of
rules as follows:

)S

+ =Q FIG. 11. Boxes stand for anything.
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FIG. 12. Boxes stand for anything.

(1) the 3-vertex F:„~(b,k, g) as given in Fig. 1(b);
(2} the 4-vertex I"„';~, as given by Fig. 1(c);
(3) the propagator -i5„,5„/(I" i&—);
(4) the external lines as given by Figs. 1(d) and

1(e) ~

Now we will prove Theorem 1[Eq. (4.1)]. We
will be using the identity in Fig. 6, for a cross
sitting on a vertex. Before going further, let us
recall that the identities given in Figs. 11 and 12
can be proved. '

Now take a covariant tree diagram with n exter-
nal legs with an arbitrary number m of its legs
crossed. Let us take one cross and use the iden-
tity shown in Fig. 6. There are two possibilities:
(a) The leg adjacent to the one under consideration
and attached to the same 3-vertex has a cross on
it, and(b) itdoesnot. Incase(a). wecanusethe
identity in Fig. 7 and get the result shown, Fig. 13.
The second term in Fig. 13, by virtue of the iden-
tities in Figs. 11 and 12, will disappear. There-

fore, what remains is a diagram with n- 1 exter-
nal legs, m- 1 of which are crossed. Therefore,
by induction we can 'go down until there remains
only a crossed 3-vertex, which is zero by virtue
of Eq. (4.2). Therefore, we have proved Theorem
1 in case (a).

In case (b), we use the identity in Fig. 6 and we
get the result shown in Fig. 14. It is clear from
Fig. 14 that the first and the third terms drop out
because of the identities in Figs. 11 and 12.
Therefore, we have a higher-order crossed co-
variant tree equal to lower-order crossed covari-
ant trees, and a process of induction leads to the
final result.

Another possibility is that a cross could be at-
tached to a 4-vertex. In that case, one can see
that when we take a complete set of trees, there
will be corresponding diagrams so as to satisfy the
identity of Fig. 11, thereby proving the theorem.

V. COVARIANTIZATION OF ONE-LOOP DIAGRAM TO ORDER g

The diagrams that arise in this simple case are shown in Fig. 15. A few words as to the origin of the
various diagrams is in order. The origin of Fig. 15(a) is obvious; Fig. 15(b) arises because of the Wick
contraction of the terms in

—,'ig' d4x S 'X x X x ). (5.1)

Figure 15(c}arises because of Wick expansion of the 4-vertex. The last two terms arise when in the Wick
expansion of (5.1), we take the vacuum expectation value of the type (0 ~1(B,b'(x) ~,5„'(y)}(0). Now, let us
write down the algebraic expression for each of them (omitting the integrations over I' and q and the 5 func-
tions at the vertices):

Fig. 15(a):
2

, [ ,'I'~~
~

(---P, k, q)I.„„(I, , P, q)P„„(k)-P„,(q-)]e„(p)e,(p), (5 2)

where

(5.3}

Fig. 15(b):

2 '5
(5.4)

=C(k) ~ + + = +g-~
FIG. 13. Boxes stand for anything.

I
I

+ p«--p
I
I

+0-'-M +[
FIG. 14. Boxes stand for anything.
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(b)
2

(c)

(e)

FIG. 15. Diagrams for the one-loop case to order g .

Fig. 15(c):

-2g 5,q

(
)4' [ ~ (2 5),)5„))—5)) )) 5„„—5)) „5„p)]P))„~(q)e))&„,

Fig. 15(d):

(5.5)

(2 )4 [+ 2(25)) )) 5)))) 6)) )) 5)) )) 5)) 05)) )))] ~
( P E)) E))) (5.6)

Fig. 15(e):

——')&&
&

(-)' k, 8))'„(-4 )', -g) )&, )&
'),

)~

'
')

)
)Ia&(p)a„))') (5.7)

We make a detailed diagrammatic expansion of Figs. 15(a), 15(b), and 15(c) using cross and dot for k„and
q~, respectively (see Fig. 8), with momentum-dependent coefficients understood (Figs. 16-18). If one
studies Fig. 16, one can easily see by using Eq. (4.2b) that parts (j), (l), (o), (p), (r), (s), and (t) of Fig.
(16) vanish. Moreover, we have the following cancellations among figures, as can be easily checked:

16(e) + 16(i) + 17(a) = 0,

16(m) + 16(v) + 17(c)= 0,

16(q) + 16(x) + 17(d) = 0,

16(d) + 16(h) + 18(b) = 0,

18(e)+ 15(d) = 0.

(5.8)

(5 9)

(5.10)

(5.11)

(5.12)

Also, using identities in Fig. 6, we can evaluate 16(b), 16(c), 16(f), 16(g), 16(k), and 16(n). For example,

(k —q)))(k —q)& (k —q))J(k —q), (k —q)„(k —q),
4[k' —(k )7)'][q' —(q q)'] 4k'q' 2k'[q' —(q q)']' (5.18)

(k —q)) (k —q).
2 [k' —(k ~ g)'][q' —(q ~ g)'] ' (5.14)

I

2
+ + — — + +

(b) (c) (d) (e) (f) (g) (h)

+ + — — + +

(i) (j) (k) 0) (m) (n) (o) (p)

+ + — — + +
(q) (r) (s) (t) (u) (v) (x) (y) (z)

FIG. 16. Diagrammatic expansion of Fig. 15(a).



+ + FIG, 17. Diagrammatic expansion of Fig. 15(b).

(b) (c) (d) (e)

15( )
1 (k-q)t (k-q)y
4 [k' —(k q)'][q' —(q. ri)'j' (5.15)

(k —q)„(k —q)v
[k' —(k q)'][q' —(q q)'] '

so that

1V(e)+15(e)+16(z)+first term of Eq. (5.13)=0.

Moreover, using the identity in Fig. 6 again, we get

(5.18)

(5.1'I)

(5.18)

Therefore, ere see that

18(c)+18(d)+first term of (5.18) =0,

second term of (5.18)+third term of (5.13)=0.

On taking into account all these equations, what is finally left is

(5.19)

(5.20)

-2g'&, i )
') u, , g, , 1 (k —q)p(k —q),

(2v) ' ""'" ' ' ' " ' ' k' —ic q' —ie 4 (q' —ie)(k' —ie)

First of all, it is easy to see that this expression is covariant. Furthermore the second term represents
a scalar loop with vector-scalar-scalar coupling of the type —,'ge„,(k —q)„, where k and q represent the
momenta of the scalar particles going out of the vertex. Also, since the scalar loop contains identical
particles, we must have a symmetry number 2 in the denominator. Therefore, the scalar loop appears
with an extra weight factor -2. All these are summarized in Eq. (5.22) and Fig. 19.

I &
aa a2

(2 )4 2Fppy/Jm( PP ki q) k2 2 Fvgvl/g( kr Pt 'q) 2 x 2g ~gg~e2 2(k q)g k2 ~ g ~ ~ge~g22(q k)p

~ae

(
~ 2 . [~(25', 5p, —5p q5„„—5q, 5, ~)].

(5.22)

From these second-order calculations vge can conclude that covariant Feynman rules for the one-loop
case must contain a vector-scalar-scalar vertex apart from the usual 3-vertex and 4-vertex specified on
Figs. 1(b) and 1(c) inside the loop. Moreover, the scalar loop must have a weight factor of -2. As has
been said earlier, these results were also obtained from different considerations by various authors. '
However, a second-order loop calculation is only an indication of nature of Feynman rules for the mass-
less case and one must prove it to all orders in g, even for the one-loop case. This is presently under
inve stigation.

(c)

FIG. 18. Diagxammatic expansion of Fig. 15(c).
FIG. 19. +IQDlBtrg DUIQb6rs Rre tRken iDto account in

this 86t of ctlagx'RIQs
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VI. CONCLUSION

In conclusion, we would like to say that in accordance with the claims made in the Introduction, we have
outlined the techniques for obtaining covariant Feynman rules for the massless Yang-Mills field, using
conventional canonical quantization methods. Using these techniques, we have shown that to all orders,
tree diagrams can be described by a covariant set of rules. The one-loop diagram to order g' has also
been shown to be covariant. These results must be generalized to all orders, with various number of
loops, in order to have the complete solution to the problem. Here, we have worked in radiation gauge.
There is another gauge, "known as the axial gauge, where the Hamiltonian is not an infinite series in
coupling constants and may therefore be easier to deal with. This will be the subject of a forthcoming in-
vestigation by the author. If these covariant rules turn out to be the correct ones to all orders, then the
theory is probably renormalizable, as opposed to the case of massive gauge fields. "'"

ggged note. After writing this paper, it came to the attention of the author, through a paper by Schwinger, "
that to the Hamiltonian density written in Eq. (2.17) one will have to add an extra term, in order that the
radiation-gauge quantization described in Sec. II be consistent with Lorentz invariance. The extra term
1s

g g g, 8~5) (x, x, t)f~y ByS (x, x, t), where (A+gM)u(x, x') = 5'(x —x').

tisospin indices have been suppressed in the second equation; M is defined in Eq. (2.11).J However, this
term does not contribute to the tree diagrams (to all orders) and also does not contribute to the one-loop
diagrams to order g'. Therefore, the results of the paper remain unchanged.
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APPENDIX A Note that

Here, we prove the classical Hamilton's equa-
tions for the Yang-Mills field in radiation gauge.
The Hamiltonian in this case is given by

(A7)

H= Xd x= d x(~m', ~ v,'. + f,~q
~ f,.q

—.2(f) AQ).
4

(A1)

%e have to show that

f Mhd'x= (Mf) hd'x.

Using these, we can write

(A8)

ab, (x, t) 8a
af 8P(x, t)

8~,'. (x, f) aff

8bi(x, f)
Recall that

(A2)

(A3}

dxP bg

n+1 . g b M +X'Xx& x.
n=0

(A9)

Moreover, using Eq. (2.9}, we can also solve for
bo and get

1
g'1 ~ iM& X~

where

X= g,'xb, , ~=b, xa,

(A4)

(A5)

(1+gA 'M)

= -g g (-g)"(n+ I)(A-'M)"A-'~.
n=O

(A10)

(A11)

Also,

8,5;(x) =0 (gauge ch.osen). (A6)

Now, differentiating (Al) with respect to. p (remem
ber that b; and mf are independent of each other}
and adding a full divergence to the integral, we



390 RABINDRA NATH MOHAPATRA

see that

aa ab,
g(b,.xb.)-b,xg(-g)""(&+ )(d 'M)" '&X.

~ 'lT~ ~p

(A12)

Using (A11), we get (A2). Q. E. D.
Let us now try to prove Eq. (A3). This one is

more complicated because we are differentiating
H with respect to b; and there are a lot of terms

to be differentiated. On differentiating H with re-
spect to b~ we get

aa
8y( )

=8,fag+a(b;xf;g)' —
2J~ &'y88.

( )(4 '&0),

(A13)

8'(») (4 ~ 64)d y= —
I d y c

(A14)

Let us then try to evaluate the right-hand side of (A14). For that purpose, notice that

n -I n -I.=Zg(-Z)" . (& M)"& X, (A15)

QJld y, (6 'M)"4 'y ~ AP(-g)"

=g(-g)"d' [(A 'M)" 'b. ' P+(A 'M)" 'A ' (A 'M)P+(d. 'M)" '6 ' (6 'M)' P

+ - +t j(4 'M')" 'p]+, (4 'Ml"pI.ax
8b', ( )x

It is easy to see that on summing up over n, one gets
I

J & ~ 1+r,-~Mi
d' 8. A-' ~ — — d' P x 6'(» — )

Using Eq. (A10), we get

Eq. (A17) =[+g~„,(8;P')b;+ ge„„»,"b;]

=g(8;P+ v,') xb,

(A16)

(A17)

gwxbo gf o( xbo ~

Substituting (A18) in (A13), we get

(A18)

8 c ~
= (8~&a~+g b~ "f~i+ Zbo "fo~)'

~by t,x)

(A19)

(A20)

Therefore, we have proved both the classical Hamiltonian equations of motion.

= -8,7t'; (using field equations).

This is equal to the Eq. (A3) apart from an extra 8,w,
""g in (A19). But this can always be subtracted out

by adding a full-space divergence to the Hamiltonian density K(x) of the form

b, ~ 8,8,.y=-8, (b, 8,y).

APPENDIX B

Here we will prove the noncovariant set of rules suggested in Sec. III, to order g" in the case of tree
diagrams. A look at Eq. (3.6) makes it immediately clear that we can rewrite it as follows:

J"d'x T(X,.(x))= 2g'Jl d'x-Q( g)"(n+1)T-((6 'M)" 'd 'x(x) ~ g(x)).
n 3-0

(B1)

Note that the coefficient of the operators to order g" is —,'(n-1). However, Eq. (3.9) says that to substantiate
the suggested noncovariant rules, the numerical coefficient of (-g)" should be 2" '. What we will prove in
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this appendix is that using the same type technique as in the fourth order, we can get back the correct co-
efficient.

Proof. To any general order g", one can easily convince himself that relevant terms are the following:

-'(x —1) Jd'x1((d 'M)" d jl'X(x))

n 3+, Q(n-r —2)r d'xd'yT((d 'M)" " '6 'y(x) ~ y(x)(b, 'M)" 'b, ')f(y) ~ g(y))

t l ~ r2e r3
rl+r2+r3 n 4

XQ(h 'M)"~a 'X(x,) ~ )t(x,)(d-'M)"&a 'Z(x,).X(x,)(a 'M)"3h, 'X(x,) Z(x,))+ ~ ~ ~. (B2)

To give the rules in the case of tree diagrams, only suitable terms in the Wick expansion of each T prod-
uct need be taken. Further, we see from (3.14) that the vacuum expectation value (0~ T(s,b'„(x)S,b, (y)) ~0)

gives two types of extra terms after integration in the k, plane, as shown in Eq. (3.14). . In this appendix,
we will treat only the k,k„/[k'- (k q)'j type terms of each order and remark that the treatment for the
other terms is similar. Also notice that

-i d xd'ye'~" ', ' ', f x xb, x .~g y xb, y =i d'x4 'lf Mg. (as}

Moreover, one can easily check the following if one ignores the 5„ term in Eq. (3.14) (for each contrac-
tion):

d x,d x,-.d'x. T((~-%S)"~~-'X(x,) -q(~- M)"2~-'X(x,) ~ q(x, ) ~ ~ ~(~-'M)"~-')f(x.) .q(x.))

A 'I "l'"2'"'"~+™6,'X x ~
X x )+ other terms coming from the Wick expansion.

(B4)

I have written = instead of an equality sign because I have kept only k&k„-type terms in each contraction of

a pair of B,b„'s. Moreover, the terms involving various normal orderings and contractions also have been
ignored, since they do not contribute to the tree diagram of order r, +r, + ~ ~ ~ +m. Using Eq. (B4), Eq. (B2)
can be simplified and written as follows:

1
Eq. (B2)=— (n —I) g+( nr —2)r+ g rst+ " Id xQ(E 'M)" (1), 'y(x) ~ )N(x)).

2 r r, s, t
r+s+t =n-4

(as)

rrr +"'I 2 3

l' 2' '3
r l+r2+r3 =n 4

Let us rewrite the coefficient in (B5) as follows:

I„=2 (n —1)+ Q r,r, +
1

r2
+r2 n 21

(Bs)

It is easy to see that the expression in (B6) is the coefficient of x" in the following sum:

1 x' x' x'
2 (1-x)' (1-x)' (1-x)' ) (B7)

or

] dn'=. . deaf"„.
where

x2
f(x) = a (I ).

(as)
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It is easy to sum up this series; one gets

1 H 1 1 x
f(x) =—

2 (1 —x)' 1 —x'/(1 —x)' 2 1 —2x' (SIO)

The coefficient of x" in f(x) is 2" ', as is required. It must be stressed that we have proved the general
result only for one type of term, and we believe that the case when both l)„„- and k„k„/[k' —(k g) j-type
terms are mixed should be easy to obtain using similar methods. Complete derivation of the noncovariant
rules to all orders with any number of loops is the subject of a forthcoming paper. "
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