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1All relevant prior investigations pertinent to double-
spectral representations for scalar boxes, including
definitions (2) and (3), as well as Eq. (7), are well ex-
posited and documented in the monograph: D. J. Eden,
P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne,
The Analytic S-Matrix (Cambridge Univ, Press, Cam-
bridge, England, 1966).

’The only prior investigation of double-spectral repre-
sentations for photon-photon scattering the authors are
aware of is B. DeTollis, Nuovo Cimento 32, 757 (1964).
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In that work, an unparametrized form of one of the
invariant amplitudes for photon-photon scattering is
reduced to double-spectral form by direct application

of the Cutkosky rules. The connection between Feynman-
parametrized integrals and their double-spectral repre-
sentations was not investigated. Not only can we re-
produce DeTollis’s result, but in consequence of our
investigation can understand the source of the single-
spectral terms in DeTollis’s amplitude in terms of the
gauge-invariant tensor he chose. However, we have

not been able to verify the existence of some other set
of tensors for this process that might allow of kinematic
singularity-free unsubtracted representations for the
amplitudes.
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The effect of coupling a shadow channel to a real channel is studied in the framework of
nonrelativistic potential-scattering theory. For simplicity, s-wave scattering with energy-
independent 6-function potentials is considered. This model has the virtue of being exactly
solvable in configuration space. The main features of the solution which are analogous to
those expected in a relativistic field theory whose divergences have been removed using
Sudarshan’s shadow states, are as follows. The coupled problem reduces in the real channel
to scattering by an effective energy-dependent pseudopotential. The physical scattering am-
plitude still satisfies elastic unitarity at all energies, but is piecewise analytic, with a point
of nonanalyticity occurring at the threshold for the shadow channel.

I. INTRODUCTION

It is well known that the introduction of states
with negative norms is one way of eliminating the
divergence difficulties that occur in local relativ-
istic quantum field theories.! To preserve the
probability interpretation of such indefinite-metric
theories, Sudarshan has introduced the idea of
“shadow states.”? Shadow states differ from or-
dinary states in that they “propagate” with half-
advanced, half-retarded Green’s functions. This
ensures that they never become physical, which
means that their introduction does not change the
unitarity properties of the theory.?”® However,
theories with shadow states are not expected to be
globally analytic, but instead will be piecewise
analytic with points of nonanalyticity at shadow
thresholds.*3 Of course, such states have a pro-
found effect on the dynamics of the theory, since
it is just the additional forces due to the presence
of the shadow states that lead to a convergent
theory.

In this paper the effect of coupling a shadow

channel to a real channel is investigated in the
framework of nonrelativistic potential-scattering
theory. For simplicity, s-wave scattering with
real energy-independent 6-function potentials is
considered. This model has the virtue that the
coupled Schridinger equations can be solved
exactly in configuration space. It turns out that
the two-channel problem reduces, in the real chan-
nel, to an effective one-channel problem with a
real, energy-dependent (and in general nonlocal)
pseudopotential. Furthermore, the physical scat-
tering amplitude still satisfies elastic unitarity at
all energies, but is piecewise analytic with a point
of nonanalyticity at the threshold for the shadow
channel. Consequently, this nonrelativistic model
displays the main features of the field-theoretic
problem: a modification of the forces in the physi-
cal channel accompanied by a change in the analy-
ticity properties of the theory but no change in the
unitarity properties.

The plan of this paper is as follows: In Sec. II
the formal solution to the two-channel problem is
written down in terms of the free-particle Green’s
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functions in the different channels. Section III is
devoted to the choice of Green’s functions. An
advanced Green’s function is chosen (as usual) in
the real channel. A half-advanced, half-retarded
(i.e., principal-value) Green’s function is neces-
sary in a shadow channel to guarantee no outgoing
flux of particles asymptotically. A novel feature
of such a function is that it is piecewise analytic
with a point of nonanalyticity at the threshold for
“scattering” in the shadow channel. In Sec. IV the
exact physical scattering amplitude for the cou-
pled-channel problem with §-function potentials is
obtained. The properties of the solution (pseudopo-
tential, elastic unitarity, piecewise analyticity)
are discussed in Sec. V. Section VI contains a few
concluding remarks tying this work together with
work on shadow states in relativistic quantum field
theory.

II. TWO-CHANNEL PROBLEM -
FORMAL SOLUTION

For simplicity, s-wave scattering is consid-
ered.? Assuming that channel 1 consists of two
identical spinless particles of mass m, and chan-
nel 2 consists of two identical spinless particles
of mass m,>m,, the coupled Schriddinger equations
are®

[24:—2 * K12 - Ul(r)]ul(r) = Ulz('r)uz(y) (1a)

and
[-t-ig;i +K, - Uz('rﬂuz(r) = Uy (Muy(7). (1b)

In Egs. (1), %(n)=n;(7), U;(v)=m;V,(7), U;(7)
=m;V;;(7), and K;?=m;E;; E; equals the total
center-of-mass energy in channel ;. The center-
of-mass momenta in the two channels are related
by

K= K;” + Kpresn's (2a)
where
Kthresh2 =2m, (mz - ml) (2b)

is the momentum squared in channel 1 at the in-
elastic threshold for channel 2 (K,=0).
The formal solutions to Egs. (1) are

ul(r)=u*;°m°(r)+fmdr’cl(r, r MU (r Yu,(r’)

+ Uy (7 u(r )]

(3a)
and

u7r)= u‘;°'“°(r)+f ) ar'Gy(7, v "NUy (7 Vu,(r’)
+ Uy (ruy(r ")),

(3b)

4
where the homogeneous solutions are®
()= =+ sin(K,7), @)
i
and the Green’s functions G,(r, ') are the solu-
tions to
dz 2 ’ ’
3—7—2+K‘ Gi(ryr")=b8(r=7"), (5)

which vanish when either » or »’ is zero.

III. CHOICE OF GREEN’S FUNCTIONS

Writing the Green’s function in a Fourier repre-
sentation

Glr, )= [ _dKg(K")eH="), ©®)

Eq. (5) requires that
1 1

g(K’)=-ﬂ K?2-K2’ (7)
and so
, 1 o Iel'K'(r-r')
G(r,r =—§; _ dK K'z_—K_z (8)

To proceed further it must be decided how to
treat the singularities which arise in the integrand
of (8) when K’'=+ K (K=0). There are three alter-
natives: Displace the poles away from the real K’
axis by adding +ie or —ie to K% (¢ =0%), or leave
the poles undisplaced and perform the integration
using the principal-value prescription. The ap-
propriate choice is dictated by the boundary con-
ditions on the wave functions.

A. Real Channel

At energies above the threshold for scattering in
a real channel there must be a nonzero flux of out-
going particles at large distances from the scatter-
ing center (if there is to be any scattering). In
terms of the wave function, this translates into the
statement that the inhomogeneous term must be-
have as an outgoing traveling wave asymptotically.
This boundary condition can be satisfied by choos-
ing the advanced Green’s function

G ') 1 md , eiK'(r-r’)
+(7, r)=- 2_1; . K K?Z - (Kz +i€) . (9)
This integrates to
’ . i -iKr
G+(r’r ):—.ﬁelK7>e K <, (10)

where 7. =min(r, ') and », =max(r, ’). To sat-
isfy the boundary condition %(0)=0, the Green’s
function must also satisfy

G(r,r")=0, 7r_=0. (11)
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The function (10), as it stands, does not satisfy
this condition, but any solution to the homogeneous
equation can be added to the inhomogeneous solu-
tion with impunity. Therefore, adding

’ +i iKrs JiKr
Wr, r )=-2—Ee Kr>gikre (12)
to (10) gives
6.7, 7)== Fsin(Kr e, (13)

which does vanish when 7. is zero.

Use of this Green’s function gives an inhomogen-
eous term in the wave function which behaves like
e'X" at large 7 (traveling wave ), guaranteeing a
nonzero flux asymptotically for real positive mo-
mentum K. So it is the appropriate choice to de-
scribe a real channel.

B. Shadow Channel

In a shadow channel there must be no flux as-
ymptotically (otherwise the state would be observ-
able and therefore real). This boundary condition
can be satisfied by choosing the half-advanced,
half-retarded Green’s function, which corresponds
to evaluating (8) according to the principal-value
prescription. Below the “scattering” threshold in
the shadow channel, the poles in the integrand of
(8) lie at +i|K|, and so the half-advanced, half-
retarded Green’s function is the same as the ad-
vanced (or retarded) Green’s function:

Gy(r,r')=- 1 sin(K 7 )e*fs™>, K2<0. (14a)
s K I

Above threshold the poles lie on the real K’ axis,
and performing the integration according to the
principal-value prescription gives

Gy(r,r')==~ —;— sin(K,» . )eos(K,»,), K2=0.
S
(14b)

For real, positive K the Green’s function (14b)
will lead to an inhomogeneous term in the wave
function which behaves like cos(K,7) at large »
(standing wave), guaranteeing no outgoing flux in
the shadow channel. Therefore, a principal-value
Green’s function turns out to be the appropriate
choice to describe a shadow channel. It should be
stressed that the principal-value Green’s function
is a bona fide Green’s function and there is no rea-
son not to use it once a motivation exists.

A point to be noted is that the shadow Green’s
function (14b) is »of the analytic continuation of
(14a). Consequently, this function is piecewise
analytic with a point of nonanalyticity at K,=0. As
will be seen below, this property of the shadow
Green’s function is reflected in the piecewise

analyticity of the physical scattering amplitude in
the coupled-channel problem.

IV. EXACTLY SOLVABLE MODEL

To study the effect of the coupling of a shadow
channel (labeled 2) to a real channel (labeled 1), a
special case in which Egs. (3) are exactly solvable
is considered: V,(#)=V,6(r—a), V,(»)=0, and
Vio(7) = V,, (7) = V,,6(7 = @), with V, and V,, real
constants.®” The coupled equations to be solved
are®

u, ()= ul°™() + G (7, @) Uyu,(a) + G (7, a) Uy u,(a)
(15a)
and
u(v)= G(7, a) Uy u,(a). (15b)

The solution is straightforward: Set »=a in (15b)
to obtain u,{a); substitute this into (15a); set »=a
in (15a) and solve for u#(a); and then substitute the
results for u,(a) and u,(a) into (15a) and (15b). The
exact solutions are

[U + Uiy Uy Gs(a, a)Julfomo(a)G+(7’ a)
1-{y,+ U,U,,Ga, a)]G.q, a)

ufr)= u‘{"m"(r) +

(16a)
for the wave function in the real channel and

Up °™(a)G (7, a)
1-[U, + U;, U, Gyla, a)|G (g, a)

ur)= (16b)
for the wave function in the shadow channel.

Note that the solution to the real-channel problem
with no coupling to a second channel and potential
V()= V,6(r=a)is

U, u‘{°m°(a)G+(V , Q)

) — ,,homo
A 0 v s e Py

(17)

Comparison of Eqs. (16a) and (17) shows that the
coupled-channel problem effectively reduces in
the real channel to a one-channel scattering prob-
lem with the pseudopotential

Upseudol?) =[U; + Uy, Uy, G (ay @)|6(7 = a), (18)
which is 7eal and energy-dependent.®
Defining the physical scattering amplitude 7, by

ur) ~o u"(r) = Tyt (19)

it follows from Eq. (17) that

_ ulQ/k,)sin(K,a))?

0:
Ty 1-U,Ga,a)

(20)

for scattering with no coupled shadow channel, and
from Eq. (16a) that



3758 R. J. MOORE 4

T = [Ul + Ui Un G(q, Q)J[(I/Kx)sm(Kxa)Jz 21)
17T T 1[0, + Uy, Uy, G (a, a)]G (a, a)

for scattering with a coupled shadow channel.

V. DISCUSSION

One obvious effect of the presence of the shadow
channel is a change in the dynamics. With no
coupled shadow channel the scattering in the real
channel is determined by the direct potential V(7).
Coupling in a shadow channel introduces new
forces, as evidenced by the fact that the effective
potential felt in the real channel becomes the
pseudopotential (18).

From Eq. (20) it explicitly follows that the scat-
tering amplitude for the uncoupled one-channel
problem satisfies elastic unitarity at all energies:

Im(7T9)=K,|T%% K,=0. (22)
Likewise, from Eq. (21) it follows that

Im(T1)=K1]T1|2, K, =0, (23)

and consequently the physical scattering amplitude
also satisfies elastic unitarity at all energies if
the channel coupling to the real channel is a shadow
channel.'®

It also happens that the physical scattering
amplitude is piecewise analytic with a point of
nonanalyticity occurring at the shadow threshold.
This follows explicitly from (21) and from the fact
that the shadow Green’s function is piecewise
analytic with a point of nonanalyticity at K,=0, as
was pointed out above. This property of the
physical scattering amplitude would be reflected

in a cusplike behavior of the scattering cross sec-
tion at the energy corresponding to the shadow
threshold. However, similar threshold anomalies
can arise in the coupling of real channels, and so
are in no way unique to theories with piecewise-
analytic scattering amplitudes."

V1. CONCLUSION

In a fairly simple (but exactly solvable) potential
model, the effect of the introduction of a shadow
channel has been elucidated. Basically, the dy-
namics of the theory are modified but the unitarity
properties are unchanged, while global analyticity
no longer holds.!? Similar features are expected
in a relativistic field theory with shadow states.
In a theory of this latter type, however, things are
complicated by the fact that there can be many-
particle shadow states, and it is the entire many-
particle state (not some particular particle) that
has principal-value propagation.'®* Nevertheless,
in every order of perturbation, unitarity is guar-
anteed and nonanalyticity observed. Consequently,
even though only the lowest-order terms in a per-
turbation solution are usually explicitly calculable,
the role played by the shadow states in such
theories should not be mysterious.'* If the role of
the shadow states has appeared so to the reader,
it is hoped that this work has thrown some new
light on the matter.
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Considering SU (3) -octet broken scalar-pseudoscalar meson (PPS) couplings as well as
“smoothness’ in the chiral model of Gell-Mann, Oakes, and Renner (GMOR), we obtain the
spectrum of scalar mesons in terms of the known masses of the speudoscalar mesons only.
The agreement of the predicted spectrum with experiment is reasonably good. The broken
pieces of the coupling constants are determined as well and are found to be comparable to
their corresponding symmetric pieces. The effects of the broken couplings in the numerical
results, such as decay widths, have also been examined. We have demonstrated that the
usual assumption of the Goldstone bosons required by exact chiral symmetry emerges auto-
matically from the smoothness relations. A few other interesting aspects of our work are

finally discussed.

I. INTRODUCTION

During recent years various studies based on
theories of chiral symmetry!~!! and broken scale
invariance!?~!* have indicated convincingly that
scalar mesons have indeed a significant role in
determining the coupling constants and masses of
the hadrons. Working in different formalisms,
many authors have predicted the masses and decay,
rates of scalar particles; however, none of these
predictions can be tested decisively because of
the lack of precise experimental information. In
a broken chiral SU(3)® SU(3) model, Glashow®
first obtained the scalar-meson spectrum in terms
of the known masses of pseudoscalar mesons as-
suming that the mass term of the Lagrangian has
the simple (3, 3)®(3, 3) transformation under the
group SU(3) ® SU(3) and is dominated by scalar-
meson tadpoles. His predicted spectrum is not
realistic in the sense that it includes a scalar par-
ticle with complex mass and the scalar kaon (so-
called k meson) with a very low mass (=770 MeV)

which is not admitted by present experimental
evidence.!®

In subsequent works, several authors®~” have
shown that a large mass of the k meson is favored
in the GMOR model of chiral symmetry.! In this
model, one obtains a simple algebraic relation be-
tween the k-meson mass (m,) and the coupling con-
stants f, and f,, which are experimentally deter-
mined from the rates of K- Iv and 7— lv decays,
respectively. For a reasonable value of the ratio
fx/fr=1.2, m, is found to be approximately 1200
MeV,®7 in close agreement with experiment.

On the other hand, the complete spectrum of the
scalar mesons has been obtained by Pande® who
worked in the same model (GMOR), utilizing the
constraints of various subsymmetries contained
in chiral SU(3)® SU(3) symmetry.® He also con-
sidered the effect of SU(3) breaking through con-
ventional mixing phenomena and predicted a small
mixing angle (65 = 11°) for scalar particles. This
work is, however, open to criticism as it incor-
porates a very drastic assumption that masses of



