
PHYSICAL RE VIEW D VOLUME 4, NUMBER 12 15 DE C EMBER 1971

Weak Interactions at High Energies*

Thomas Appelquist~
Lyman Laboratory of Physics, Harz'ard Uniz;ersity, Cambridge, Massachusetts 02138

James D. Bjorken
Stanford Linear Accelerator Center, Stanford Uniz:ersity, Stanford, California 94305

(Received 2 August 1971)

We discuss the weak interactions from an S-matrix point of view in order to make some
qualitative statements about high-energy behavior. In order to separate the weak interactions
from others as much as possible, attention is focused on the weak interactions of leptons ne-
glecting electromagnetism. We examine the consequences of imposing the constraints of uni-

tarity and analyticity on weak amplitudes whose low-energy behavior is assumed to be cor-
rectly given by the usual Fermi theory (including the possibility of neutral currents), We

first study corrections to the low-energy limit by using the Mandelstam iteration to express
all lepton-lepton two-body scattering amplitudes to third order in the Fermi constant in

terms of a small number of subtraction constants. We then speculate beyond perturbation
theory. We discuss some consequences of forward dispersion relations and propose a mech-
anism for providing the necessary damping of weak amplitudes at high energies. The mech-
anism is the existence of the intermediate vector boson coupled weakly to leptons but inter-
acting strongly with itself. We examine some consequences of this hypothesis.

I. INTRODUCTION

The weak interactions as we now know them are
without question the low-energy limit of a class of
phenomena of great richness and variety. The
characteristic center-of-mass energy needed for
weak processes to reveal this richness is unknown;

it is certainly" less than 1000 GeV, probably"
less than 100 GeV, perhaps' ' as low as 10 GeV.
At present we are in the position of trying to guess
the nature of the whole given only the small frag-
ment available to us at the present superlow en-
ergies.

Such a situation is not unprecedented. Strong-
interaction phenomena, retrospectively viewed
from the perspective of the late 1930's to the early
postwar period, were quite analogous. The sym-
metry of the nucleon-nucleon force was known,
and the Yukawa meson had been postulated to rne-
diate the force, but not yet discovered. However,
the theoretical efforts made then to elucidate the
nature of the hadron phenomena to come were gen-
erally unproductive. Quantum field theory was the
only tool available, and, compared to today, in a
relatively primitive condition. And, while field
theory was generally conceded at that time' not to
be "relevant", it still conditioned most attempts
to interpret strong interactions.

Much of the progress in hadron physics in the
last fifteen years has rested on an attitude less
ambitious and more descriptive than one based on
a set of coupled local wave equations. S-matrix
phenomenology uses general principles to corre-
late data and exhibit its broad outlines in a quali-

tatively successful manner. It would be a major
advance to have a qualitative picture of weak pro-
cesses at 1000-GeV center-of-mass energy such
as exists for hadron physics. It is reasonable to
expect that weak phenomena at such energies will
be just as messy as hadron phenomena appear to
us today, and that when 1000-GeV beams of elec-
trons are made to collide against 1000-GeV neu-
trino beams, the theorist will again fall back on
S-matrix concepts and ideas to describe the data.

In this paper, we try to look at weak interactions
from an S-matrix point of view, ' as one might
view them were such experiments imminent. Our
emphasis is more toward the dynamics than to-
ward symmetry principles.

We consider lepton-lepton elastic scattering pro-
cesses, assuming the low-energy limit is accu-
rately given by the current-current form. We
first study the corrections to the low-energy limit.
We find, given (a) neglect of lepton mass, (b) hel-
icity conservation, (c) neglect of electromagnetic
corrections, (d) p. e universality, and (e) symme-
try under the interchange I,—v„ that three in-
variant amplitudes describe all lepton-lepton two-
body scattering processes. We compute from the
Mandelstam iteration utilizing analyticity and uni-
tarity' these amplitudes through third order in
the Fermi constant in terms of 15 subtraction con-
stants. We do this mainly because the calculations
are very easy. We then speculate beyond pertur-
bation theory. From the point of view of S-matrix
dynamics, one option with a minimum number of
difficulties stands out. It is that of the existence"'"
of the intermediate boson 8" coupled weakly to
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leptons but interacting strongly" with itself. This
option of course includes many proposed mod-
els' "of weak interactions. Given this option,
one may expect the 8" to be members of a large
family of new particles which interact strongly
with each other, which we call sthenons; in par-
ticular the W should lie on a Regge trajectory.
Using this picture, we can make some order-of-
magnitude estimates of lepton-lepton cross sec-
tions.

In Sec ~ II, we set up the kinematics. Section III
is devoted to the perturbation-theory calculations.
We discuss some consequences of forward disper-
sion relations in Sec. IV, and Sec. V contains
speculations which go beyond perturbation theory.
In Sec. VI, we estimate some cross sections for
high-energy lepton and hadron processes using
the picture of a strongly self-coupled 8'.

dv„4w do„ 1
~A(s f)~

dt s dQ 16' s (2.1)

Under crossing, the same expression holds in the
other channels, e.g., in the t channel

(2.2)

We will choose our phases such that A, B, and C

are the helicity amplitudes in each channel. Each
amplitude has a kinematic zero at s = 0 and has the

same analyticity properties as the invariant am-
plitude for spinless, massless particles. The

diagrams corresponding to these amplitudes are
shown in Fig. 1 and we catalog the other ampli-
tudes in terms of these three in Table I.

The amplitudes A, B, and C are dimensionless
and normalized such that the s-channel differential
cross section for, say, process A is given by"

Il. KINEMATICS AND PRELIMINARIES

In this section we will establish our notation and
list the independent amplitudes necessary to de-
scribe all two-particle to two-particle leptonic
weak interactions. Partial-wave expansions will
be introduced and crossing and unitarity will be
discussed.

We will work in the zero-mass limit of all the
leptons and neglect the effects of electromagnetism.
The s channel is chosen to be that for which the
total lepton number L = L, +L„=2 and the t channel
is that for which L, =L„=O. We assume jtj. e uni-
versality as formally expressed by the existence
of the U(2) lepton symmetry in the absence of lep-
ton mass. " Assuming in addition the discrete
symmetry e —v„p, —v„discussed by Lee,"it
is then possible to express all lepton-lepton two-
particle scattering amplitudes in terms of three
such amplitudes which we take to be

A (s, f): v, p, —e v„,
B(s~ t): v~ v~ v~ v~ ~

C(s, t): v, p. -v, p. .

In the conventional Fermi theory, B = C = 0, while

where the spinors are normalized such that

u (P)u(P) =2F. .

Then, up to an arbitrary phase,

A(s, t) =4W2Gs .

(2.4)

The conventional Fermi theory can be at most
a low-energy approximation to the complete dy-
namical description of A, B, and C at all ener-
gies. In fact, the possibility that the "neutral cur-
rent" amplitudes B and C are comparable to A
even at low energies has not been ruled out exper-
imentally. Whatever the actual behavior of A, B,

TABL E I. Two-particle lepton-lepton s -channel
amplitudes in terms of A, B, and C.

Reactions Amplitude

A(s, &) =~2u(P, )y" (1-y, )u(P.,) u(P, )y„(1-y, )u(P„),

(2.3)

Since there is only one helicity amplitude in each
channel, it is not necessary to include indices.
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FIG. l. Invariant amplitudes for weak lepton-lepton
scattering.
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C, it is important to point out that the description
of all two-particle leptonic reactions in terms of
at most 3 amplitudes (in the zero-mass approxi-
mation) is a consequence of quite general consid-
erations and already leads to several restrictions
on these amplitudes. For example, it is clear
from Table I that "diagonal" processes such as
v, e- v, e can differ significantly in strength from
"nondiagonal" processes such as v„e- p. v, . This,
however, can happen only if C(s, t) is appreciable,
that is, if "neutral current" reactions such as
v„e- v„e are large enough to be measured.

Needless to say, there is not a great deal of ex-
perimental data on leptonic weak reactions. The
only reaction which has been directly observed is
muon decay. The only other reaction for which
there are empirical arguments that it exists is
v, e- v, e. Astrophysical arguments" give an up-
per and lower bound on the effective coupling
constant GD for this reaction:

GD =10 '
GF,

where GF is the Fermi coupling constant. An an-
alysis of CERN data by Steiner" gives a better up-
per limit on the reaction v, e- v, e:

GD ~ 6.3GF

with 9(P/g confidence. In our formalism, these can
be interpreted as bounds on the amplitude C(s, t)
+A(s, u) relative to A(s, t). The best bound on this
amplitude is that reported by Reines and Gurr"
who have looked for the reaction v, e- v, e using
low-energy antineutrinos from a fission reactor.
They report

GD& 2GF .
A reaction which involves only the neutral-current
amplitude C(s, t) is v„e-v„e. An analysis of CERN
data by Albright" leads to a bound on the effective
neutral coupling constant G,:

Go& 0.6GF .
These bounds on leptonic weak interactions do

not yet rule out the possibility that the amplitudes
B and C are comparable in magnitude to A. It is
clearly very important to attempt to reduce the up-
per limits on these reactions.

It is important to establish phase conventions
since we intend to exploit the constraints of two-
particle unitarity on the amplitudes. This can be
done in terms of the partial-wave expansion of the
helicity amplitudes according to the prescription
of Jacob and Wick." In the s channel, the total
helicity in the center-of-mass frame is zero and
the partial-wave expansion is simply the Legendre
expansion. The center-of-mass scattering angle
6), is given by

and

cos8, =1+2t/s (2.6)

A(s, t) = 16wg(2 j +I} a&,(s)P&(l +2t/s),

s&0; t, u& 0.
(2.7)

A(s, t) =16wg(2 j+1)a„(t)d'„(I+2u/t),
j= I

t&0; s, I&0.
(2.8)

In the u channel, the same considerations lead to

A(s, t) =16wg(2 j+1}a,.„(u}d'„(1+2t/u),
j=l

u&0; s, t&0.
(2 9)

With the above conventions, the amplitudes A, B,
and C are the helicity amplitudes in each channel.
We list here for future reference the Rodrigues
formulas and orthogonality properties of the P,.

dydee

d
P, (1 —2x) =dw(1 —2x) =—. —x~(1-x}', (2.10}

d'
(I —2x)=(. 1))(I ), x' (1 -x)'

t +1
x t dz d~v„(z}d~~„'(z}

25,.„'
2j+1 (2.11)

The unitarity condition can be expressed by the
optical theorem for B and C, e.g.,

ImB(s, 0) = sa ',"„(s).
In terms of the partial-wave amplitudes,

Imb, ,(s) =
) ~, (bs) ( +inel cont.

(2.12)

(2.13)

The two-particle unitarity relations for all three
amplitudes in all channels will be tabulated and
used in Sec. IG.

It is interesting to consider the consequences of
imposing additional symmetry among the lepton

In the t channel, the Jacob-Wick expansion takes
the form

16wg (2 j+ 1)a&,(t}d'q& (8,}e't

where a (p. ) is the total helicity in the initial (final)
state. If the initial direction (positive z axis) is
taken to be that of the incoming antilepton, then
A. =1. The phase e' " "~ can be eliminated by
choosing the final direction to be that of the out-
going antilepton. Then p, = 1,

cos8, = 1+2u/t,

and
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o(v„e- v„e) =-,'c(v„e- p. v, ),
o(v,e- v, e) = 4cr(v„e- p. v, ) .

(2.15)

(2.16)

III. PERTURBATION THEORY

One possible way of constructing a phenomeno-
logical field theory of weak interactions is to add
to the conventional (four-fermion or intermediate-
vector-boson) Lagrangian an infinite number of in-
teraction terms to remove the divergences of the
conventional theory. " A perturbation expansion in
G= 10 'm~ ' may then be developed for low ener-
gies in terms of arbitrary parameters which mask
our ignorance of the true high-energy behavior of
the theory and which must be determined from ex-
periment. This expansion for, say, the amplitudes
A, B, and C will be good only for s, t, u& A.', where
certainly the radius of convergence X'& G ' since
the effective expansion parameters are Gs and Gt.
The closer one gets to this limit the more orders
of perturbation theory and hence the more arbi-
trary constants must be included to fit experiment.
A simple way of generating this perturbation ex-
pansion for the two-particle scattering amplitudes
without explicit reference to Lagrangian counter
terms is the Mandelstam iteration" using analytic-
ity and unitarity.

The general form of the perturbation expansion
forA, B, andCis

A(s, t) = Q n (Gs)"(Gt) +unitarity,
n, nt

B(s, t) = Q P„(Gs)"(Gt} + unitarity, (3.1)

C(s, t) = Q y„(Gs)"(Gt) +unitarity .

The kinematic zero at s = 0 means that n ~ 1 while

amplitudes. An appealing way to do this is to ex-
tend the discrete symmetry e —v, plus p. —v„ to
complete isotopic spin symmetry where (e, v, ) and
(v. , v„) are taken to be isotopic doublets. The re-
sult is that three independent amplitudes are re-
duced to two corresponding to scattering in the
I=0 and I =1 channels. One finds that

(2.14)

and that A and A +2C are the amplitudes for scat-
tering in the I = 1 and I = 0 channels, respectively.

Because of the fact that isotopic spin imposes no
constraints on A and C alone but only relates them
to B, it leads to no relations among reactions such
as v„e —p. v„v„e—v„e, and v, e —v, e beyond those
already mentioned. In order to make predictions
about these processes alone, one must make addi-
tional assumptions. For instance, if the weak cur-
rent is assumed to be pure isovector then to low-
est order,

Im, A(s, 0) =64+ ~

dQ, 2ReA~C,
~t

1
Im, B(s, 0)=, d Q, ~

B
~

',
64m' . (3.2)

Im, C(s, 0) = + dQ, ([C['+ [A [') .

In the t channel, it is convenient to write the two-
particle unitarity relations in the backward (u = 0}
direction. Then

Im, A( t, t)-

Im, B(-t, t)

1
~

dQ, 2ReA*(s, t)[A(s, t)+C(s, u)],

1
dQ, 2Re[B*(s, t)[B(s, t)+B(s, u)J

Im, C(-t, t)

+C*(s, t)[C(s, t)+A(s, u)]J,

1
dQ, 2 Re(C*(s, t)[B(s, t) +B(s, u)J

+8"(s, t)[C(s, t) +A(s, u)] j,
(3.3)

In the u channel, we take t = 0 (the forward direc-
tion} and

1
Im„A(-u, 0)= + J

dQ„2ReA*(s, t)B(s, t),

1Im„B(-u, o) = + dQ„[(A(s, t)('+ (B(s, t)('J,

Im„C(-u, 0) =
4+ dQ„~ C(s, t) ~' .

(3.4)

The plus signs in Eq. (3.3) occur because ( —1)'
=+1: One minus sign comes from Fermi statistics
and the other from Fierz transformation of the
spinors. Introducing the partial-wave expansions,
Eg. (2.7) to Eg. (2.9), now leads to the unitarity
relations for the partial-wave amplitudes

m ~ 0. In the conventional Fermi theory, P,p =y, p

0 and Q yp 4&2 The unitarity contributions which
have nonvanishing absorptive parts will be speci-
fied iteratively in the approximation of keeping
only two-lepton intermediate states. This will
carry us through third order in perturbation theory.

We begin by developing the two-particle unitarity
relations in terms of the partial-wave expansion.
In the s channel, the forward two-particle unitarity
relations are
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Ima, ,(s) = 2 Rea,*.,(s)c,,(s),
Imb, ,(s) =

~ b, ,(s) ~',

Imc, ,(s}=
] c,,(s) ('+ [a,,(s) (',

Ima, ,(t) = 2 Rea,*,(t)[a, ,(t) + c,„(t)],

Imb&, (t) = 2Reb,*,(t)[b, ,(t)+b,„(t}J

+ 2 Rec,*,(t)[c,,(t) +a, „(t)J, .

Imcz, (t) = 2Reb,*,(t).[c,,(t)+a, „(t)]

+2 Rec,*. , (t)[t, ,(t)+ t,.„(t)J,

C3.6)

Ima, „(u) = 2 Reap„(u)b, .„(u),

Imb, .„(u) =
I b,.„(zz) I

+
( a, „(u) I'

Imc, „(u) =
~ c,.„(u)~'.

(3.7)

With the above apparatus, it is relatively easy to
carry out the perturbation expansion to third or-
der. In first order

Thus to second order (we assume CP conservation
so that all subtraction constants are real)

(16zz)' Ima» = 2o. zoyzo(Gs),

(16zz)' Imb„= Pzo'(Gs)',

(16zzP Imc„= (y„'+a„')(Gs)',

(48zz)' 1m a„=(2 nzo+ y„)(Gt)',

(48zz)' 1mb„= 2 y„(y„+o.„)(Gt)' + 4Pzo'(Gt)',

(48zz)'Imczz =2Pzo(yz +ozo)(Gt)'+4yzoP»(Gt)',

(48m}21ma,„=2n „Pzo(Gu)',

(48zz)'1mb, „=(I3 „'+o „')(GuP,

(48zz)' Imc, „=y„'(Gu)' .
(3.10)

ypGs p
8 PyoGs p G pgpG$ (3.8)

16hobos ~ypGs,

1677cos = Y]pGsp

48~b„= -P„Gt, 48~b,„=-P„Gu,

48@ca~ = yioGI 48mc] pyoGR .

and the nonvanishing partial-wave amplitudes are

16@'a„=n joGs, 48vai~ = cy xoGt, 48nay — Q ypGQ,
The second-order amplitudes can be constructed
using the dispersion relations and performing the
necessary subtractions. An imaginary part of the
form (Gx)' corresponds to a function of the form
-(I/v)(Gx)' In(-Gx}. The amplitudes through sec-
ond order in perturbation theory are

A(s, t) =o»Gs+cz20(Gs)'+o»GsGt — '+"(Gs)'ln(-Gs)+ " '+ '" GsGtln(-Gt)+ " "GsGuln(-Gu),

2

B(s, t) = t}»Gs+ P„(Gs)'+ P»GsGt — '+ (Gs)' ln(-Gs)

' " 'GsGtln( Gt)+ " -' "GsGuln(-Gu)
+zY ) +2l3 'J 2+p 2

249 48@

(3.11)

(3 + )C(s, t)=y»Gs+y„(Gs)'+y»GsGt- " +zo (Gs)'ln(-Gs)+ " "+ " GsGtln(-Gt) 'o+ GsGuln(-Gu).

All the parameters must be determined by experiment. From p, decay, it is known that n» =4v2 and that
n» and n» are certainly much less than 10 . As discussed in Sec. II, there exist upper limits on Pyp and
y» but they could be the same order of magnitude as clyp ~

Since the machinery set up here makes these perturbative calculations so simple, we can not resist push-
ing on to third order. To keep things simple, we restrict ourselves to the case of the conventional Fermi
theory:

4W2 P~o &~0 0

Then the second-order results above become

A(s, t)=4v'2Gs+cz2O(Gs)'+n»GsGt+ + GsGtln(-Gt),
4

(3.12)

B(s, t) = P,o(Gs)'+ P»GsGt+ + GsGu ln(-Gu),

C(s, t) = y,o(Gs)'+ y„GsGt ——(Gsp ln(-Gs) .
2

(3.13)
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We first project out the partial-wave amplitudes in each channel. Since only terms up to third order will

be kept in the unitarity relations (3.5)-(3.7), the only partial-wave amplitudes we need are

16vao, = 4&2Gs +a.,o
—~zn»(Gs)' —

+ (Gs) (2 lnGs —4),

16mb, = (P, ——,'P„)(Gs)' —
+ (Gs)'(-,' lnGs ——,'), (3.14)

16vco, = (yao —
z y»)(Gs)' —+ (Gs}' ln(-Gs),

16va„= — Gt+ (—,'o2O —eo»)(Gt} — (Gt)' ln(-Gt ),lt

16vb„= (&P o
—3P»)(Gt)'+ (Gt)'(~ lnGt —~3), (3.15)

16vc„=(—,
'

y20
——,

' y„){Gt)2—
+ (Gt)'( —,

' lnGt —~8),

16va,„=— Gu+-,'(n»+~o. »)(Gu)'+ +(Gu)'(~lnGu —~»),

16~b,„=(TP„+—,', P„)(Gu)' —
~ (Gu)' ln(-Gu), (3.16)

2
16sc,„={~y»+» y„)(Gu)' —

+ (Gu} (&lnGu —~) .

The unitarity relations (3.5)-(3.7) give the absorptive parts of the partial-wave amplitudes through third

order. The amplitudes A, B, and G can then be constructed as before. In the s channel, for example, an

absorptive part of the form (Gs)" corresponds to the contribution -(1/m)(Gs)" ln(-Gs) to the unitarity part of

the amplitude. An absorptive part of the form (Gs)" lnGs corresponds to a term in the amplitude of the

form -(1j2v)(Gs)" ln'(-Gs). The amplitudes through third order are

A(s, t) =4v2Gs+ Q n„(Gs}"(Gt}"+ + GsGtln(-Gt) —
+ (Gs)'ln(-Gs) y» ——,

'
y» —pin(-Gs)4

n+ m-2 3

+ Gs(Gt)' ln(-Gt) 2o20 ——', o» ——,
' y„—T2 y» —

+
—

+ ln(-Gt)

+ Gs(Gu)' ln(-Gu) —,'P»+ ~ P» — ln(-Gu) (3.17)

B(s, t) = Q P„(Gs)"(Gt)"+ + GsGu ln(-Gu) + + Gs(Gt)' ln(-Gt) —,
'

y» ——,
' y»+ +

— ln( —Gt)
n+m —2, 3

+ Gs(Gu)'ln(-Gu) —,o., +~ a„— ++ ln(-Gu) (3.18)

C(s, t)= Q y„(Gs)"(Gt)"-p(Gs)'1n(-Gs) —
+ (Gs)'ln(-Gs) o.,o

—,'n»+ +
—— +ln(-Gs)2, W2, 1 1

n+m=2, 3 I

+ + Gs(Gt)' ln(-Gt) —,
'

P» ——,
' P„— + ln(-Gt)

216m 36' (3.19)

Thus with the assignments (3.12), there are 15 ad-
ditional parameters necessary to describe all two-
particle leptonic weak interactions through third
order in perturbation theory.

The perturbation expansion has been developed
including only leptonic intermediate states. This
is not a very good approximation since the values
of s and t at which higher-order terms in the ex-
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V +P, ~8+Vp (3.20)

coming from p exchange. The contribution has the
form

pansion become important are probably much

greater than typical hadronic masses. Through

third order in the perturbation expansion, had-
ronic intermediate states enter only in the t-chan-
nel unitarity relation where L, = L„=0. They will

give absorptive parts leading to dispersion inte-
grals which we assume require no more subtrac-
tions than those arising from lepton-antilepton-
pair intermediate states. There will thus be had-
ronic contributions to the subtraction constants

a„,P„, and y„. If we ask the perturbation ex-
pansion to have a radius of convergence large com-
pared to 1 GeV, there will also be pole and cut
contributions determined by the details of the
strong interactions. It is to be emphasized that
unlike the subtraction constants n„, P„, and y„,
these coefficients are in principle calculable.

If some possible intermediate state is not ex-
plicitly included, then the perturbation expansion
will break down as the threshold for the process
is approached. Consequently, the subtraction con-
stants will not be of order unity. This can be seen
by considering the contribution to the process

lations and sum rules which we will use to make
some order-of-magnitude statements about the
weak-interaction "cutoff" X'.

Consider first the amplitude

D(s, t) = C(s, t) +A(s, u) (4 1)

lim [o",2", (s) —o",,", (s)] lns = 0,
S ~~

(4 2)

one may write a once-subtracted dispersion rela-
tion at t=0."

7T p S —S S +S
(4.3)

Using the low-energy theorem coming from first-
order perturbation theory,

llm = (y»+ t21O)G
D(s, 0)

S-P

—[o (s) —a",', (s)] .1 ds
7l'

p s
(4.4)

Similar sum rules can be written relating the oth-
er first-order subtraction constants y„G and PypG

to integrals over total cross sections. Since
a = 4v'2 and yap is not greater than this, we have

for the process v,e- v,e. Assuming the validity of
the Pomeranchuk theorem"

5A = cG2s (3.21)
1m oo

1 a'&„(s) —o„,(s)1-4«1t2 = 7 x 10™22cm' .
p s

6A =+6n, (Gs)(Gt)

C
1m (G~ 2)m-1

(3.22)

(3.23)

This of course results from the small radius of
convergence mp for the expansion in powers of t.
One must keep in mind that the same phenomenon
will occur if the important range of interaction
& ' for weak processes is large compared with the
Fermi constant G.

where c is a number of order unity. Upon expand-
ing in a power series in t, we find, comparing
with (3.17), that

1 ""ds
y„G =— —[o",2', (s) —o",&',(s)]

mp

(4.6)

can be used to argue that A'«G '. In this case the
integrand for s& A.

' is dominated by the contribu-
tion

2 G2

16m
o'&' ""(s)= l4v2Gsl'= (4.7)

(4 6)

This implies a sizeable value for either the v, e or
v,e total cross section in some region of s.

If the usual charged-current picture is correct
at low energies (P»= y„«1), the sum rule

IV. DISPERSION RELATIONS AND SUM RULES

In this section we briefly examine some conse-
quences of the assumption that the lepton-lepton
amplitudes A, B, and C satisfy dispersion rela-
tions in s for fixed t. We shall assume, in analogy
with strong interactions, that no more than two
subtractions are necessary at t =0. Our discussion
shall be restricted to forward-scattering disper-
sion relations. With further assumptions about
the existence of d "A(s, t)/dt" at t=0, more can be
said, "but we shall not go into this here.

We will write down a sequence of dispersion re-

Thus

2 2 y
" dsy„=—(G)P) + G ' —[o",8', (s) o',&',(s)], -(4.8)

and since yap++ 1, ~'«G ' unless the residual high-
energy part of the dispersion integral cancels the
low-energy part. It is hard on dynamical grounds
to see why such a cancellation should occur and
there is no symmetry principle (such as partial
conservation of axial-vector current or gauge in-
variance) in sight to provide a low-energy theo-
rem.

This argument can be repeated for the g=0 dis-
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C(s, 0)=y, Gs+y»(Gs)' — '" '" (Gs} ln(-Gs)

' Gs 'lnGs
O((G )'ln'Gs)

(4.10)

To get a sum rule for y, p, we can use this along
with the twice-subtracted dispersion relation

C(s, 0) —y»Gs 1 ""ds' a',~„(s') c,g, (s') ~

s Ã p S S —S S +S

(4.11)

For small s («G ') the logarithmic unitarity con-
tributions in (4.10) can be written as dispersion
integrals, e.g.,

" (Gs)'ln(-Gs)
16m

=—" )' '"","",""'.O((G, ) ),

where

(4.12)

a,'&'(s) = [u„'(Gs}'+y„'(Gs}']1 (4.13)

is the contribution to a', v', (s') from the first-order
perturbation theory. Putting (4.10}and (4.12) into
(4.11) and letting s- 0, we have

1 ~~ ds
—,, [[cg(s)—c."&'(s)]

~ p

+[cc"c(s) co" (s)B

+—
i

—,[a,",",'(s) + c',~„(s)].
Ã „(--y s (4.14)

persion relation in t for the C amplitude. For
small t

t '" dt'
C(-t, t) = -y,oGt+ —

I —,2 ImC(-t', t') . (4.9)
4 ~oo

Again the contribution to y» from i
t']& A2 is 2(GX'/

v'), while the remainder is related to integrals
over the absorptive parts of the charge-exchange
amplitudes v„+v„-e'+e and e +v„-v„+e
at u =0. It is especially plausible that these am-
plitudes are small enough at high energies to make
(4.9) converge. If unitarity considerations are
important asymptotically, the charge-exchange
processes must compete with all other channels
open to v„+ v„and e + v„.

Just as Q yp Pgp and yap can be related to inte-
grals over total cross sections, the higher sub-
traction constants can also be related to other in-
tegrals over total cross sections. Consider, for
example, the C amplitude. From (3.11), the low-

energy behavior is

Similar sum rules can be written for y „but re-
quire perturbation theory to be carried to the ap-
propriate order of approximation.

The sum rule (4.14) is on better footing than

(4.3) or (4.6) since the assumption of convergence
is not as strong. Such higher-moment sum rules
are however not as useful for constraining the high-

energy behavior of the cross sections since the ex-
tra damping makes them less sensitive to high-

energy behavior and since the higher subtraction
constants are not known. If it is assumed that
y„& 1, then since the first integral in (4.14}gives
a contribution of order 62, a bound of the form

tot( ) Gm
s2 (4.15)

can be derived. If o',&', flattens out (apart from log-
arithms) to c„beyond s =A', (4.15) leads to

o',&;(~) & G(GA ). (4.16)

Pomeranchuk, in a most interesting paper pub-
lished posthumously by his colleagues, 26 has stud-
ied such implications of forward dispersion rela-
tions on the minimum energy s for which the lep-
ton-lepton cross sections can become constant and
found essentially (4.16). In addition, he found even
stronger restrictions by studying dispersion-rela-
tions for derivatives of the forward scattering am-
plitude. Unless one assumes the stripless approx-
imation discussed in Sec. V, there is no guarantee
the derivatives exist, since there is a t-channel
cut at t=O coming from neutrino-pair exchange.
However, arguments can be given~ that the first
derivative should exist. To the extent such dis-
persion relations for derivatives of the forward
amplitude exist, one can also extend the sum
rules, such as (4.14}, for y, to other y „, relat-
ing the coefficients to absorptive parts which are
positive, because d "A(s, t)/dt" ~, ,) 0. But in any
case, it is clear that just from fixed t=O, u=O,
and s =0 dispersion relations for A, B, and C, the
coefficients a,~, P,» and y„. (i +j (2) can all be
determined (and in some cases overdetermined} in
terms of integrals over absorptive parts of physi-
cal scattering amplitudes, provided such integrals
converge.

V. BEYOND PERTURBATION THEORY

An S-matrix approach to high-energy weak pro-
cesses should be capable of making progress be-
yond considerations of a perturbation expansion,
as has been done in hadron physics. We are think-
ing here of the successful use of dispersion rela-
tions, of high-energy limiting theorems such as
the Froissart bound" and the work of Martin, "of
the bootstrap concepts, and perhaps even of dual-
ity. But typically in hadron physics it is difficult
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to make predictions using S-matrix concepts un-
til a great deal of data exists. We too cannot
claim any better, but we shall, for what they are
worth, give a natural succession of hypotheses
which from the point of view of S-matrix dynam-
ics appears to present the path of least resistance
and which lead to some general consequences:

HyPothesis 1. The Mandelstam double-spectral
function in the strip regions (0& f& A'; s arbitrary
+ permutations s- t- u) may be neglected for
some X', where m'(lepton) «A'«G ' and probably
a'» m'(hadron). This means that asymptotic weak
lepton-lepton amplitudes are not controlled by
lepton-pair exchange but by exchange of heavy ob-
jects such as the intermediate boson W. The al-
ternative to this stripless approximation has the
difficulty that one must show that the large spec-
tral function in the strips does not contribute via
fixed-t dispersion relations to low-energy weak
processes. Such large low -energy contributions
could ruin the simple current-current picture.

A major consequence of the stripless approxi-
mation is the Froissart bound":

o„,(s)& —,[O(1)1n's] .1
(5.1)

Hypothesis 2. In all partial waves, the partial-
wave amplitudes a~ are always small, ~a,- («1,
except possibly at positions of some narrow reso-
nances. This is suggested, but not required, by
Hypothesis 1. It again serves to protect reactive
effects associated with unitarity requirements
from affecting the current-current picture at low
energy.

Hypothesis 3. There exist intermediate vector
bosons W' with mass m~ "small, "m~«10 GeV,
and certainly m~& ~. This hypothesis, in lowest
order, is compatible with the preceding ones and
of course is strongly motivated by the current-
current picture. However, as emphasized by Gell-
Mann, Goldberger, Kroll, and Low, ' the process

(5.2)

calculated in the OLE (one-lepton-exchange) ap-
proximation violates Hypothesis 2 at sufficiently
high energies, and the easiest way out, requiring
no miracles, is the next hypothesis.

Hypothesis 4. There exist strong interactions
of W' with each other but not with leptons. This
latter proviso ensures again that the low-energy
current-current picture is not modified by W-
lepton rescattering effects such as shown in Fig. 2.

The effect of the strong W-W coupling on the re-
action (5.2) is to provide strong damping of the
OLE contribution at high energies. This is most
convincingly seen by looking at the reaction in the
opposite direction: W' + W —l+ l. The final l l

FIG. 2. W-lepton rescattering effects in graphs for
lepton-lepton scattering.

channel competes poorly with many other open
channels composed of particles in the strongly
coupled W family. It is likewise very reasonable
that still higher-order effects remain small.

The notion of the W strongly interacting with it-
self is certainly not a new one.'" Among the pro-
posals are W' interacting strongly with ordinary
hadrons, "of W" interacting strongly (i.e., nonre-
normalizably) with photons, '4 and of triplets or
octets" of W's with broken Yang-Mills coupling to
each other. And while attractive from the point of
view of S-matrix dynamics, the option of strongly
coupled W is clearly anything from compelling.
We can, however, anticipate the following general
consequences:

1 ~ There will be a large family of states of var-
ious spin and charge coupled to W. This argument
is as good (or bad) as those advanced for the or-
dinary hadron system.

2. The W probably lies on a Regge trajectory.
If it is exchange-degenerate, or approximately so,
and if J=0 is physical, the spinless W will be
lighter than the J= 1 W', and one must take heed
of the cautions of Lee" regarding W searches via
leptonic decay modes ~

3. The slope of the W trajectory is determined
in order of magnitude by the lightest particle
coupled strongly to the W system. For example,
if the W couples strongly to ordinary hadrons, the
slope of the W trajectory should be very large, of
order (m~m~) ', as can be seen by comparing the
Low equation" for meson-W scattering with that
of meson-nucleon scattering. The mean spacing
in mass of W' resonances in this case would be
of the order of meson masses.

4. To resolve the difficulties discussed under
Hypotheses 4 and 5, one requires a strong damp-
ing of J= 1 W'-W interactions. From Cutkosky's
work on vector-meson bootstraps, "an attractive
8"-W force coming from a J= 1 W' exchange
might be strong enough to bootstrap the W'. This
again suggests the relevance of some kind of Yang-
Mills multiplets of J= 1 W's. The whole multiplet
should again lie on Regge trajectories.

VI. HIGH-ENERGY LEPTON PROCESSES
AND STHENONS

If there exists W' strongly coupled to a family
of particles (which we shall call sthenons), then
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one can crudely estimate cross sections for high-
energy lepton-lepton proce sses.

We here assume that the mass of this sthenon
family is characteristically of order m~. The
case of sthenon =hadron has difficulties and will
be discussed separately at the end of this section.
At the other extreme, the cases in which weak in-
teractions are linked with the electromagnetic in-
teraction, whether by the nonrenormalizable quan-
tum electrodynamics of the 8' as discussed by Lee
and Yang, or by a symmetry between weak and
electromagnetic processes, it may well be that
the slope of the W trajectory is of order n, i.e.,
mg/m~- v'137-10, and there is not just one mass
scale. Therefore we do not expect the analysis of
this section to necessarily apply to such cases.

The one-W-exchange (OWE) contribution to lep-
ton-lepton scattering damps the high-energy "elas-
tic" cross section, which eventually approaches a
constant; for e:;ample,

I
sthenons

FIG. 4. Sthenon production via lepton-antilepton
annihilation.

Thus for both the elastic and inelastic lepton-lep-
ton cross sections, the smooth linear rise of the
cross section with s given by the Fermi theory is
cut off at s- m~'.

However, careful distinction must be made be-
tween lepton-lepton processes and those lepton-
antilepton processes which can proceed via the
single 8", as in Fig. 4. This can be estimated as
follows. For s» m~' but s& G ', the cross sec-
tion for, say, v, +e- sthenons is bounded above by
unitarity: cr& (const)s '. Because this is the only
contribution to the dispersion relation (4.8) of
order G, we must have

-2 ~
oo~E(vp +e- JL +v, ) = —G'mg

S ~~
(6.1)

1 "™ds'
4v 2G — 0 tnt(s ) ~

w P

(6.5)

In addition to this, there is the contribution from
sthenon production as shown in Fig. 3. If the WH'

cross section is helicity-independent, then as
+~QO

do'

ds 'dt'dt~

Gm'' t2

2tt' (f, + m~')' (f, + m~')'

1 s
i in i oe'e'(s, ft, fs) . (6.2)

Ignoring logarithmic factors, and taking the in-
tegrations over t, and I,, to yield factors of order
unity, we get as s —~

Gm~
277 22 ~S'W (S (6 3)

o„-t"' m e'(4tt ' . (6.4)

Using the estimate given for the Froissart bound

o~~& tt jm~' (assuming the lightest sthenon state of
charge two to be the two-W state) we get

Assuming that cr-(const)s ' for s& m~' gives us
the rough upper bound

4vGm e'

S
(6.6)

log o )(

Gloshow Resonance f+f = =W

)

These contributions are schematically shown in
Fig. 5; they should certainly not be taken more
seriously than to a factor of 10.

If we try to return closer to reality and discuss
lepton-hadron or hadron-hadron collisions, we
may try using the parton model as a crude qual-
itative guide as to what to expect. The semilepton-
ic lepton-hadron processes will be analogous to
the lepton-lepton process, where no annihilation
channel is present. Thus the observed linearly
rising v-N total cross section should, in this pic-

log G—
Ofls

' s sthenons log Gmw
2 l FA"TOR & lO

, F~(=TOR ~lO-

g mw
2

log G

= log s

FIG. 3. Sthenon production in lepton-lepton collisions.
FIG. 5. Possible behavior of lepton-lepton and lepton-

antilepton total cross sections if sthenons exist.
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ture, be cut off as s& mw'. The neutrino produc-
tion of sthenons from hadrons should be within two

orders of magnitude of the ordinary nonsthenon
production for s» mz, '.

o(l. +n- l +sthenons+hadrons) - const .
o(l +n- all)

(6 7)

do» ~Gmw f ow»(s)
dtdS' W' (t+ mw')' S

(6.8}

and put it into the forward vN dispersion relation

w ~0 s' —s s'+s (6.9)

Neglecting logarithmic factors, we get at low en-
ergies (in order of magnitude only)

T(s, 0) —
3 s, [ow+»(s') —o'w-„(s')]

Gmw' ""ds
r .0 s

Gmw 2
""ds'

+ 3 s ig [ow»(s ) +ow-»(s )] .
'lF .0 S

(6.10}

This gives

g (ow'» ow-»), „mw (6.11)

which will be much larger than experiment allows
unless ow ~„are identical. "

To see this in detail, we note that the process
in Fig. 6 is much larger than conventional neu-

However, for hadron-hadron (or photon-hadron}
collisions, the annihilation channel is always open,
and the cross section should be more like the ll
estimate, but probably suppressed considerably
(1-2 orders of magnitude?), because only a small
fraction of the available center-of-mass energy
will on the average be in the parton-antiparton
pair which annihilates into the single W.

Before leaving this subject, we must emphasize
that in many cases, mixed electromagnetic and
weak processes will result in larger sthenon pro-
duction cross sections than stated herein. How-

ever, these considerations fall outside the pur-
view of this paper.

%'e close this section by considering the possi-
bility that the W boson has strong pairwise inter-
actions with ordinary hadrons. If this is the case,
there are many constraints" "from experiment
on its properties. We will examine those coming
from inelastic neutrino scattering. We take the
cross section for v+N- p +anything (Fig. 6) to be

FIG. 6. Diagram for inelastic neutrino-nucleon
scattering.

trino interactions. For s & mw',

0 „-sthenons Gmw ow„a~2

0,„-hadrons G mw' G
(6.12)

For a geometrical W -N cross section, this ratio
is -10'"' and can be shown" "to be inconsistent
with the low muon fluxes found in the deep-mine
experiments for mw& 10 GeV. But then the esti-
mate of (6.11) for the low-energy vX elastic scat-
tering amplitude is greater than the conventional
theory" by -2 orders of magnitude, unless o~+„
=ow-„. Even if Ow~~ differ only by electromag-
netic effects, one may have difficulty with the ex-
isting experiments at low energies. Finally, even
if the first term in (6.10) can be neglected, the
second rises rapidly with energy, giving

"" - [const 0(1)][sow»]'
+fjP ~P+ n

(6.13)

independent of m~. For the inelastic cross sec-
tions this ratio is also probably similar. We con-
clude that either ow„ is much less than geometri-
cal or the hypothesis W =hadron, despite its very
large mass, is either ruled out or can soon be de-
cided by experiment.
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