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The Lagrangian density for a system of the pseudoscalar-meson nonet, the vector-meson
nonet, and the spin —2-baryon octet is obtained by the SU(3) extension of the nonlinear La-
grangian density for pions, p mesons, and nucleons. The nonpolynomial Lagrangian density
for the pseudoscalar mesons is derived by a general procedure, which is applicable to all
models and includes a rigorous treatment of the mass term. The effect of the SU(3)-symme-
try breaking is taken into account by introducing the mass matrix, and the broken divergence
conditions for the vector and axial-vector currents are given in an explicit form.

l. lNTRODUCTlON

The nonlinear couplings of pions, p mesons, and
nucleons were derived in two earlier papers'' by
imposing suitable divergence conditions on the
source functions in the &- and p-field equations.
We shall now conclude our investigation by extend-
ing the results to the pseudoscalar-meson nonet
P, the vector-meson nonet V„, and the spin-&-
baryon octet B.

The extensive literature on the SU(3) extension
of nonlinear Lagrangian densities has been re-
viewed, for instance, by Weinberg' and by Gasi-
orowicz and Geffen, ' where the main complication
arises from the nonpolynomial nature of the pion
Lagrangian density. For, in the SU(3) extension
the role of the 2x2 matrix

S I 7

with i =1, 2, 3, must be replaced by the 3x3 ma-
trix

with i=0, 1, 2, ~ ~ ~, 8, where the A; are Gell-
Mann's SU(3) matrices. ' This transition is not
entirely straightforward owing to the fact that
while (r,.&;)' is a multiple of the unit matrix,
(~;P;)' does not possess this simple property.
Because of the mathematical difficulties, the SU(3)
extension of the nonlinear pion Lagrangian density

has so far been given only for specific models,
and the treatment of the pseudoscalar-meson
mass term is especially inadequate in the exist-
ing literature. We shall, however, describe a
general scheme that will enable us to carry out
the SU(3) extensions of all pion models.

As we shall see, the divergence conditions that
apply to the p-&-N system can be maintained for
the V P Bsystem as -lon-g as the SU(3) symmetry
is preserved, but they are no longer valid when
this symmetry is broken. We shall also investi-
gate the effect of the SU(3)-symmetry breaking on
the divergence conditions, and for this purpose
we shall follow the symmetry-breaking mecha-
nism of an earlier paper, ' which is not only re-
markably simple but also gives the symmetry-
breaking terms explicitly rather than merely
specifying their transformation properties.

We shall generally follow the same notation as
in Refs. 1 and 2 with appropriate extensions for
the SU(3) multiplets. The pseudoscalar-meson
nonet, the vector-meson nonet, and the baryon
octet will be denoted either by the usual 3&3 ma-
trices P, V„, and B or by the nine-component
vectors P;, V„;, and B;, the relationship be-
tween the matrix and component forms being given
by

P = X;P;I/W2, V„=A; V„ i/v 2, B = A;B(/v 2,
(1.1)
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where B,=0 to ensure that B represents an octet.
Because of the complexity of the mathematical

formalism, we have found it necessary to define

special commutators and anticommutators with a
semicolon in the following manner: If

For this purpose we note that, according to (2.3),

BU
Q 7T ~

= 2s's, +4iy, (r .&)t'v; + 2iy, r, t,

which, together with (2.4), gives

0=go;A;, 0' =pa,'A,',
f

(1.2) T (~y, U'
)

where A, and A,' are SU(3) matrices while u; and

nf' are Dirac matrices or spinors, then
= 4(2s't&' —2(1+ s)t'7r2 —(1 + s)t]&;

[0; 0'] = P o,u,'[A, ,A,'], (0; 0')= go. ;o.,'(A, ,A,'). or, after simplification with the help of (2.5),

5, J 5 ~

(1.3) (2.6)

II. PSEUDOSCALAR-MESON NONET

We shall first consider the SU(3) extension of
the pion Lagrangian density to that of the pseudo-
scalar-meson nonet with SU(3) symmetry.

By postulating that the source function in the
pion-field equation be expressible as a complete
divergence, it was shown in Ref. 1 that the non-
linear pion Lagrangian density is given by

L, = -(1/16f') Tr(&„UB„U ') + L(m, )

with
.2

m, 2 '5 s'
L(m. )= 4'

t
d(& ),

0

(2.1)

(2.2)

where Tr denotes the trace over the isospin ma-
trices, U is a unitary function of iy, r ~ &, and s
and t are Hermitian functions of &2 such that

U(ty r ~ %) = 1+s(P) + 2iy5r 7/t(7)2) . (2.3)

In view of the unitary nature of U, the above re-
lation also implies that

The above relations indicate that [0;0'] or (0; 0']
represents a commutator or anticommutator with

respect to the SU(3) matrices, while it represents
just a product as far as the Dirac matrices or
spinors are concerned.

Also note that when Tr appears before a product
of the Dirac and SU(3) matrices, the trace ex-
tends only over the SU(3) matrices.

Hence, it is possible to put (2.2) in the form

L(m, ) = ' t Tr iy, r ~ mU ' d(v,.). (2.7)

The pion-field equation resulting from (2.1) is
expressible as'

(p' -m, ')w = s„J„,(%),

where J»(%) is given, in terms of s and t, by

J„,(s) = s „0—(t/f)(1 + s)6 „v

(2/f}[ts' —t'(I+s)1(& s &)&

Using (2.3) and (2.4), and observing that

s„s = 2s'(v s„v), s„t= 2t'(w ~ s„m),

(2.8)

(2.9)

it can be verified that (2.9) can also be expressed
in terms of U as

Z„,(w) = a„v+(1/8f) Tr[iy, r(U 'a„U Ua„U ')]. -
(2.10)

The SU(3} generalization of the above results
can be carried out in the following way: In order
to obtain the Lagrangian density we replace &;

and r, by P; and A, in (2.1) and (2.7), which gives

L~=-(I/16f')Tr(s„Ua„U ')+L(m~) (2.11)

with

mp' ', BU
L(&u~) = Tr iy, A, P, U ' dP;, (2.12)

BP;

and

U ' = 1+s —2iy, r . 7Tt

(1+s}'+4t'P = I,
(1+s)s'+2(t'+2tt'5') = 0,

(2.4)

(2 5)

where Tr denotes the trace over the SU(3) matri-
ces, and U is a unitary function of iy, A.;P;. More-
over, the field equation can be obtained by a simi-
lar replacement in (2.8) and (2.10), so that we
have

s' and t' being the derivatives of s and t with re-
spect to &'. In the SU(3) extension U(iy, r ~ %) can
be replaced by U(iy, k;P;), but U(iy, k,P;) cannot be.
expressed in a form analogous to (2.3) because of
the more complicated commutation properties of
the X; matrices. It is, therefore, necessary to
express (2.2) also in terms of U instead of s and t.

(0' mp')P; = 6 „d»,(P)- (2.13)

withj,(P) = B„P;+ (I/8f} Tr[ty, z, (U-'s„U- Us„U-')] .
(2.14)

It is still necessary to verify that the Lagran-
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(2.15)

for model A,

gian density (2.11) indeed yields the field equation
(2.13). Such a verification requires some inter-
esting mathematical manipulations, which are
given in Appendix A.

From the above general scheme, the results
for various models described in Ref. 1 can be ob-
tained by an appropriate choice of U. In particular,
U(iy2X;P;) = U(iy2u 2 P) is to be chosen as

2+zif y'5&

(CP -m, ')% = 8„J„,(~, N)

with

J„,(T/, N) = J„,(1/) + J„,(N),

(3 4)

(3.5)

gN(s/-P}(Niy„y, r .vN)~, (3.6)

where J»(7/) is given by (2.9) or (2.10), while

J„,(N) is given in terms of s and t by

J»(N) =g„(1+s)(Ni y„y, rN) 2f t(-Niy„r x 1/N)

U = (1 —8f P ')"'+ 2&2if y,P

for model B, and

j.+v 2ify, P
1 —v 2if y5P

(2.16)

(2.17)

which can also be shown to be expressible in
terms of Uas

J(N} —fNtyy(U /2rU1/2U1/2rUl/2)N

+& g„N sy„y, (U' '7 U '"+ U ' 'T U'")N.
(3 7)

for model C. Substitutions of these values of U

into (2.11) give the Lagrangian densities for mod-
els A, B, and C, and it can be shown with the
help of (2.12) that

L(mF) = -2mF'Tr(P ) (2.18)

for model B, and

L(mF) = -(mF'/4f ') Tr[ln(1 + 2f 'P '}]
for model C.

(2.20}

III. P-B SYSTEM

The general form of the nonlinear Lagrangian
density for the &-N system can be expressed as'

L„„=L„+L~+ L7I

where L„ is given by (2.1) and (2.7), and

L„=-N(y]f 8
q +m„)N,

L = ——N (U' 8 U "'+ U "'8 U"')N

(3.1)

(3.2)

for model A,

L(mF} = -(mF'/8f '}Tr[1 —(1 —8f 'P')'"] (2.18)

It should be noted that the &-= system can be
treated in the same way as the &-N system, and
thus the &-" coupling is given by

(Ul/28 U-1/2+ U-1/28 Ul/2)

1( /f ) (Ul/28 U-1/2 U-1/28 Ul/2)

(3.8)

However, the SU(3} extensions of the w-N and 1/-"
couplings take different forms, because Niy, T mN

corresponds to

Tr(Biy, A.;P;B),
while =iy, r ~ &= corresponds to

-Tr(Biy,B 1,P,/),

in which y, and A.; appear on different sides of B.
In order to carry out the SU(3) generalization of

(3.3) and (3.8), it is necessary to ensure that the
Dirac and SU(3) matrices occur on different sides
of B for terms involving =. For this purpose, we
shall introduce commutators and anticommutators
with a semicolon as defined by (1.3), which also
implies that

——'(g /f)Ny (U"'8 U '" —U "'8 U'")N

(3 3)

Tr(B[O; B])= Tr([B; O]B),

Tr(B{O;Bj)= Tr({B;OjB) .
(3.8)

Moreover, the pion-field equation resulting from
(3.1) takes the form

It is then possible to write the appropriate P-B
couplings, containing both (3.3) and (3.8), as

L =-(1/2f)Tr(fBy„((U'"8 U "'+U "'8 U"');B]

+;By [(Ul/28 U-1/2 - U-1/28 Ul/2) B]+g~y {(Ul/28 U- /2 - U-1/28 Ul/2) Bj} (3.10)

where g~ and gD are the so-called E and D coupling constants

gF 2(AN+A-. )/ gD 2(AN g=) (3.11)

Similarly, the current (3.7), when combined with the corresponding current J»(:-), leads to the SU(3)
generalization
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J„, ,(B) =2 Tr(fBiy y2[(U"'A;U "' —U "'A, U'/2};B)

+gpBiypy2((U"'P;U ." + U "
A& U"2);B]+gBBiy„y((U' 'A;U '"+ U '"X;U" );B)). (3.12)

Lp+~ = Lp+ L~ + Lp~ y

where

(3.13)

Thus, the total Lagrangian density of the P-B
system can be expressed as

Tr(v, p, )=2.5, , , [v, , 7, )=2iB,„T,. . (4.5}

The SU(3) extension of (4.4) to the Lagrangian
density of the vector-meson nonet with SU(3) sym-
metry can be obtained by replacing r; pu i by ~; V„;,
which gives

(3.14)LB = Tr(B-y„a „B+mBBB),

and Lp and LBB are given by (2.11) and (3.10).
Moreover, the SU(3) generalization of (3.4) gives
the P-field equation

where

Vp ——/%.
& V„;/W2,

(4.6)

(CP —mp2)P; =apJ„, ,

with

(3.15) Vp, ——A;V„, ;/v 2

=a„V, -a, V, —(i/&2)g, [V„, V,],
(4.7)

(3.16)

IV. V-P-B SYSTEM

By postulating that the source function in the p-
field equation have a vanishing divergence, it was
shown in Ref. 2 that the Lagrangian density of the
p field is given by

Jp, , =Z ,-p,.(P)+J», (B),

where J», (P) and J», (B) are given by (2.14) and
(3.12}. As shown in Appendix B, it can be verified
by direct calculations that the field equation (3.15)
is obtainable from the Lagrangian density (3.13).

and it is useful to remember that

Tr(A;A/) = 25&„, [A;, A, ] = 2if;, 2A2.

Moreover, the SU(3) extension of

Du i —9
u i +gpcij ~pu j

takes the form

D„p = a„p —(i/v 2 )gv[V„, p],

(4.8)

(4.9)

(4.10)

(4.11)
l ~ 2 1 2~ 2

Lp = -4 PuU
—2m' Pu

with

puU = ~upU ~U pu+g~pu ~ p»

(4.1)

(4.2)

and similarly

(4.12)

2 1
Lp =-Tr(-, p„„'+-,mp'p„'),

where we have used the relations

(4.4)

and the interaction of the p field can be introduced
into the Lagrangian density of any isofield |I) by
replacing aug by the covariant derivative Dug.
Putting

Pu =T Pp/~2/ {4.3)
Pp =~ Pp /~~=apP a Pp (i/~~)gp[Pp P )

the Lagrangian density (4.1) can also be expressed

D„B= a„B—(i/&2)gv[V„, B]. (4.13)

LB = -Tr(By„D„B+mBBB), (4.16)

Thus, the Lagrangian density for the V-P-B
system can be taken as

Lv+P+B Lv+ LP+B Lv+ LP+ LB+ LPB ~ (4 14}

where L„ is given by (4.6), while LJ., LB, and
LBB are obtained from (2.11), (3.14), and (3.10)
by replacing 8„Pby D„P and BuB by DuB, so that

Lp = -(1/16f') Tr(D„UD„U ')+ L(mp), (4.15)

I ~ = (1/2f ) Tr(fBy [(Ul /2D U-I/2 + U-I/2D Ul /2)' B]
+g B „[(U' 'D„U '" —U '"D„U"');B]+gBB „((U'"D U "2 U "'D„U'/') B]) (4.17)

Since

aT V'i' =@2 Tr(vpk;)=2vp, ;, =2igv Tr(V„,[V„A,])=4gvf;, 2V, /V„, 2,a v„,.
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=-2v2 Tr(v, &;}=-4V.. .

the V-field equation resulting from (4.14) is

a,(B,V„;—B„V, ;)-mv V„;

g'vf«jkav(vv, j Vv, k) gvfij k V«jv, j Vv, k
p«i

(4.18)
(D„' -m, ')P,. =D„Z„, , (4.30)

By following the same reasoning as given in

Ref. 2 to obtain the pion-field equation in the pres-
ence of the p field, it can be shown that the P-
field equation for the V-P-B system is the same
as in the absence of the V field except that now

D„appears in place of 8„. Thus, the P-field equa-
tion, obtained by replacing a„by D„ in (3.15), is

Moreover, the invariance of (4.14}under the in-
finitesimal SU(3) transformations

with

~«k, =~'kk «(P).+~«, «(B) ~ (4.31)

gives the conserved current

(4.18)

where, corresponding to (2.14),

J'v, , (P) =DIP;+ (1/8f ) Tr[«y«A;(U 'Dq. U —UDqU ')],
(4.32}

~Lv
V

~Le+a PP, i CVfijA, ~ ~ V v, it

ILP+ B
a(a „B,)

(4.20)

~LP.aS„« = gvfi, k V„, , V, k+
& Vq,.

(4.22)

According to (4.18) and (4.22), the V-field equa-
tion can be expressed as

a,(a,v„,. —B„v, , )-m, 'V„, = -Z„„ (4.23)

But Lp, a involves V„; only in the form (4.10) and
(4.12), and consequently

~Lg +a LP+ P P+~ Bgvfijk a(a P )
k a(a B )

k

(4.21}

which enables us to express (4.20) as

while J», (B) is given by (3.12}.
In the above treatment we have considered only

the simplest couplings for the V field. As in the
case of the p field, it is possible to introduce ad-
ditional couplings involving V„„without violating
the divergence condition for the V field. However,
it is not known at present whether such couplings
are fundamental or manifestations of the higher-
order effects generated by the simpler couplings.

V. SU(3)-SYMMETRY BREAKING

We shall introduce the SU(3)-symmetry break-
ing in the Lagrangian density through the mass
matrix, ' and for simplicity we shall expand the
Lagrangian density in powers of the coupling con-
stants, which will be sufficient to bring out the
essential features arising from the symmetry
breaking.

where the source function

fv, i eS«j i gvf«jkav(V«j j Vv «)

satisfies the divergence condition

'~~. i='~su i-0

(4.24)

(4.25)

A. Expansion of Lp, Lp~, and Jp5,.

Let us put

U=1+2 ga„(W2ify«P}",
n=J

(5.1)

It is also possible to put (4.18) in the alternative
form

where the coefficients a„are real, and a, =1. It
can then be inferred from the unitary property of
V that

2
DvVvif, i ~P VP «i

where

LP+ B
aV

p ~ i

It then follows from (4.26) and (4.23) that

(4.26)

(4.27) where a, is a model-dependent parameter. '
Substitution of (5.2) into (4.15) gives

(5.2)

L, = --,' Tr[(D„P)'+4(1 —2a, )f'P'(D„P)'
+4(1 —a, )f'P(D„P)P(D„P)+ ]

U= 1+2(v 2 if Py) 2(+&2if Py) + 2ak(v 2 ify, P) +O(kf k),

and thus (4.25) yields the covariant divergence
condition

+ L(m~), (5.3)

while, substituting (5.2) into (2.12) and carrying
out the necessary integration, we findD„g„ i =0. (4.29)
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L{mp) = ——,'m~2 Tr[P2+(2 —3a, )f'P + ],
{5 4)

where the dots denote terms of orders higher than

2 in the coupling constants. Further, according
to (5.2),

U"'D„U "'= v2i-fy, D„P f'[D-„P, P]+ ~ ~,

U ~~2D„U~~2=~gjfy D P-f2[D P P]+.

so that it is possible to expand (4.17) as

L].~ = Tr(&2gzBiy„y, [D„P,B]+v 2gzBiy&y~(D„P, B)

+f'By„[[D„P,P], B]+ ~ ~ }. (5.5)

Similarly, it follows from (4.31), (4.32), and

(3.12) that

J'„, , =J„', , (P) +J», (B),

J'„, , {P}= v 2f' Tr[a,(P', D„P)A,.

+ (a~ —2)P(D„P)PX;]+ ~ ~, (5.6)

J„, , (B)=gz Tr(Biy„y, [X;,B])+gD Tr(Biy„y5(A;, B))

+ &2f' Tr(By„[[X;,P], B])+ ~ ~ . .

The above results can be expressed in the matrix
form as indicated in Appendix C, which gives

J„',= J'„,(P) +J»(B),
J'„(P)= 2a~f'(P', D„P)+2(a, —2)f'P(D„P)P+

J„5(B)= &2gz[Bi y&y-5; B]+&2gD(Bi y&ys; B) (5.7)

+2f'[[By„;B],P]+

where, in accordance with (1.3),

[Biy„y,'B] = 2(B;iy„y5B;)[A.;, A.,], etc.

L,(mp) gamp Tr(6"), (5.9)

B. Symmetry Breaking Through Mass Matrix

It was proposed in Ref. 6 that in the multispinor
hadron formalism the role of the mass parameter
be replaced by the mass matrix

lm0 0
M=~ Om 0 (5.8)

0 0m+6,
which leads to mass splittings for each of the fields
P, V„, and B.

Let us first consider the P field for which, ac-
cording to Ref. 6, the mass term

——,'mp'Tr(P')

should be replaced by

-Tr(M P +MPMP) .

However, since L(mp) does not possess the above
simple form except in a special model, we first
express it as

where 6' is a model-dependent function of P, and

then replace it by

L(m~) = -Tr(M'6" +M6'M6') . (5.10)

This procedure implies that by a redefinition of
the P field the Lagrangian density can be ex-
pressed in a form such that the coupling terms
are SU(3)-invariant, which agrees with the view-
point of Ref. 6. It also follows on comps. ring (5.4)
and (5.9) that

O' = P+ {1——', a, )f'P '+ ~ ~ ~,

so that (5.10) can be expanded as

L(m~) = Tr[(-M'P'+MPMP)

(5.11)

+(2 —3a, )f'(M'P4+MPMP')+ ].
(5.12)

The symmetry breaking for the V„and P fields
is quite straightforward. In accordance with the
results of Ref. 6, we replace

by

and

by

L(m „)= ——,m„a Tr{Vq2)

L(m «) = -Tr(M V„'+MV„MV„),

L{ms) = -ms Tr(BB)

(5.13)

(5.14)

(5.15)

L(ms) = -Tr(BMB —BBM) —Tr(M) Tr(BB) .

(5.16)

The parameter A in (5.8) not only leads to intrin-
sic mass splittings but also gives rise to SU(3)-de-
pendent self-energies. The effect of self-energies
on mass splittings has been fully discussed in Ref.
6, and will not be considered here. Also note that
in the SU(3)-symmetry limit, which corresponds
to 6 =0, the mass matrix (5.8) becomes a multiple
of the unit matrix, and mp=m~=2m, m~=3m.

It will be convenient here to use the matrix form
for the derivation of the field equations from the
Lagrangian density. The matrix form, of course,
can be converted into the component form or vice
versa as explained in Appendix C. The baryon
field equations with symmetry breaking, obtained
with the help of (4.16), (5.16), and (5.5), are

y„D„B+[M,B]+Tr(M)B

=v 2 gz[D„P, iy„y,B]+&2gn(D„P,iy„y,B)

f'[[D„P,P],y„B].~ ~ ~,
(5.17)

D„By„—[B,M] —Tr(M)B

~2ggBiy&y5, D&P] —v 2 gD(Biy&y~, D&P)

-f'[By„, [D„P,P]]+~ ~,
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and we shall now discuss the field equations for the P and V fields.

C. P-Field Equation

(5.18)

The P-field equation with symmetry breaking, resulting from (5.3), (5.12), and (5.5), is found to be

D„'P —(M, (M, P)) =Dq( VYg-p[Biyqy, ; B]+&2gp(Biy„y„B}+'f2[[By„;B],P]

+2(2a, —1)f'(P', D„P)+4(a, —1) f'P(D„P)P)

+f [[By»B],D& P]+ 2(1 - 2a, )f'(P, (D„P)'}+4(1 —a, )f '(D„P) P(D„P)

+ (1 —-', a,)f'((P', (M, (M, P)})+P(M, (M, P)] P+(M, (M, P )})+
which can be expressed in terms of j„'„given by (5.7), as

D„'P —(M, (M, P})=D„Z„',+D„( f2[ [B-y„;B],P]+2(a, —1)f'(P', D~P)+ 2a, f 'P(D„P)P)

+f '[[By&,' B],D& P]+ 2(1 —2a, )f2(P, (D„P)2)+4(1 —a, }f'(D„P)P(D& P)

+ (1 —~ a )f ((P', (M, (M, P)})+P(M,(M, P))P+(M, (M, P')))+ (5.19)

After some simplification, (5.19) becomes

D„P-(M, (M, P})=D„J» f [[D„—8y»B], P]-f'[[B;y„D&B],P] + 2(as —1)f (P, D& P)+2a~f P(D& P)P

+(1 ——,'a~) f'((P', (M, (M, P)))+P(M, (M, P))P+(M, (M, P')))+ ~ ~ ~, (5.20)

where the f terms can be further simplified by using the field equations for 8, B, and P, which gives

D„P (M, (M, -P))=D„Z'„, f (P, [M— , [B;B]]]——,'(3 —2 a,)f [P, [P, (M, (M, P}}]]
——,'(1 —,'a, )f'(P, (—P,(M, (M, P))))+(1—-', a, )f'(M, (M, P )) + ~ ~ ~ . (5.21)

It is interesting to verify that in the SU(3)-symmetry limit, when M becomes a multiple of the unit ma-
trix, the right-hand side of (5.21} reduces to D„J'„,.

D. V-Field Equation

The Lagrangian density of the V P Bsystem -ca-n be obtained by adding (4.6), (4.16), (5.3}, and (5.5),
and inserting the mass matrix in accordance with (5.12), (5.14), and (5.16). The resulting V-field equa-
tion with the symmetry breaking is given by

D„V,„—(M, (M, V„))=-g„,
where

g„= (ig„/v 2-)([DqP, P]+ [8yq, B]+&2g'~[[Biyqy~; B],P]-v 2gp[(8iyqy„B), P] )+ ~

(5.22)

(5.23}

Further, according to (5.18),

D„'P =(M, (M, P)) —v 2g~D„[8iy„y„B]'
+W2gpDq(8iyqyqj B)+O(f~) (5.24)

while it follows from (5.17) that

D&[ By» B]= [D&By» B]+[8;y&D&B]

=[[8;B],M] &2g [[Biy„y„B],-D„P]

+&2gp[(8iy„y~; B}&D„P]+O(f ).
(5.25)

By using (5.24) and (5.25), the covariant diver-
gence of (5.23) can be reduced to

D„P„=(ig /v 2)([M, [8;B]]+[P,(M, (M, P))])+
(5.26)

where terms of the second order in the coupling
constants on the right-hand side of (5.26) vanish
because of mutual cancellations.

Note that the right-hand side of (5.26) vanishes
altogether when I becomes a multiple of the unit
matrix in the SU(3)-symmetry limit.

YI. BROKEN DIVERGENCE CONDITIONS

Although it is well known' that the SU(3)-sym-
metry breaking leads to broken divergence condi-
tions for the vector and axial-vector currents, our
formalism enables us to obtain these divergence
conditions in an explicit form. The essential re-
sults have already been obtained in Sec. V, and we
shall only add a few remarks.
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By using the relation

[P, (M, (M, P}}]=-[M, (P, (M, P}}],
the covariant divergence of the vector current 9„,
given by (5.26), can be expressed as

D qg q
= (ig„/v 2 )[M, ([8;B]-(P, (M, P}})] + ~ ~ ~ .

(6 1)

Moreover, by defining the axial-vector current

4„,as
(6 2)

it is possible to put (5.21} in the form

D „J„,= -(M, (M, P}}+f [P, [M, [8;B]] ]

+ —,'(3 ——,'a, )f'[P, [P, (M, (M, P}}]]
+-'(1 ——'a )f'(P, (P, (M, (M, P}}}}
—(1 —2 a~)f (M ) (M, P }}+ ~ ~ ~ . (6.3)

Confining ourselves to terms of up to second or-

der in the coupling constants, we can write (6.1)
as

D„g„=(ig /W2)[M, u],

where

a=[B;»-(P, (M, P}},
and, according to (5.8),

M = (x)"'(3m + a)1, —(~)"'ax, .

(6.4)

(6 5)

(6.6)

The matrix relation (6.4), with the use of (6.6),
gives in the component form

Dg4 ' (3) gVAff Bk a0 &
(6.'I)

which shows that D„J„;is nonvanishing only for
i =4, 5, 6, '7.

It is, of course, also possible to express (6.3)
in the component form, but this only yields a non-
vanishing and complicated result for each compo-
nent of D„J„,,

APPENMX A: DERIVATION OF PSEUDOSCALAR-MESON FIELD EQUATION

The manipulations used in Ref. 1 for the derivation of the pion-field equation in the form (2.8) become
extremely cumbersome when the 7,- matrices are replaced by the X,. matrices; and therefore we shall fol-
low an alternative approach here. Let us introduce a field variable {II), that is a function of P; and satisfies
the condition P; =P; for f= 0. We shall show that it is possible to find 5$, such that the variation of the
Lagrangian density (2.11}with respect to P,. directly gives the field equation (2.13), i.e. ,

'-a -=(0'-m')P -a J, (P).II a(a 4 )
P I P P5

According to {2.11), we have

aLP aL~ 1 a(a„U), a(a„U-') a(a„U), a(a„U-&) aL(m )

ap, " a(a,p,.) 16f' a@,. " " ay, .
" a(a„y,. ) ~ ~ a{a ~;) ap,

where, in view of (2.12),

(A3)

Since

B„U=

it follows that

a(aU) aU a(aU) aU,
a4,. ~ a4,. ' a(a, 4,.)

which enables us to express (A2) as

(A4)

ay,. ' a(a„4,.) 16f' a@, a$, a4,
On the other hand, (2.14) gives

(0' -m~')P, -a„J»,{P)= (1/8f) Tr[iy,A, (U-'CI'U a„U+-'a „U-a„Ua„U-' UO'U ')] -m~'P, ,

where the trace can be simplified by noting that

(A5)
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(U 'U) = H (UU ') = 0,
from which it follows that

a „U 'a-„U= --,' [(a'U-') U+ U '(a-'U)],

UB U-~ = -'[(P 2U) U-~ ~U(g2U-~)]

and thus

(
' mp-')P, -a„J»,(P) =(1/16f&Tr[iy, (UX, +A. , U)(Cl'U ') iy&(-U 'X, +X, U-')(O' U)J mp-'P, . (A6)

A comparison of (A5) and (A6) shows that the
condition (Al) will be fulfilled, if

(1 —i fy~K)5U(1 —i fy~K) = 2v 2 ify5(5$+f K5QK) .

(A13)

s L(m, )

8$;
=-mp P; (A7)

It follows from (A12) and (A13) that

5K = &2(5P +f'K5$K), (A14)
and

BU

BP,.
=

& fy, (U~, + X,.U), (AS)

and thus it is possible to determine 5(II) in terms
of Kas

v 25@= 5K v2f'K-5/K
which also implies the Hermitian-conjugate rela-
tion

= 5K —f 'K5KK+ + ( 1)"f2"K"5-KK" + ~ ~ .
(A15)

ify, (U 'X, +-~, U-') .- (A9)
Note that

We further observe that (A7) can be obtained by
substituting (A8) into (A3) and remembering that
Tr(X, A,.) = 25, , Thus, the only relation to be satis-
fied by P, is given by (AS), which can also be ex-
pressed as

K = (1/f ) tan(&2fP)

for model A,

I (1 8f2P~)'&'
K=

2~2f2P

(A16)

(A17)

av= D2 ify, (Uey+ eyU), (A10) for model B, and

where 5P = X, 5&]&,/W2.
In order to establish the existence of 6Q satisfy-

ing (A10), let us put

K=V 2P

for model C.

(A18)

1+i fy5K
1 -i fy5K ' (Al 1)

+f '(mK +Km),
which becomes, on using (A11) again,

(1 —i fy5 K) 5U(1 —i fy5K) = 2ify55K .

Moreover, according to (A10),

(1 —i fy~K) 5U(l —i fy5K) = &2 ify5(1 —i fy~K)

(A12)

x (U5@+ 5@U)(1 —ify, K),
which gives, on using (All),

where the unitary property of U simply requires
that K be Hermitian. According to (A11),

(1 —ify~K)U(1 —i fy5K) = 1+f K

so that

(1 —i fy5 K) 5U(1 —i fy~K) = (i fy, 5K) U(1 —i fy5 K)

+ (1 —i fy K)U(l' fy 5K)

APPENDIX B: DERIVATION OF
PSEUDOSCALAR-MESON FIELD EQUATION

WITH BARYON COUPLING

Since we have already established the relation
(Al) in Appendix A, it is now sufficient to show
that

&LPa BLAB J BJ B
a y,.

'
a(a„(f&,)

where L~s and J», (B), given by (3.10) and (3.12),
can be written in a compact form as

L» = -(1/2f ) Tr(fBy„[U„'; B]+gzBy„[ U„; BJ

+ gDBy„(U„; B]), (B2)

7», (B)= 2 Tr(fBi y „y~ [A,'; B]+Z~B iy„y, [A, ; B]
+ g~Bi y„y, (A, ; Bj), (B3)

with
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U U~/2 U-i/2 U-j./2&

UI U 1/2 g U-1/2 + U-1/2 g U 1/2
)

A = U'"A. .U '"+U '"A. U'"
$

P / U 1 /2y U -I/2 U-y/2 y U 1/2

(B4) y„U, =-U, yu, y„U,'=U,'y„

yuA~ —-~tyu
(B5)

Note that U is a function of iy, X,P;, and therefore

y5 commutes with U„, U„', A;, and A,', while

In view of (3.9), it is possible to express (B2)
and (B3) in an alternative form involving the com-
mutators and anticommutators of B instead of B.

It is also useful to remember that relations of the
form (A4) hold not only for U but also for U"".

According to (B2), we have

aL»-a aL» =- 1 2=-Il/ f)T fBr„;B g Br, ;B r, Br, ";BI
r

—&&(fBy&[ P', ; BJ+g~By&[p;; BJ+gnBy&(@,; B) )

where we have taken into account the fact that

(B6)

8Uu

e (s„y, )

with

BUf

( y )
uU (BV)

g U-1/2 a U'/'
—U ~/2 U-i/2

BP,. BP,.

U 1/2 U- j/2

0$,
which also implies

yu4; —C,yu .

(as)

(B9)

We now express (B6) as

P'-a„" = (1/2f) Tr (f(s„By„)[C,'; BJ+g (e„By„)[C,; B]+g,(a„By„)(4,. ; B)+fB[C,;(y„a,B)].
8Uu—g~B [4,. ; (yqB q B)]—gDB(4, ; (yqB q B))+fBy„&qc',' —;Bt

8U„—( BUp
p u u t

&y
s D

which can be simplified by using the baryon field equations

y „S„B= Bm—(1/2 f ) (f-y „[U„'; B]+g y „[U„; B]+g y „(U„; B)),
B„By„=meB+(1/2f)(f[B;U,', Jy& —I,'z[B; U&]y& —g o(B; U&)y„)',

and the relations

(B10)

(B11)

e„C, "=-,'[4 „U„]+-,'[4„U„J,2

a „4,. — " = —,
' [4 „U„J+—.

' [4, , U„' J .
t

Thus, (B10) reduces to

(B12)

=(1 4f') Tr((f'-g~'-g, ')By„C„U„;B —2g~ g,By„4,, U„;B )

+ (me/f ) Tr(g~B[4, ; BJ+gDB(4&;; B) ) .

On the other hand, (B3) gives

(B13)
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B„J»,(B)= 2 Tr(f (e„By„)iy,[A,'; B]+g~(B„By„)iy,[A;; B]+g~(B„By„)iy2(A,; B}

+fBiy, [A,'; (y„a„B}J —g~Biy, [A, ; (y„e„B)]-goBiy,(A, ;(y„.s„B)I

+fBiy„y, [&„A,'; B)+gl Biy„y, [& A, ; B]+gz&Biy„y,(S„A,. ; Bj) .

By using the baryon field equations (Bl1) and the relations

e „A;=!h, , U„']+ l [A,', U„],

e„A,'=-.'[A, , ff„]+-'.[A,', U„'],

we can put (B14}in the form

8&J&, , (B)=(1/4f) Tr((f -g~ -gn )Biy„y, [[A&, U&]; B]-2g~gDBiy&y2([AI U&];Bj)

+m22 Tr(g2Biy, [A;; B]+gDBiy,(A, ; B}) .

It follows from (B13) and (B16) that the relation (Bl) will hold if

4I};= -ifysA

or

gU- 1/2 g U 1/2
IJ&/2 U 2l2 =-2fy (U2/2g I2 ll2+U 2/&y ff2/2)

8 $; B(II};

which is indeed satisfied by virtue of the relation (A8) and the identities

(B14)

(B15)

(B16)

(B17)

(B18)

1/2 U'-1/2 0 U 1/2 U

APPENDIX C: RELATIONSHIP BETWEEN

EQUATIONS IN COMPONENT AND

MATRIX FORMS

Any 3x3 matrix A can be expressed as

A =A; X;/v2 1 (C 1)

which defines A, , and implies the inverse relation

A, = Tr (A~,./v 2 ), (c2)

in view of the fact that Tr(X, P, ) =26,, Substitution
of (C2) into (Cl) gives

A = Tr(AX, /W2) (X,/W2) . (C3)

The relation (C2} shows that from an equation in
the matrix form we can obtain the corresponding
equation in the component form by multiplying by
A. , /l2 and taking the trace.

On the other hand, an equation in the component
form with the index i can be converted into the
corresponding equation in the matrix form by mul-
tiplying by A, /v 2 and using the relations (Cl} and

(C3).
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