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A procedure for calculating self-consistent electromagnetic scattering amplitudes when
there are bound states, applied in a previous paper to the electron-positron system, is ex-
tended to include spin-0 —spin-() and spin-0-spin-2 elastic scattering. The second-order
amplitudes which result have the correct double-spectral functions and are cutoff-indepen-
dent, analytic, and crossing-symmetric. The Regge trajectory functions which are required
by self-consistency imply the usual Coulomb bound-state spectrum with reduced mass and
recoil corrections, and the appropriate Regge asymptotic behavior. The correspondence
between the amplitudes obtained by this procedure and by other means is discussed briefly.

I. INTRODUCTION

In a previous paper' we exhibited a method for
constructing a self-consistent elastic electron-
positron scattering amplitude which is Lorentz-
covariant, analytic, cutoff-independent, and cross-
ing-symmetric, which has the correct double-
spectral functions through second order in the fine-
structure constant, n, and which reduces to the
usual Born term in lowest order. Moreover, the
amplitude displays Regge asymptotic behavior and
the positronium Regge poles. Self-consistency re-
quires that the positronium poles appear at the
correct position and with the proper residue, and
that the amplitude possesses a well-defined Jacob-
Wick expansion. The purpose of this paper is to
extend the results of Ref. 1 to include the some-
what simpler processes described by spin-0-spin-
0 and spin-0-spin--, ' elastic scattering. Although
these amplitudes have only a limited applicability
to actual physical problems within the framework
of pure quantum electrodynamics, they are, never-
theless, of theoretical interest since our proced-
ure is considerably easier to follow in the absence
of spin. In addition, with this simplification we
obtain a convenient theoretical laboratory from
which our procedure may be extended to higher
orders more easily. Finally, the cases in which
the spin of one or both particles is neglected are
generally more familiar, which should facilitate
comparison of our results with electromagnetic
scattering amplitudes obtained by other means.
Thus, in the following pages we will briefly re-
view our procedure for the construction of self-
consistent electromagnetic scattering amplitudes.
We will then apply this technique to the ealeulation
of the elastic scattering amplitude for two parti-
cles of spin 0. We will first consider the process
in which the particles have unequal masses, and
then specialize to the case of identical bosons.

Finally, we will exhibit our results for the ease
in which one particle has spin —,'. We will also dis-
cuss briefly some relationships between our meth-
od and certain other approximations to the con-
struction of electromagnetic scattering amplitudes
when there are bound states.

II. THEORY

Because the perturbation expansion of the scat-
tering amplitude does not converge when there
are bound states, ' the calculation of electromag-
netic scattering amplitudes in which bound-state
poles may appear occupies a rather dubious posi-
tion. Qn the one hand, it is possible to write down
an expression for the scattering cross section,
based on perturbation theory, which so far has
been adequate to account for the experimental sit-
uation. ' However, the associated perturbation
amP/itudes are infrared divergent, which is un-
satisfactory if one intends to employ them in an-
other context. On the other hand, one can abandon
a perturbation approach and, instead, attempt to
construct the scattering solutions to the relativis-
tic wave equations which have been developed.
However, it has proved extremely difficult to ob-
tain useful scattering solutions to the Bethe-Sal-
peter equation in physically interesting cases, and
the Dirac and Klein-Gordon equations do not in-
corporate crossing or inelastic unitarity and, at
best, are only accurate to lowest order. Accord-
ingly, an alternative approach is desirable.

The basis for our calculation of electromagnetic
scattering amplitudes can be found in a considera-
tion of nonrelativistic potential theory. According-
ly, we wish to review here some aspects of the
Coulomb amplitude obtained from the Schrodinger
equation.

A. Coulomb Amplitude in Potential Theory

The Coulomb amplitude can be obtained in closed
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form from the solution of the Schrodinger equation

in parabolic coordinates. For a particle of mass

m and momentum p in an attractive potential, we

find

nm I'(1 —t)}) -t '"" 1
A(E z) —,

(
.

) 4, . ( ),

where )}=nm/p, t= -2p'(1 —z), E =p'/2m, and z

= cost) is the cosine of the scattering angle. 5(x)
is the Dirac 5 function. We see that A(E, z) has

Regge asymptotic behavior with only the leading

trajectory contributing and, due to the I functions,
the correct Coulomb bound-state poles. The par-
tial-wave amplitudes obtained from (1) have the

form

to the correct amplitude, the double-spectral func-
tion which can be extracted from the perturbation
series does correspond to the exact double-spec-
tral function, at least through second order in e.
Since it can be shown that each term in the per-
turbation expansion for a superposition of Yukawa

potentials maintains the correct cut structure, ' it
is plausible to assume that, even though the per-
turbation series may not converge, the double-
spectral function obtained from the perturbation
expansion may be correct to all orders. At any

rate, the result (6) for the Coulomb amplitude anti-
cipates our approach to the construction of rela-
tivistic electromagnetic scattering amplitudes
when there are bound states.

1
a, (E) = —e'")sin5, , (2)

B. Self-Consistent Electromagnetic

Scattering Amplitudes

(2m~)' " dk
Im, A(,)(E, z) =

2p 0 k -p —ie vK
(5)

This integral (5) exists and has a branch cut for
F real and &0. The discontinuity across this cut
is just

Imz Im, A&»(E, z}=I,' ()E),zz) = z)}(2mn/t) t)(E}t)(z —1) .
(6)

The expression above is identical to the second-
order term in the expansion of the exact double-
spectral function obtained from (1). Thus, al-
though the perturbation series does not converge

where 6, = argI'(I+ 1 —i)}), so that (1) satisfies elas-
tic unitarity for all E &0.

If we now consider the perturbation series for
the Coulomb amplitude, we can write

A(E, .) =A„,(E,.)+A„,{E,z)+ ~ ~ ~,

where A~»(E, z) = 2mn/t and-

(2mn)' " dk 1 y' —z +&K
A(z)(Ey z) =

z z, , ln4' 0 k —p —ie MK y —z —vA'

(4)

In Eq. (4), K= (y' —z)' —(y' —1)', y= (k'+p')/2kp,
and we have performed the angular integrations
which appear in the second Born term. We note
the following: (1) The first Born term is identi-
cal to the lowest-order term (in n} of the expan-
sion' of the exact Coulomb amplitude. (2) The sec-
ond Born term is infinite, as the integral (4) does
not exist. However, if we assume that (4) has
been suitably regularized' (it is similar in form
to integrals which appear in the relativistic treat-
ment [cf. Eq. (14)]I, then we find that, considered
as a function of z, (4) has a branch cut along the
positive real axis. The discontinuity across this
cut for z &1 is given by

The results of Sec. IIA for the Coulomb ampli-
tude suggest that, while the perturbation series
does not converge to the correct amplitude when

there are bound states, the double-spectral func-
tions which can be extracted from it do corre-
spond to the exact double-spectral functions, at
least through second order. We assume, here,
that this result is also valid in the relativistic
case. However, ze also note that in S-matrix
theory the double-spectral functions are supposed
to be completely determined by unitarity (elastic
plus inelastic) and crossing, which yields a singu-
lar, inhomogeneous, nonlinear integral equation
for the elastic scattering amplitude or, equivalent-
ly, the elastic double-spectral functions. Our pro-
cedure then is as follows. Through second order,
at least, the contribution of the inhomogeneous
terms to the double-spectral functions (inelastic
unitarity) can be calculated exactly by the usual
procedure. We note that the amplitudes which

appear in these terms have no bound states so that
perturbation theory is applicable. In order to eval-
uate the elastic-unitarity contribution, we assume
an initial trial form for the elastic amplitude
which can be inserted into the unitarity integral
to complete the specification of the double-spec-
tral functions. (Note that the Born term cannot be
used for this purpose as it would cause the inte-
gral to diverge. ) The calculated double-spectral
functions are then used as a basis for the con-
struction of a second trail amplitude which can be
reinserted into the unitarity integral to give a new
estimate of the double-spectral functions. The
process may be repeated until self-consistency
is achieved and the calculated double-spectral
functions remain unch"-nged, through terms of the
desired order, upon iteration. For elastic scat-
tering through second order, it is not necessary
to iterate; our initial trial amplitude reproduces
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itself in the unitarity integral. This amplitude is
obtained from the Born approximation by replac-
ing the photon pole term by a function which has a
form similar to that of the Coulomb amplitude (1).
This choice can be motivated by the observation
that the correct relativistic scattering amplitude
must reduce to the Coulomb amplitude in the low-
energy limit, if we are to believe nonrelativistic
quantum mechanics at all. We will find that the
amplitude obtained in this manner is analytic,
crossing-symmetric, and cutoff -independent, that
it has the correct second-order double-spectral
functions and the usual Born term in lowest order.
In addition, the amplitude displays Regge asymp-
totic behavior and the bound-state Regge poles.
The position and residue of these poles are deter-
mined by self-consistency, so that the calculation
is essentially a semibootstrap; the only poles
whose position and residue are inserted a Priori
are those associated with the external particles.
We feel that our procedure offers a simple, prac-
tical means to obtaining electromagnetic scatter-
ing amplitudes for processes which have bound
states and for which the usual formulation of per-
turbation theory is inappropriate.

III. SPIN-0-SPIN-0 ELECTROMAGNETIC
SCATTERING

We consider here the elastic scattering of two
spinless particles which only interact electromag-
netically, with kinematics as in Fig. 1. Particles
1 and 3 have mass m and particles 2 and 4 have
mass )L(. . For spin-0 scattering there is a single
Lorentz-invariant scalar amplitude A(s, t, u),
where s=(k, +k, )', t =(k, +k,)', and u=(k, +k, )'
are the usual Mandelstam variables, and s+t+u
= 2m'+ 2)U, '. A complete set of unitarity diagrams
for this amplitude, through second order in n, is
given in Figs. 2 and 3. We see that, for nonidenti-
cal particles through second order, t-channel uni-
tarity accounts for the inelastic contribution to the
double-spectral functions and the u channel exhib-
its only the elastic component. ' We can now con-
sider the contribution of each diagram to the elas-

(b)

+ Q +

(c) (4)

FIG. 2. t-channel unitarity through second order intro-
duces the following contributions to the imaginary part
of the scattering amplitude: (a) one-photon exchange,
(b) two-boson exchange (mass m), (c) two-boson exchange
(mass p), and (d) two-photon exchange.

tic scattering amplitude.
Diagram 2(a) represents the one-photon-ex-

change contribution, which is just the Born term.
It can be written

where the factor —,'(s —u) is due to the spin of the
exchanged photon. We have found that the form
of the bound-state Regge trajectory which appears
in our final amplitude, while independent of the
spins of the external particles, does depend on
the vector character of the photon. Accordingly,
we will include the photon spin at each stage of
our calculation. The Born term, of course, does
not contribute to the double-spectral functions. It
is, however, necessary to the construction of our
initial trial amplitude.

Diagrams 2(b) and 2(c) only represent vacuum-
polarization and vertex corrections to the Born
term, they do not contribute to the double-spec-
tral functions. These unitarity diagrams are es-
sentially equivalent to the four Feynman diagrams
of Fig. 4 plus renormalization. Although the Feyn-
man integrals exhibit an infrared divergence, the
unitariy diagrams 2(a) and 2(b) can be evaluated
without the introduction of a cutoff if the photon
pole terms are replaced by the appropriate gen-
eralization of the Coulomb amplitude (1). This
substitution, which will be discussed in detail
when we consider the elastic-unitarity diagram,
Fig. 3, allows us to write the contribution of dia-
grams 2(b) and 2(c) to the imaginary part of the
scattering amplitude as follows:

Im, A(s, t, u) = —,'(s —u) lm, ((4vo(t)IF(t) —Ijj, (8)

where F(t) = I+@(t,m')+y(t, g'). y(t, M') satisfies
a dispersion relation of the form

FIG. 1. Diagram of the scattering process. Unbroken
line indicates mass m; dashed line, mass p, . FIG. 3. u -channel elastic unitarity.
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(a)

/
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FIG. 5. Two-photon annihilation amplitude {t channel).

(c)

FIG. 4. Feynman diagrams which contribute to the
spin-0 electromagnetic form factor. Diagrams (a) and

(c) represent vacuum-polarization contributions; dia-
grams (b) and (d) are vertex corrections.

where

Imy(t, M') = (o'/q„W, )[~(2M' —t)g(2) —',q„ /t] . —

(10)

In Eq. {10),q„=-,'(t-4M')' ', W, =2E, =Mt, and

g(z) is the digamma function. Note that a sub-
traction is necessary in the definition of I'(t),
since the electric charge remains a parameter
in dispersion theory as well as in perturbation
theory. The net result of the inclusion of dia-
grams 2(b) and 2(c) is that the Born term, Fig.
2(a), is multiplied by the spin-0 electromagnetic
form factor, I'(t).

A. Double-Spectral Functions

Diagram 2(d} gives the first nonvanishing t
channel contributions to the double-spectral func-
tions. It can be written in the form

Im, A(s, t, u), = —,'p, Q dQ'R(K")R (K'), (ll)
SPIIIS

where p2 is the two-photon phase-space factor,
the sum is over the polarizations of the intermed-
iate-state photons, and R(K) is the two-photon
annihilation amplitude in the pole approximation.
%'ith kinematics as in Fig. 5,

R(K') =M(s')(k, e,)(k, e, )

+M(u')(k, c,)(k, e,}+2vo(e, e,), (12)

where

M(s'} = 4vo/(s' -m') = 4vu/(-2k, ~ k,),
M(u') =4m+/(u' -m') =4vn/(-2k, k, ) .

[R(K") can be obtained from R{K') by the substitu-
tions I —4 and 3 —2.] We note that the amplitude
(12) is symmetric with respect to the exchange 5—6 as required by Bose statistics, and is gauge-
invariant since k, ~ e, =k, ~ e, =0. Using (12) we can
explicitly perform the spin sums and angular in-
tegrations indicated in (11). We find that

idQ' , -8 '
(1)

-8m o.'

(14)

I,(t) = n' dQ' = 4po.'.
In (14), 2q„W„=J[u -(m+ p)'][u —(m —u)']j'~' and

U„=q„/E, . Qo{&) is a Legendre function of the sec-
ond kind of degree zero. We see from (14) that
only f,(s, t, «) has a branch cut in u. The cut in u
of fo(s, t, u) may be taken along the real u axis and
extends from (m+ u)' to infinity. We find that the
contribution of diagram 2(d) to the double-spectral
functions can be written'

p, „(s,t, u), = p„(u, t, s),
2 2

1 8a n=-, (u -m —p. )
t(2q„W„)

& 8(t) 8(u —(m+ u)'). (15}

The remaining parts of the second-order double-
spectral functions are due to the u-channel elastic-
unitarity diagram Fig. 3. We can write this term
in the form

Im„A(s, t, u) = —,"p, (u) dQ'A (s', t', u)A ~(s", t",u),

(15)

where p, (u) is the two-body phase-space factor
for the intermediate state. With our normaliza-
tion,

p, (u) =[q„/(2v)'W„]8(u —(m+ p)'). (17)

If we attempt to determine the second-order con-

Im, A(s, t, u),

= 8(t)[-,'(u -m' —p')'f, (s, t, u)+ ,'(t —2—m')1,(t)

+ k(t —2 p')I (I) + -'~ (&)] + (& —«),

(13)
where 8(z) is the unit Heaviside function and

dQ'
I (S0~ t~ «) o

(
~ 2)( l~ 2)

4pn' m'+ p,
' -u+ 2q„W„

t(2q„W„) m'+ u' —u —2q„W„'
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tribution to the imaginary part of the elastic am-
plitude by inserting the Born term (I) into the
right-hand side of Eq. (16), the result will be in-
frared divergent, as is well known from perturba-
tion theory. In order to circumvent this difficulty,
we will, instead, use an initial trial amplitude,
Ap(s t lt) which can be obtained from the Born
term by the substitution

4n n -4nn I'(1 —iq(u)) t-
4q' r(1+ iq(u)) 4q'

n 5(-t/4q„')
( )

2q„W„q(u) 2nip, (u)

fp(p t 8) has the same form' as the Coulomb am-
plitude (1) obtained from the Schr'odinger equation,
with the substitution of the correct relativistic two-
body kinematical factors. The trajectory function
g(M) is to be determined by the requirement of
self-consistency. This substitution (18) will ad-
mit a process of iteration since fp(s, t, u) has a
well-defined partial-wave expansion, and we find
that the amplitude which results can be made self-
consistent. With the amplitude Ao(s, t, u) defined
above, the integral (16) can be evaluated explicit-
ly. We obtain

Im„A(s, t, u) = 8(u —(m+ p)') , (u —-m' —p ) Im„[AO(s, t, u)+-, (u —m' —p.')f, (s, t, u)+ ,f,(s, t , —u)]. .

q„W„q u)

(19)

In Eq. (19), Ao(s, t, u) is our original trial amplitude and

f,(s, t, u) =4nn(u -m' —t
')-'~ r(1 —2'g}]'[P,.„(-z„)—1],

f,(s, t, u) =4nnq„'(u -m' —p, ') '~ I'(1 —iq)]z[iqP, , ( z„)],-
(20)

where P, (z) is a Legendre function of the first
kind,

I
r(1 —iq) ]' = n q( )/usi hnnq(u),

A(s, t, u) = 2F(s, t, u)+ F(u, t, s),
where

F(s, t, u} = F,(s, t, u) +-, (u -m' —p')f, (s, t, u)

(23)

and z„= 1+ t/2q„'. We note the following: (1) If
q(u) = n(u -m' —p')/2q„W„, our original trial am-
plitude is reproduced in Eq. (19). (2) For that
value of q(u), the remaining terms in (19) are of
order n', and (3) Eq. (19) does not exhibit any
spurious poles. The elastic-unitarity contribution
to the double-spectral functions can be obtained
relatively simply from Eq. (19) and the result will
be independent of the actual form of q(u) through
terms of second order in n. We find

p„,(s, t, u)„„,.„=p,„(s,t, u)...
p„,(s, t, u)„„„,= 0 .

The complete second-order double-spectral
functions associated with the unitarity diagrams
Figs. 2(d) and 3 are given by the sum of (15) and
(21), so that

p,„(s,t, u) = 2p„(u, t, s) = 2p,„(s,t, u),

where p, „(s,t, u), is defined by (15).

(22)

B. Self-Consistent Scattering Amplitude

With the information presented above, it is pos-
sible to construct an amplitude which has the dou-
ble-spectral-function terms indicated in Eq. (22)
and which also has the appropriate vacuum-polari-
zation and vertex corrections. Employing (19) and
(21), with (8), we find

and

+ 4 j p(Ss t) l4) (24)

F,(s, t, u) = -,'(s u}I'(t)f,(s, t,-u} . (25)

Thus, F,(s, t, u) is just our original trial ampli-
tude multiplied by the form factor I'(t). A(s, t, u)
defined by (23) is cutoff-independent. It can be
shown explicitly (cf. Ref. 1) that the 5-function
terms in (23) reduce to the appropriate matrix
elements, for each channel, of -iI, where I is
the identity operator, so that the S matrix corre-
sponding to the transition amplitude (23) is analy-
tic. By construction (23) exhibits the proper dou-
ble-spectral function terms. If we set

q(u) = o'(u -m' —p.')//2q„R'„, (26)

then (23) will be self-consistent. This is proved
by observing that, for this value of q(u), Ao(s, t, u)
reproduces itself in the elastic-unitarity integral
(16}. Since the additional terms in (23) are all of
order n, their introduction into the unitarity in-
tegral can have no effect on the second-order dou-
ble-spectral functions. Thus, the reintroduction
of (23) into the elastic-unitarity integral will pro-
duce no additional second-order contributions to
the double-spectral functions. It can also be veri-
fied that (23) has a well-defined partial-wave ex-
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pansion so that it will admit a process of iteration.
Moreover, A(s, t, u) displays Regge asymptotic
behavior and, with the trajectory function (26),
the correct Coulomb bound-state Regge poles, in-
cluding reduced mass and recoil effects. ' In addi-
tion, (23) reduces to the usual Born term in low-
est order. We also find that, since (u —m' —p')/
2W„ is equal to the reduced mass at threshold,
(23) reproduces the nonrelativistic Coulomb am-
plitude at low energy. Finally, we point out that
in addition to the unitarity cuts which we have ex-
amined, A(s, t, u) exhibits a left-hand cut which is
required by self-consistency. This cut is due to
the factor W„=~M which appears in the trajectory
function and which originates in the relativistic
two-body phase-space factor (17). For this rea-
son, it is probably an inescapable feature of rela-
tivistic scattering. We note that both the Klein-
Gordon and Dirac Coulomb scattering amplitudes
have a cut structure of this type. We conclude
that (23) represents a satisfactory electromagne-
tic scattering amplitude for two, spinless, non-
identical particles which is accurate through
terms of second order in n.

C. Identical Particles

If we consider the elastic scattering of two iden-
tical bosons of mass m, then our remarks of Secs.
III A and III B must be modified slightly. In parti-
cular, the statement of unitarity must be repre-
sented in the I, channel by the diagrams of Fig. Q.

Moreover, the u-channel unitarity diagrams are
identical to those of the t channel, with the sub-
stitution 3 —4, so that the total amplitude will be
symmetric under exchange of identical particles
as required by Bose statistics. We note that dia-
gram 6(c) will incorporate vertex corrections in
addition to elastic unitarity. Diagram 6(d) has
been included to maintain a correspondence be-
tween the scattering amplitudes for identical part-
icles and for the case m & p. In second order, this
term only contributes a vacuum-polarization cor-
rection to the form factor. We find that the am-
plitude for the scattering of identical bosons can
be obtained from the amplitude (23) by setting
m= p. and symmetrizing with respect to the ex-
change t —u, provided we replace the form fac-

l mt

FIG. 6. t-channel unitarity through second order for
identical particles. Diagram (a) is the one-photon-ex-
change contribution to the imaginary part of the ampli-
tude. (b) Two-photon exchange. (c) Elastic unitarity.
(d) Two-boson exchange (mass p).

tor I'(t) which appears in (25) by I"(t), where

I'(t) = 1+— ImI" (x)
t "

d&

x(x t)—

and

ImI" (t) = 6(t —4m')(o. /q W, )[(2m' —t) g(2) —', q„-'/t]

+ 6(t —4)i')(o./q„w, )(-—', q „ /t) . (26)

We see that I"(t) differs from I'(t) only in the ver-
tex corrections, as might be expected.

We note finally that the scattering amplitudes
for identical particles and for the case mc g are
related by means of unitarity so that in order to
obtain the higher-order corrections we must con-
sider the two processes simultaneously. The prob-
lem is rendered somewhat less intractable by the
observation that the amplitudes which appear in
the unitarity integrals need only be determined to
order (n —1) to obtain the nth-order correction to
the amplitude under consideration. Thus, pro-
vided no divergences are encountered, our pro-
cedure may be continued by iteration to higher
orders.

IV. SPIN -0-SPIN —p ELECTROMAGNETIC

SCATTERING

We should now like to indicate the results of
our procedure when one particle has spin —,'. If
we consider an elastic scattering process, with
kinematics as in Fig. 1, in which particles 1 and
3 have mass m, spin —,', particles 2 and 4 have
mass p. , spin 0, then the scattering amplitude in
the $ channel, assuming parity conservation etc. ,
can be written in the form"

T(k„k, ; k„k, ) = v(k, )[A(s, t, u) + QB(s, t, u)] u(k, ),
(29)

where Q = k, —k, . A(s, t, u) and B(s, t, u) are
Lorentz-invariant scalar amplitudes and the spin-
or normalization is that of Bjorken and Drell. "
We remark that while we have written (29) in
terms of the usual 4-component Dirac spinors,
the actual calculation employed the 2-component
formalism" in order to reduce the spinor algebra
to manageable proportions. The results were then
translated into the more familiar 4-component
form.

We wish to determine the amplitude (29) for the
process in which the particles only interact elec-
tromagnetically. Through second order in n, we
find that the amplitude can be determined self-
consistently and analytically by means of the pro-
cedure discussed in Secs. II and III, and that no
essential theoretical complications are admitted
by the introduction of spin. Accordingly, we will
only indicate the major results and proceed with
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a minimum of discussion.
The unitarity diagrams of Figs. 2 and 3 again

represent a complete set through second order,

with the understanding that particles 1 and 3 now

have spin —,'. The Born term, diagram 2(a), can
be written

T(k& , k, ) '„s„=( 4zo-. /t)v(k, )[I',{0)tr)t —(1/2m)I', (0)(s —u)]u(k, ),
where I', {t)= F,(t}+I', (t}= F,(t)+)(F,(t), and F,(t) and F,(t) are the usual charge and magnetic-moment form

factors, respectively, with F,(0) = F,(0) = 1. x= 2(g —2) is the anomalous part of the magnetic moment.

For the case in which there are only electromagnetic interactions, g= n/2s in lowest order. As before,
the only second-order effects of diagrams 2(b) and 2(c) are vacuum-polarization and vertex corrections
to the Born approximation. If we include these diagrams, we find that, in Eq. (30), I', (0) is replaced'~ by

I'(t) = I', (t)+y(t, p. ') [cf. Eqs. (9) and (10)] and I,(0) by I', (t). The properties of I', (t) and I', (t) or, equiva-

lently, F,(t} and F,(t) are discussed in many places. " We do note, however, that both F,(t) and F2(t) are
automatically cutoff-independent in our calculation by virtue of the substitution (18) for the photon pole
terms.

A. Double-Spectral Functions

The two-photon-intermediate-state contribution to t-channel unitarity [diagram 2(d)] can be evaluated

explicitly using the usual pole approximations to the two-photon annihilation amplitudes. We find that the

contribution to the imaginary part of each of the invariant amplitudes can be written

and
(31)

where

and

P q,"(s, t, u)I (s, t) u) =2m(u m')a '[t(-u+ p' m')I, (s, —t, u)+(u —s)I,(t}+(4p' —t)I,(t}]
i=o

—(m/4q ')[2m'I, (t) +I,(t)]

Q qs(s, t, u)I, (s, t, u) = -', (u m' —p')I, (-s, t, u)
i=0

+ Z r]t(u+m' —p'){u m')I, (s, t, u)+-[(u+m' — p)( u—s) —p'(4m' —t)]I,(t)
+ [(u + m' —p. ')(4 tL' —t) — (up—s)] I,(t)j .

(32)

In Eq. (32), the integrals I,.(s, t, u) are given by
(14) and a = 4[su —(m' —p.')']. From (31) and (32),
we find the following contributions to the double-
spectral functions:

p",„(s,t, u), , = p"„(u, t, s), ,
2 ~2

=q,"(s, t, u) (t) 6{u —(m+ p. )'),
t(2q„W„)

(33)
p, „(s,t, u), = -p„(M, t, s),

Sp'u
=

q(~) (s, t, u) (,e(t) 6{u —(m+ p)') .
t 2q„W'„)

In order to evaluate the u-channel unitarity con-
tribution (Fig. 3) to the double-spectral functions
in the case of spin-0-spin--, ' elastic scattering,
we employ an initial trial amplitude, To(kz,' k,.),

which is derived from the Born approximation
(30) by means of the following substitution:

4vn 4mn I'(1 —tq(u)) -t
4q„' r(1+iq{u)) 4q„'

o( 5( t/4q„')-
2q„W„q(u) 2vip, (u)

We note that fo(g, t, u) in (34) differs from the cor-
responding function in the spinless case by the
relative sign of the g-function part. This change
will maintain the proper phase relationships so
that our final expression can be identified with the
transition amplitude, and is necessitated by the
spinor factors which appear in (30). If the trial
amplitude which we thus obtain is inserted into
the elastic-unitarity integral, we find the follow-
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ing contribution to the imaginary part of each in-
variant amplitude in the u channel:

Im„A(s, t, u) = t}(u —(m+ p. )')-', {u -m' —p.')
(q„w„q(u)

Explicitly,

F,"(s, t, u) = (-I/2m)I', (t)(s —u)f, (s, t, u),

Fos(s, t, u) = I'(t)f,(s, t, u),
(4l)

and

xIm„[A,(s, t, u) -p,"(s, t, u)f, (s, t, u)]

(35)

Im~(s, t, u) = t}(u —(m+ p)')-,'(u -m' —p. ')
(q,W„»}(u)

xIm„[B,(s, t, u) —pp(s, t, u)f, (s, t, u)],
where

p,"(s, t, u) = 4m(u -m')(u+ p.
' -m')/a,

ps(s, t, u) = 2(u -m')(u+m' —y.')/r .
(36)

f,(s, t, u) is defined in Eq. (20) and z is given be-
low Eq. (32). A,{s,t, u) and B,(s, t, u) are our ori-
ginal trial amplitudes. As before, we note that
they will reproduce themselves in the unitarity in-
tegral if »}{u)= o(u -m' —p. ')/2q„W„. Apparently,
this result for the trajectory function is independ-
ent of the spin of the external particles. We also
find that Eq. (35) does not have any spurious poles.
Given the imaginary part of the scalar amplitudes
(35), it is relatively simple to extract the second-
order u -channel contributions to the double-spec-
tral functions. We find

~w, a(+ ~ M) 0
(37)

The complete second-order double-spectral func-
tions for spin-0-spin--', scattering are given by
the sum of (33) and (37), so that

p",„(s,t, u) =2p,",(u, t, s) =2p",„(s,t, u)...
ps(s, t, u) = -2ps (u, t, s) =2ps(s, t, u), »,

where pP„'s(s, t, u), is defined by (33).

(38)

A(s, t, u) = 2F"(s, t, u) + F"(u, t, s),
B(s, t, u) = 2Fs(s, t, u) —Fs(u, t, s),

where

(39)

F" s(s, t, u) = F~4 s(s, t, u) —P,"'a(s, t, u)f,(s, t, u) .

(40)

As in the spin-0 case, I'0 (s, t, u) is just the ori-
ginal trial amplitude with the form factor added.

B. Self-Consistent Scattering Amplitude

With the results of Secs. III and IVA we can
construct a second-order spin-0-spin--, ' elastic
scattering amplitude which has the double-spec-
tral-function terms of Eq. (38) and also the appro-
priate vertex corrections due to the electromag-
netic form factors. We find

where f,(s, t, u) is given by Eq. (34). The form of
the trajectory function for which the amplitude de-
fined by (39) is self-consistent is again given by
(26), so that (39) will also exhibit the correct
bound states and Regge asymptotic behavior. Fin-
ally, we note that our second-order spin-0 —spin- —,

'

electromagnetic scattering amplitude has a well-
defined Jacob-Wick expansion so that it can pro-
vide a suitable basis for further iteration.

V. DISCUSSION

By iterating unitarity using a trial amplitude
which is similar in form to that obtained from the
solution of the Schrodinger equation with a Cou-
lomb potential and by imposing the requirement
of self-consistency on the double-spectral func-
tions which result, we have obtained analytic sec-
ond-order electromagnetic scattering amplitudes
which exhibit most of the features expected of a
"good" scattering amplitude. Moreover, our pro-
cedure allows the calculation of electromagnetic
scattering amplitudes which have bound-state
poles, and for which the usual formulation of per-
turbation theory is inappropriate. It is, then, of
some interest to compare our results with cer-
tain of the approximations which have previously
been developed.

In order to obtain electromagnetic scattering
amplitudes for processes in which bound states
may appear, the basic approach has been to at-
tempt to sum certain subclasses of Feynman dia-
grams to obtain a convenient analytic form. " Per-
haps the simplest example of this procedure is
found in the relativistic wave equations. It has
long been known, for example, that both the Klein-
Gordon and Dirac equations with a Coulomb poten-
tial are equivalent to an approximate sum of a
particular subclass of Feynman diagrams. " The
scattering amplitudes derived from these equa-
tions do have the correct bound-state poles and
Regge asymptotic behavior. However, this gain
is somewhat offset by the fact that crossing sym-
metry is not maintained. If we compare the Klein-
Gordon or Dirac Coulomb amplitude with that part
of our amplitude [Eq. (23) or (39)] which has the
appropriate double-spectral function (there is only
one double-spectral function in potential theory)
and neglect the vacuum-polarization and vertex
corrections and the additional factors associated
with the photon spin, we find that there is agree-
ment only in the leading term. This is partly due
to the fact that the Coulomb potential alone does
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not exac&ly represent the sum of the Feynman dia-
grams considered. The remaining discrepancy
may be ascribed to the fact that the scattering am-
plitudes obtained from the relativistic wave equa-
tions satisfy elastic unitarity for all values of the

energy (in one channel), whereas the actual physi-
cal amplitudes do not satisfy elastic unitarity for
any value of F. This is, of course, due to the
possibility of intermediate-state photons which
cause elastic and inelastic threshold to overlap.
Similar remarks can also be applied to the Bethe-
Salpeter equation. Although the diagrams which
are considered may be summed exactly and the
equation has the additional virtue of preserving
the correct two-particle kinematics, the result
is considerably more difficult to solve. In fact,
we are aware of no satisfactory scattering solu-
tions to the Bethe-Salpeter equation when the ex-
changed particle is a massless vector boson, so
that direct comparison with our amplitude is diffi-
cult except in the correspondence limit. However,
even if these solutions were available, there
would remain the difficulties with unitarity and

crossing symmetry, and, while a modification of
the Bethe-Salpeter equation has been proposed"
which includes crossing symmetry it has so far
proved intractable. " Finally, we can consider the
relativistic generalizations of the eikonal approxi-
mation. If we compare the leading term of our
amplitude (23) with the corresponding expression
obtained in an eikonal approximation, ' we find
that the asymptotic behavior is essentially the
same in each case. At first sight this result may
be surprising. Our amplitude is based on the form
of the Coulomb amplitude, which should be a good
approximation at low energy, while the eikonal
form is essentially a high-energy result. How-

ever, we note that in the eikonal expansion there
is considerable cancellation between subsidiary
terms, so that the asymptotic behavior of the am-
plitude is dominated by the leading Regge trajec-
tory, and in the Coulomb case the leading Regge
pole accounts for the complete amplitude.

We have, thus, exhibited a relatively simple
procedure for dealing with scattering processes
in which bound states may appear. The amplitude
which results is analytic, cutoff-independent, and

crossing-symmetric, reduces to the nonrelativis-
tic Coulomb amplitude in the low-energy limit
and has the correct double-spectral-function
terms through second order in o.. Moreover,
the amplitude displays Regge asymptotic behav-
ior and the bound-state Regge poles. Self-consis-
tency requires that the poles appear at the correct
position and with the proper residue and that the
amplitude possesses a well-defined partial-wave
expansion. In particular, the spin-0-spin-0 and
spin-0-spin- —,

' amplitudes presented above offer a
convenient theoretical basis from which further
progress can be made. It should be possible to
extend this work to higher order in n and, at
least, determine the trajectory functions which
result from the requirement of self-consistency.
(Note that effectively only the double-spectral
functions need be ca.lculated for this purpose. )

These can be compared with the results of the per-
turbation calculations of the bound-state energy
spectrum to give a further check on our assump-
tions. At any rate, we feel that our procedure af-
fords a convenient and accurate means to the cal-
culation of electromagnetic scattering amplitudes
when there are bound states, and which may also
prove useful in the determination of the higher-
order corrections to the bound-state energies.
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The Lagrangian density for a system of the pseudoscalar-meson nonet, the vector-meson
nonet, and the spin —2-baryon octet is obtained by the SU(3) extension of the nonlinear La-
grangian density for pions, p mesons, and nucleons. The nonpolynomial Lagrangian density
for the pseudoscalar mesons is derived by a general procedure, which is applicable to all
models and includes a rigorous treatment of the mass term. The effect of the SU(3)-symme-
try breaking is taken into account by introducing the mass matrix, and the broken divergence
conditions for the vector and axial-vector currents are given in an explicit form.

l. lNTRODUCTlON

The nonlinear couplings of pions, p mesons, and
nucleons were derived in two earlier papers'' by
imposing suitable divergence conditions on the
source functions in the &- and p-field equations.
We shall now conclude our investigation by extend-
ing the results to the pseudoscalar-meson nonet
P, the vector-meson nonet V„, and the spin-&-
baryon octet B.

The extensive literature on the SU(3) extension
of nonlinear Lagrangian densities has been re-
viewed, for instance, by Weinberg' and by Gasi-
orowicz and Geffen, ' where the main complication
arises from the nonpolynomial nature of the pion
Lagrangian density. For, in the SU(3) extension
the role of the 2x2 matrix

S I 7

with i =1, 2, 3, must be replaced by the 3x3 ma-
trix

with i=0, 1, 2, ~ ~ ~, 8, where the A; are Gell-
Mann's SU(3) matrices. ' This transition is not
entirely straightforward owing to the fact that
while (r,.&;)' is a multiple of the unit matrix,
(~;P;)' does not possess this simple property.
Because of the mathematical difficulties, the SU(3)
extension of the nonlinear pion Lagrangian density

has so far been given only for specific models,
and the treatment of the pseudoscalar-meson
mass term is especially inadequate in the exist-
ing literature. We shall, however, describe a
general scheme that will enable us to carry out
the SU(3) extensions of all pion models.

As we shall see, the divergence conditions that
apply to the p-&-N system can be maintained for
the V P Bsystem as -lon-g as the SU(3) symmetry
is preserved, but they are no longer valid when
this symmetry is broken. We shall also investi-
gate the effect of the SU(3)-symmetry breaking on
the divergence conditions, and for this purpose
we shall follow the symmetry-breaking mecha-
nism of an earlier paper, ' which is not only re-
markably simple but also gives the symmetry-
breaking terms explicitly rather than merely
specifying their transformation properties.

We shall generally follow the same notation as
in Refs. 1 and 2 with appropriate extensions for
the SU(3) multiplets. The pseudoscalar-meson
nonet, the vector-meson nonet, and the baryon
octet will be denoted either by the usual 3&3 ma-
trices P, V„, and B or by the nine-component
vectors P;, V„;, and B;, the relationship be-
tween the matrix and component forms being given
by

P = X;P;I/W2, V„=A; V„ i/v 2, B = A;B(/v 2,
(1.1)


