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In a previous paper, to which we shall refer as I, we demonstrated that a cluster-decompo-
sition technique similar to that used in statistical mechanics can be applied to the study of
high-energy scattering processes. Specifically, we examined in detail the ladder diagrams

in a cp3 field theory. In the analysis of I we focused attention on the cluster-decomposition
properties of the differential multiparticle-production cross sections expressed as functions

of the "momentum-transfer variables, "k&, in terms of ladder diagrams these variables
correspond to the momenta carried by the sides of the ladders. Although the k-variable
cluster decomposition arises naturally in theoretical analysis, as we emphasized in I, a
phenomenologically potentially more useful approach would apply a cluster decomposition in

terms of the actual final-state particle momenta, q,. ; these variables, of course, corre-
spond to the momenta carried by the rungs of the ladder diagrams in the simple model. In

the present paper, we investigate the validity of such a q-variable cluster decomposition in

y~ field theories. We explore the relationship between the k —and q-variable approaches and

discuss and clarify a number of subtleties involved in the introduction of q-variable clusters.
A feature that distinguishes the q-variable analysis from the earlier k-variable analysis is
that a complete cluster decomposition —that is, a decomposition in terms of all components

of the momenta q,. —of the differential exclusive-production cross sections is not possible
even in the simple model in which these cross sections are calculated from ladder diagrams
in a y3 field theory in three space and ore time dimensions. We are thus led to consider the
q-variable cluster decomposition of the partially differential cross sections obtained by in-
tegrating over the transverse-momentum components, q; . The resulting cluster decompo-
sition, essentially in terms of the rapidities corresponding to the longitudinal components
of the q;, provides a direct and intuitive framework for theoretical calculations of inclusive
multiparticle spectra and avoids the ambiguities of "particle ordering" which would have

hindered application of the original k -variable clusters to phenomenological analysis. We

illustrate the utility of the cluster approach in two brief model calculations of inclusive par-
ticle spectra.

I. INTRODUCTION

Considerable theoretical effort in the study of
strong interactions at high energy is currently de-
voted to obtaining a better understanding of many-
particle production processes. On a qualitative
level, the gas analogy' and the distinctions be-
tween exclusive and inclusive reactions have pro-
vided a useful conceptual language in which to dis-
cuss these events. '' Recently, more quantitative
results concerning multiparticle spectra and cor-
relations have been derived and presently await
confrontation with experiment.

In a previous puhlication, ' to which we shall
henceforth refer as I, we suggested an approach
which relates all these developments to a syste-
matic framework for analyzing many-particle re-
actions. Based on the cluster-decomposition tech-
niques used in statistical mechanics, ' this approach
appears capable both of supporting the qualitative
analogies and of providing a direct means for cal-
culating multiparticle spectra, correlations, and

other quantitative features of these processes. ''
Hence, it is clearly of interest to continue the
investigation of this method.

In terms of the general production process in-
dicated schematically in Fig. 1, the analysis in
I centered on the cluster-decomposition properties
of the differential exclusive cross sections in the
momentum-transfer variables, which are labeled

P,. in the figure. %'hile such properties prove im-
portant for theoretical analysis of Feynman dia-
grams, as we emphasized in I, for phenomenologi-
cal applications cluster-decomposition properties
in the actual final-state momenta- labeled q,. in
the figure —would be more useful. Unfortunately,
the relation between the k-variable and q-variable
clusters is not immediately apparent. However,
it is the aim of this study to establish that a q-
variable cluster decomposition is indeed valid for
a certain class of Feynman diagrams in a y' the-
ory and to illustrate further the techniques by
which the cluster decomposition can be applied
to the phenomenological analysis of multiparticle
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Finally, in Sec. V we comment on the extension
of our results to a q' theory in (3+ 1) dimensions
and briefly on the general applicability of a q-
variable cluster decomposition.

ki kp kn+i II. THE LADDER MODEL FOR 0 (s)

Pb

FIG. 1. The multiperipheral amplitude for the pro-
duction process 2 —n + 2.

production processes. For these purposes we
have divided the investigation into two articles;
the first reports a detailed examination in a sim-
ple field-theoretical model of the existence, the
properties, and the application of q-variable clus-
ters, whereas the second provides a general,
model-independent framework for the utilization
of cluster techniques.

In choosing a specific model for analysis in the
present article, we are guided by the motivations
and results of I, which suggest that simple ladder
diagrams in a (1+ 1)-dimensional field theory pro-
vide an excellent indication of the cluster-decom-
position properties —in terms of the 0 variables,
in any case —exhibited by more general classes
of diagrams and more realistic field theories.
Thus to examine the possibility of a q-variable
cluster expansion, we shall begin by discussing
in Sec. II various properties of production cross
sections derived from these ladder diagrams ~

In Sec ~ III we establish the validity of a q-vari-
able cluster decomposition for these cross sec-
tions and derive the general expression for the
correlated part of a multiparticle spectrum in
terms of the cluster functions. In addition, we
calculate the explicit form of the first few cluster
functions in the "nearest-neighbor approximation"
to the ladder model.

Section IV contains calculations of two different
inclusive spectra by both cluster and exact tech-
niques; the agreement between the two methods
serves as a specific verification of the cluster
approach.

1 1(x'"'(s) =-o,„„„(s)=——,I A'"'(s) .
2s nt (2.1)

Here the function ImA'i"'(s) is obtained by sum-
ming over the imaginary parts of the n! ladder
diagrams corresponding to different possible
orderings of q„.. . , q„. This summation over
permutations is necessary to guarantee the re-
quired symmetry of the differential inelastic cross
sections. Our investigation will consider poten-
tial cluster-decomposition properties in the vari-
ables q,. of these differential exclusive cross sec-
tions,

d" (e„,e„) ).dq dq

q„

We shall integrate over the momenta p,' and p,',
thus treating the corresponding particles as un-
observed in an inclusive sense.

In the conventions of I, the absorptive part of
Ai"'(s) (the diagram corresponding to the labeling
of the q,. as in Fig. 2) can be written as'

In Fig. 2 we summarize our conventions regard-
ing y' ladder diagrams. The incident particles,
labeled a and b, have masses m, and nz, , respec-
tively, whereas the masses of all exchanged and
produced particles are taken to be p. . Notice that
we have defined the nth-order amplitude, A" (s),
as that ladder having a discontinuity corresponding
to a production process of the form 2-2+ n. This
somewhat unconventional definition will simplify
later labeling problems Th. e amplitude A'"'(s)
will correspond to that particular Feynman dia-
gram in which the momenta are ordered naturally,
that is, in the sequence q„q„.. . , q„. Since we
wish to examine the case in which the q,. corre-
spond to momenta of indistinguishable physical
particles, we shall be concerned primarily with
the partial inelastic cross sections, given by

(n) {5) = p i( q it q ij ~ - qa
'

I 2

ki k2 kn+i ki

FIG. 2. The general n-rung ladder amplitude studied
in this paper.

FIG. 3. The elastic scattering diagram correspond-
ing to ~~0) (s).
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2 / n d2 2 I'

ImA'"'(s) =(g')"" ' (2v)5(p' —i')g ', (2~)5(q,.' —q') ', (2v)5(p, —q')
(2v)' ', , (2v}' ' (2v)'

(2.2)

where the 4,.'s are determined in terms of p„p„p,', p,' and the q's as indicated in Fig. 2. The equation

may be transformed into an expression in terms of the variables'
—qO+ q3

by using the results that

d'q, . = —,dq',. dq, ,

and

d'q, .5(q,.'- p,') =
q; i

dq.
2

n n n

~a Pb pa Pb qi Pa ~b Pa Pb qi ~ Pa + Pb Pa Pb
i=1 i= 1 i=1

Hence, if we write the result in the center-of-mass frame in which

Pa +Pb ~S Pa +Pb ~

we have

ImA'"'(. ) =,„„,,„;, ,
' lI,' 5" ~s - p."- P - Z q; &' ' ~s - p.'- - P

'- - Z q-; II, ,

where again we leave implicit the dependence of the k,. on the independent variables.
In (2.3) we have also left implicit the mass-shell restrictions on the dependent variables

(2.3)

P.' =v'~p; p~ = p ~p~ (2.4)

In the high-energy limit, the exact result of (2.3) can be simplified by ignoring p," and p,' in the functions
and 5 ', respectively, thereby "linearizing" these 5 functions. This is a well-known approximation.

That it is also a valid one can be indicated most simply by considering the diagram corresponding to Ao'(s)
and shown in Fig. 3. The reader can see that if p,"becomes small (and hence p.'- becomes large) then mo-
mentum conservation forces k,' =p,' —p," to become large. At the same time, p,' is large and p, =m, 'As
is small, hence k-, = p; —p.'- also becomes large. Thus the product 4,'0-, is forced to be far off the mass
shell and the contribution to the amplitude from this region damps out rapidly at large s. With this simpli-
fication we may use the 5' function to do the p," integration and the 5 function to do the pb' integration.
At the same time we may make the replacements

n

p."= v s —g q,'. ,

p,' =vs —Qq-,. (2.5)

n

= v s —Q p.'/q', .

everywhere in (2.3). Hence we obtain

(2.6)

(2.7)

i=1

2)II+2 n dq+ n+1
A'"'( }= „„

i=1 i=1

Notice that to be consistent with the mass-shell restrictions (2.4) and the solutions given by (2.5) for the
linearized 6 functions, we must substitute

2 2

and p,"=
v s -Qq', vs —gq,
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(2 6)

m=1

and the plus components as

in the integrand of (2.6). To treat our approximations consistently in the denominator factors I/(k, .' —(1')',
we shall write the minus components of the k,. in the form

i -1 2 2 i-1
ma Jtj,Pr- q- a

i Q Q j / S n q+
1=1 VS Qq~ )=1

n
n 2 2 n

(... -=(,, p, +gq, .
=-"'" + „" + gq,'.

&s —g y, '/q'.
(2.9)

Using these expressions to write out the denominators and introducing the dimensionless constant A

=g'/4vp', we obtain

yn+1 n d +

ImA'"'(s) —=2'' g,' ()(vs —gq,')t((v s —gq, . )[Ima'" (q, , ~, q„)].
S i=1 qi

Here,

S( 4)n+1 n+1

Ima (qiq 1 qn) rr „(),
v s —gq', Ws —gq,

i=1 i=1

(2.10)

(2.11)

where

d,.(q) -=(O', (:, —(1')' =
i-1

n

Ws —g q', =i )m=1

r
fPl

Q

l v

m=1

(2.12)

This result could also have been obtained directly from the full expression for A„„(s)given in I in terms
of the k variables simply by taking the imaginary part; however, since we wish to emphasize the q-vari-
able approach here, clarity dictates that we derive the expression directly in terms of the q's. %e shall
later discuss the relation between the k-variable clusters and those in terms of the q variables.

Much of the remainder of our analysis hinges on several properties of Ima("'(s); hence, we shall study
this function in detail. The first essential attribute of Ima(")(q,.) is factorization, which from the results
of I we know to be crucial for the existence of a cluster decomposition; for"

v(s & (q, , . . . , q,') &- (q,'„, . . . , q')» (q' „,. . . , q„') & (1'/v s,
a careful analysis establishes that Ima(")(s) becomes the product of three functions,

Ima'"'(qi, . . . , q„) = j'i" (qi, . . . , qi)j2 "(qi+» q )j(n" '(q +i q.)+o((qi/q ) (q /q. ))

(2.12)

(2.14)

where in the expression O(((q)/q I, ((q /q„)) the terms q„q, and qreprese tngeneric elements of the sets
ql Q i qi 1 ~, q, and q „,~ ~ ~, qn, respective 1 y . The explicit forms of the three functions are

-(r ) (ql y
~ ~ ~

-2

S / 4hl ~ ~ (
Ala I

v s —Qq,', =1 v s —gq,' gq,'
g=1 j=l j 1

-2

j=l 1=2

( ~
+ )-2 inn

vs ql ~l

(2.15a)

m
-2

f' "(q. . .q.)= (n') ' ' g q,')
j = 1+2 g q,')

j = 1+2

-2

2 2 -2
+ i-2

(q ) + ~ ~ ~ +— (2.15b)
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and

f'," '(q.„, , q„) = (p')"
vs — Q q,

1=m+1

(q.„) '
n

Ws — g q,
j = m+ 1

&n &n-1

-2

X /I ~ ~ ~ ~ ~ ~l j / n m+2(::,: ™'-...- —.
qmq 2

j =m+1 j= m+1

~ ~ o g,

xl
P'Pl t, P
vs

j = m+ 1 j= m+1
q;.

(2.15c)

To obtain these results we have used several simplifications which follow from the large differences in
magnitude among the q, First, in the denominators d, to d, in Ima„we have ignored

2

Pi =mo /V s and P)I
)t s —g g'/q, '

relative to the (large} momenta q,', . . . , q', . In the case of p', , this approximation is clear; for p,", we
know it is also valid because if this momentum becomes large —that is, p,"» p'/y s —our previous argu-
ments show that the amplitude is damped. Similarly, for the denominators d „to d„we have ignored

2

p, =m, '/v s and p,'

vs —gq,'

Further, in the expressions d„, to d we have ignored all of p;, P,', P„and P," for the reasons indicated.
Finally, we remark that Ima'"'(s) reduces to the f',"' in the appropriate regions: That is,

2

Ima'"'(q„. . . , q„) — f',"'(q„.. . , q„)+0
w span

when

Ws & q,', . . . , q„' » g'/v s;
2 +

Ima'"'(q„. . . , q„) —f',"'(q„.. . , q„) + 0

(2.16a,)

(2.16b)

when

v s» q,', . . . , q„' » p.'/v s;
and

2

q '"')q„,q.):jl"'(q„. , q.) o( -"
VS/;

when

(2.16c}

v s & q, , . . . , q„» p. '/v s .

Hence, the factorization property (2.1a) may also be written as

Ima~") (q„.. . , q„)—(Ima") (q„.. . , q, }i v s & q,', . . . , q', » p.'/v s }
x(lma' "(q„„.. . , q ) i

v s»q'„„.. . , q' » p'/v s,}
x(lma'" '(q „,. . . , q„)ivs&q „,. . . , q-„»p'/vs}. (2.14')
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Returning to the factorization property in the form (2.14), we observe that the three functions f„ f 2 and

f3 are rel ated to the functions f~, 5, and f~ introduced in I to describe Ieft fr agmentati on, pioniz ation, and

right fragmentation events, respectively. Before we establish the exact form of those relations, however,
we wish to clarify two points.

First, let us recall the definitions we use for the three kinematic regions mentioned above. A particle is
a left fragment —or, a fragment of particle a —if its momentum satisfies (p,'&) q',. &qp,', where 3I is a fixed
constant, much less than unity and s independent. Similarly, a particle is a right fragment —or, a frag-
ment of particle b —if its momentum obeys (p, o) q,. &3I p, ; in terms of plus components, a right fragment
is defined by

where again 3I'«I and is s-independent. Finally, pionization particles are defined by qp,
' & q,'. & p'p,'/s3I'.

In the center-of-mass system, we may replace p, and p,
' by v s everywhere in the above equations.

Second, notice the symmetry between f„expressed as a function of q', and f, as a function of q . This
symmetry underlies the result, stated in I, that in this simple model left fragmentation in terms of q is
the same as right fragmentation in terms of q . Hence, if we wish to isolate the fragmentation region for
separate analysis, we do not have to study both f, and f„as their properties —in terms of the appropriate
variables —are identical. For purposes of comparison with the results of I, we shall analyze f,(q').

Introducing scaled momentum variables x,. =q,'. /v s, we see from (2.15a) and (2.15b) that f~," and f2~'

become

(~)f, (x„.. . , x, )=

2 + —+

I-gx,. ' Px, i
i=1 i=2 /

nI' 1 1 1. . . ( )f ) 2 I +—+ ~ ~ ~ +—
I-gx, "

i=1

(2.17a)

1 1 1
~ ~ ~ (x& ' —+—+ ~ ~ +-k'

A] A2

(2.17b)

Referring to the analysis of I we recall that the functions f~i"(&„.. . , y, ) and fl' '(~„.. . , y ) are defined by

fi"bl . . yl) =((I-&lb'l(yl-y2) (yl-3- Jlbl'] '

m' 1 1 ' m' 1 1 1 m' 1

(X — 2+ +—
2 + + +- ~ ~ ~ ~ + + + ~ ~ ~ +

yl p yl yl y2 y2 p. 1 —y y, —y y,

(2.18a)

and

(m) y, /~:. 1 1 ' 1 1 1

(yl-y2)y2(y2 33) . y. Sl 52 y2 yl $2 J2 y3 J3

1 1 1
+ + ~ ~ ~ +

yl y2 y2 y3 ym

Hence, we see that
(2.18b)

()) X1X2 ' ' 'Xf

~ ~ ~

(2.19a)
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and

(2.19b)

These relations make apparent, in view of the known factorization properties of f~" and 5', the factori-
zation of j'," and f', ', which for brevity we may indicate symbolically

and

f(m) «(u) «(m- IL)
J2 J2 y ~]P ' ' ' t~)s' -~4+19 ' ' ' 'f~m'

(2.203.)

(2.20b)

Of course these properties are in any event indicated by the expressions for g, and j, in (2.17). More
significantly, Eqs. (2.19) express the relation between functions introduced to study 0-variable clusters
and those used to study q-variable clusters; in fact, this type of equation expressing the q-variable ampli-
tude as a factorizable term times a k-variable amplitude holds quite generally for multiperipheral-type
diagrams in a (1+ 1)-dimensional q) theory. This means that if there exists l~-variable factorization and

therefore a k-variable cluster decomposition, then there must exist similar q-variable factorization and
cluster-decomposition properties. We shall comment further on this point later.

We close this subsection with three observations. First, we note that the inelastic cross section is re-
lated to Ima("'(x„. . . , x„) by the equation

( y pi+1 2

o'"'(s) =
2 , (2((g')

, g '() 1 —gx, () 1 —g Ima'(")(«„ . . . , «„) . (2.21)
i=1 i i i

For compactness of notation, we have introduced the completely symmetric function of the .i-, ,
Ima'(")(x„. . . , x„), defined by

Ima'"'(x„. . . , x„)= g Ima "'(x„,, . . . , x, , ), (2.22)
Vn

where the sum over v„runs over then! orderings of{q». . . , q„). It is then straightforward to establish
that the crucial factorization property derived for Ima(")(q,.) in (2.14) or (2.14') generalizes when all permu-
tations are summed over to the form

Ima'"'(x„. . . , x„) = g Ima'"'(x„, , . . . , «„)-j',")f (" "),'" "+0((x /x. j, ()-./x&)
vr

(2.23)

for (x». . . , x,)»(x„„.. . , x )»(x „,. . . , x„). Here each of the f; is a symmetrical function of its argu-
ments obtained from the corresponding f,. simply by summing over all possible permutations of the .i-, ,
that is,

(2.24)
VE

where the sum over v, runs over the I I permutations of xl p-f It is simple to verify that the f',. satisfy
equations analogous to (2.19) and (2.20). We have

1

V
~ ~ ~' i

l —2
(2.25a)

and

m m

(2.25b)

In addition

fs(() ys(k)ys(l-k) + 0(( / )) (2.26a)
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and
(2.26b)fS(l) fS(k)fS(( k) -O ((» /» j)

whenever the elements of any set of k of the x,. —say, (x„,. . . , x„)-are much larger than the remaining
(I-k) x, .

Second, to introduce cluster functions which are of order 1 as s-~ for the differential inelastic cross
sections, we normalize the integrated inelastic cross section by the total elastic cross section,

&(s) (
.) o(s) (

o"'(s) as(s)
'

From (2.23) and (2.24) it follows that

(2.27)

(2.28)

since

a (s) = o")(s) =—A ("(s)= (2»g')A .1 1
E 2 2s (2.29)

Finally, we remark that Eq. (2.27) indicates that the normalized differential exclusive cross sections
are simply related to Ima'(")(x„. . . , x„). Hence, the factorization property given in (2.14) or (2.14') mo-
tivates the introduction of a cluster decomposition for these cross sections. In the first part of Sec. III,
we shall investigate the general properties of such a decomposition. Later, however, we shall wish to
distinguish particle distribution properties in the fragmentation region (described by f;) from those in the
pionization region (described by f;). Since the factorization properties of f; and f; separately are some-
what simpler than those of Ima', for the purpose of explicit calculations, we shall introduce separate clus-
ter decompositions for f; and f,.

III. THE CLUSTER DECOMPOSITION IN TERMS OF THE q VARIABLES

A. General Considerations

The motivations for introducing a cluster decomposition for functions satisfying factorization properties
like (2.21) or (2.25) are detailed in I; for brevity we shall not repeat them here. However, since a subtlety
will arise in the q-variable cluster expansion that was not present in the k clusters, we shall review brief-
ly the general method of introducing and applying a cluster decomposition to clarify the nature of this new
effect. For this purpose we begin with Eq. (2.14 ) which expresses the factorization property of the nor-
malized differential inelastic cross sections in the form

Ima'~)(q„. . . , q„) — Ima'( )(q„.. . q )Ima'+ )(q„„,. . . , q„)+0((q /q„))
when

(2.14')

+ + + +
q, , . . . , q»q „,. . . , q„.

If one defines cluster functions according to

g'( i)q-=1m''"(q )

g "'(q„q,) -=lma'"'(q„q, ) g"'(q, )g"'(q, ), —
(3 1)

g "'(q„q„ q, ) -=Imn'"'(q„ q„q, ) —g"'(q, )g '(q„ q.)

—g "'(q,)g"'(q„ q, ) —g "'(q.)g"'(q„ q, ) —g "'(q,)g"'(q, )g "'(q,),
and similarly for the higher g'"', then several results follow immediately. First, the definitions of the
g'"' imply that

'"'(s, . s.) = F IIs '"),
n

where the sum runs over all sets of integers n,. such that Pn, =n. An equivalent form of (3.2) is
n

Ima'" (q„.. . , q„) =g ")(q, ) I ma'" "(q„.. . , q„) + g g ")
(q „q,.)I ma'" "

( ~ ~ ) + ~ ~ ~ +g '")
(q„.. . , q„) .

l —2

(3.2)

(3.3)
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The complete symmetry of the Ima'"'(q„. . . , q„) in their arguments implies that the g'"' are also totally
symmetric functions. Further, from (2.14') one can see that when q,'. »q,'. ,

g'"'(q, , q.) = o(q,'/q'; )=0.
In addition, from (3.4) one can establish that

(3.4)

G"'( ) -=' ~ "g" (q„.. . q„) =u„lns+ P„+O(1/s),
q, q„

(3 5)

where hereafter dq/q is a shorthand version of dq'/q'. These results a.ll follow directly from (2.14') and

(3.1) and hence certainly apply in our present case. From these equations one proceeds to the more in-
teresting relations between the g~" and, for example, the total cross section or the multiparticle inclu-
sive spectra. It is in this step that the subtlety appears; let us concentrate on the expression for the to-
tal cross section in terms of the g&~ in order to illustrate the problem. Recall that

o'"'(s) ~" dq, dq„,(„),' ~ ~ " Ima'" (q„.. . , q„)
qn

or(s} or(s} ~ o'"'(s)
o~(s) o'"(s) ~ o"'(s) ' (3.6)

Hence since the Ima'~"'(q„. . . , q„) admit the introduction of cluster functions g'"~(q». . . , q„), reference to
the arguments of I might appear to suggest that the Mayer cluster-decomposition result holds':

(3.7)

However, a closer analysis of the derivation given in I of the k-variable analog of this cluster-decomposi-
tion theorem shows that in the present case (3.7) is not valid in terms of the g'"' defined above for the sim-
ple reason that the integration region in terms of the q',. is itself not factorizable. Later, in our discussion
of the one-particle inclusive spectrum, we shall illustrate explicitly the crucial nature of this lack of fac-
torization; for the moment, however, we shall seek a qualitative understanding of the effect to enable us
to redefine the cluster functions in order to preserve some variant of the cluster-decomposition theorem.

It is clear that the origin of the lack of factorization of the integration region lies in the kinematic cou-
pling of the q,. required by momentum conservation. %e can also readily establish that this coupling im-
plies that the contributions to the total cross section of the clusters as defined above are not independent.
To demonstrate this, we consider the contribution of g~' to the total cross section,

q &+q2= ~s d dG~'(s) -=g ~'(q q )
)I2tq+, +)12/q2= PS q2

0 a+02=Ps I™o''(q, q ) —g"'(q )g"'(q )]
p2/q++ ~2/q+ —+~

(3 3)

The term g"'(q, ) g"~(q, ) integrated over the phase space is supposed to represent the independent contri-
butions of the two one-particle cluster functions g~". However, since the phase space for a single g"~(q)
is p'/vs & q' & v s, it is clear that when the product g~" (q, )g~" (q, ) is integrated over the phase space

2 2

rs —",+—"„q,'+q,' vs,

then neither cluster function is separately integrated over the full phase space appropriate to its defini-
tion; in short, the phase space available to g"'(q, ) depends on the value of q„and hence, the contribu-
tions of the two one-particle cluster functions are not mutually independent.

To restore the independence of the g" and simultaneously to introduce a factorizable integration region,
we can adopt the following convention: We integrate each of the variables q,'. over the region p.'/v s &q,'.
& v s and associate with each integrand function Ima'~"'(q„. . . , q„) the appropriate 8 functions necessary
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to specify the kinematic limits of the phase space. Thus we define

n n'"'(s, ",s)=& "'(s„,s)s( —Esi s ~-Zs;)
i=1 i=1

Clearly we have

a(n«( ) «„n n Ds d +

(,«, , =—,g,' Ima'"'(q„. . . , q„)
o (s) n t, , „2~~ q,.

(3.9)

(3.10)

and the factorization of the integration region is explicit. It is equally clear, however, that we have not
solved the difficulties of a lack of factorization, for now the functions Ima'"' themselves do not factorize
exactly because of the 8 functions they contain. Instead of (2.14') we find for (q,', . . . , q')» (q'„, . . . , q„')

Ima'("«(q„. . . , q„) Ima'( '(q„. . . , q )Ima'" (q, ». . . , q„)+O((q Iq„j)

8 v s — q,'. 0 v s — qi —(9 Ws — q,'. 6) v s — q,. 6 v s — q',. 6) vs — q,.

(3.11)

In the phase-space region appropriate to Ima'("'(q„. . . , q„), since Ima'("' =Ima'("«, the final term in (3.11)
vanishes, and this equation becomes equivalent to (2.14'). However, when we define g'"' in terms of the
Ima'("«, the lack of exact factorization in (3.11) will create additional problems which, although surmount-
able, will require some care to resolve.

We define g'"«(q„. . . , q„) according to

g"'(q ) =ima~" (q, ),
g "'(q„q,) = Ima "(q„q.) —g "'(q, )g"'(q, },

and similarly for the higher g("«: In the phase-space region+, ,q,
' &)(s,

g'"'(q„, q.) =g'"'(q„, q.) .

However, we see that

n ns' '(s . . . , s")~„s'"'(s„., s) s(H —Qs', e w —rs-, )i=1 i=1

and further that the integrated cluster functions, defined by'. ~ ' "(.
gq-. = ~s qx qn

and

~$ Rs d + +
G~ "«(s) = ~ "g'"'(q )

( 'y~s (,2)es qg qn

are also not equal.
From the definitions (3.12) we have immediately that

(3.12)

(3.13a}

(3.13b)

Ima'"«(q„. . . , q„) = g Qg "'
n;

where gn, =n and.
n

Ima'("'(q». . . , q„) =g"«(q ) Ima'(" '«(q». . . , q„)+ gg '(q„q, }lma'" '«( ~ )+ ~ ~ +g'"'(q„. . . q ) .
i =2

Further, since we may now express ar(s) as

(s) ~n n Ps d +

,' Ima'"'(q„. . . , q„),OE(sg Pl I i-g ~2/Q~ q ~

(3.14)

(3.15)

(3.16)

where the integration region is manifestly factorizable, the method of I can be applied to derive the Mayer
cluster -decomposition theorem from (3.15).
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We obtain

yn"' =e p I —,5"'( ))

tion, we shall see that

g"'(q, ) = O(&s- q,') (3.22}

g'"'(q„, q.) = O((q. /q„)) (3.18)

when (q„. . . , q )» (q „,. . . , q„) does not follow
except in the kinematic region )) s &gq', . and ) s
&Qq, , in which g~") =g'"'. But to obtain the in-
tegrated cluster function, G'")(s), from
g'"'(q„. . . , q„) we integrate each q, over the re-
gion p'/v s & q,'. & )) s and hence for at least part
of this region the validity of (3.18) is not clear.
This means that the important result that

G '"'(s) =a„lns+ P„, (3.19)

which together with (3.17) would establish the
Begge behavior of the amplitude, does not follow
immediately. Further, it casts some doubt on
the validity of our interpretation of clusters as
representing the effects of short-range correla-
tions among the particles in rapidity space.

To clarify this difficulty, we can consider the
simple instance of g~'(q„q, ). In terms of func-
tions with known factorization properties we have

g"'(q„q, ) =Ima"'e(vs —q,
' —q,')e()) s —q, —q, )

—g"'(q, )e (v s —q,') e (v s —q-, )

g"'(q. ) e(~s —q,') e (~s —q;) . (3.20)

As noted previously, provided q,'+ q,
'

& v s and

q, +q, & vs, g~'~(q„q, )-O(q, /q, ) when q, »q, .
However, when q,'=2& and q,

' = v s —e, for ex-
ample —this represents a point contained in the
full integration region —we have qy»q, ' but

g"'(q q, ) —-g"'(q, )g"'(q, ); (3.21)

clearly, the behavior of this expression, and, in
particular, whether or not it approaches zero,
depends on the nature of gO)(q, ) and hence on the
dynamics. In the ladder model under considera-

y17 n D8 dq+
=exp Q —,g,*' g'"'(q„. . . , q„) .

fE t
~

~ ~2/~ q.

(3.17)

Hence the g'"'(q„. . . , q„) seem to represent a prop-
er set of cluster functions in that their contribu-
tions to the total cross section- and, as we shall
later verify, to the multiparticle spectra —are
mutually independent. However, in redefining the
cluster functions, we have not completely escaped
the problems engendered by the kinematic coupling
of the q,. ; since (3.11) does not represent exact
factorization for Ima'"', the result that

as q,'- ~s and hence that

g (qy) qz) = 0 (3.23)

whenever q', »q,'. More importantly, we can es-
tablish in a general way that even if the detailed
dynamics does not imply an equation of the form
(3.18), the integrated clusters do satisfy (3.19).
To separate this general result clearly from the
model-dependent result (3.22) we shall reserve
the general proof for the Appendix. However, a.

simple physical argument can make plausible that
(3.19}should remain valid. The kinematic region
discussed above in which g~) $0 is a very limited
one in that at least one of the variables must be
near the kinematic boundary q',. = ~s. Since these
regions represent essentially the "surface" of the
phase space, it is plausible that the G'"'(s), being
functions integrated over the full volume, will not
be affected in leading order by these "surface ef-
fects. " A proof based on this intuition is presented
in the Appendix. For the moment we shall pro-
ceed with our explication of the cluster decom-
position in terms of the g " (x„~ ~, x„).

B. Multiparticle Inclusive Spectra

Perhaps the most significant application of the
concept of q-variable clusters lies in their poten-
tial for providing a systematic method of analysis
of multiparticle spectra and correlation effects.
In this regard it is almost essential that one use
q-variable clusters, rather than those expressed
in 4 variables, for, as discussed in I, the order-
ing ambiguities and the kinematic complications
in the fragmentation regions hamper a meaningful
0-variable analysis.

To clarify the manner in which the cluster func-
tions may be used to determine particle spectra
we wish to consider the general case of the con-
tribution of an nth-order exclusive cluster to the
correlated part of the m-particle inclusive spec-
trum (n & m). We shall call this contribution
(d "o,)„. Let us begin, however, by studying in
detail the one-particle spectrum.

In Sec. II we established that the cross section
for the production of N secondary particles has
the form

&(N) 0(v) &w v~
& I —s($)l

(o) Ima (q„. . . , q„),v~ N. p'/Ts

(3.24)

where Ima'~")(q„. . . , q„}has the cluster decomposi-
tion indicated symbolically by
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(3.25)

Here the sum runs over all sets of integers n, s.uch that Qn, =N. Since the observed particle must orig-
inate in a definite cluster, we must start by calculating the differential cross section for producing a
single, specific nth-order cluster with momenta q„.. . , q„plus any additional clusters F. rom (3.25) we
see that this cross section is

ng ~'Ill ' ' 7 qnj

~n —(n)(q q ) i. . . n1&'''& n

vS —s(N- n) / ) 4'n+ZImc7 ~Q +ll ' 'l~NI
J12/ WS &n+ &

~W- n ~s dn
lm —s(u n)(q q ) ~n+i. . .

(N n) .

-qadi~

"
q, +i~

~ ~ ~
~ ~ ~ (3.26)

where clearly N&n, and all q's stand for q"s unless otherwise specified. The combinatorial factors can
be understood by the following:

(1) From the original N particles one has selected n and this can be done in C~ =N/(N n)!n! w—ays.
(2) The labeling of the particle momenta in g

(") can be done in n! ways. Alternatively, one may follow the
convention of a.ssociating a. factor 1/r! with any integration" over a phase space of r particles. To obtain
the contribution of the nth-particles cluster to the full one-particle spectrum, we first sum over all N in
(3.3) to obtain

(do)n n (n) I i—dqi
~&yr '''lqn~

n E

Here we have used the result that

fma' (q„. . . , q ) ~ ~ ~
Z ™~s

s(m) «x dqm

OE m. &m

(3.27)

(3.28)

Notice that in deriving Eqs (3.26).-(3.28) the factorizability of the integration region plays an essential
role. One simply cannot consider the contributions of the clusters as independent if they are coupled
kinematically via the integration region.

Recalling that we should associate a factor of 1/(n —1)!with the phase-space integrations over q, to q„,
we find that the contribution of the n-particle cluster to the one-particle spectrum is

gE qi op ()l —1) .
(

2 /~ )(2/g q2 q„
(3.29)

The full normalized particle spectrum follows from (3.29) by summing over the contributions of all the
clusters; the result is

,)s
dq2. . . dq. —(n)( )

t 2.'iV ~6 qn
(3.30)

The significant properties of this equation are the independence of the contributions of different clusters
and the related result that the nth-order cluster contributes only to the term of order )(" in (3.6).

To emphasize further the importance of introducing independent clusters, let us discuss briefly the form
of the one-particle spectrum in terms of the clusters f '"'; our analysis will parallel, insofar as is possible,
that given previously for the g("). From (3.2) we see that the differential cross section for the production of
N particles, including a cluster g'" and anything else is

(d ) X () dqnlcd (q ~ )
1 ~ n

0E ¹ In

x "" ~ Ima'' "' q„,». . . , q„)0 v's — q',. — q',- 6'~ &'s — q,. — q,&n+ l. 1 n+1 1 n+1

Simplifying the combinational factors and summing over all N gives

(3.31)

(3.32)
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where

(3.33)

and represents a type of inclusive cross section in which the incoming particles have total p = v s and the

unobserved particles have total p' =((s —g", ,q,'. . Here g", ,q,'. represents the total plus component of the

observed cluster. If we now ask to observe only one particle in the particular cluster and sum over all

clusters we obtain finally
Tl n

(TT VS -gq,', VS -gq,
" e ( v s —g q,'. )o (v s -g q, ) g ("'(q„q„.. . , q„)

ff"n T

(3.34)

From a theoretical viewpoint the interdependence of the contributions of different clusters renders
(3.34) considerably less elegant and useful than (3.30). Further, the existence of or linked to each cluster
makes this equation unattractive for phenomenological applications.

We return to the analysis of multiparticle spectra by considering the two-particle spectrum. In this
case we note that there are two mutually exclusive possibilities for the manner in which the production of
the two particles occurs: Either both particles originate in a single cluster, or they come from two sepa-
rate clusters. The two-particle spectrum will be the sum over all clusters of the contributions of these
two types of possibilities.

Consider first the possibility that the two particles came from the same cluster, which we take to be of

nth order. Then we have, directly from (3.27),

1 (d' )
dq, dq, „1 . "dq, dq„

(T
1"

q q (n 2)( &g (ql»q2»q1»'''»q»&) (3.35)

The subscript here simply reminds us that this is the first of two contributions to the two-particle spec-
trum. To discuss the case in which the particles come from different clusters, we begin with the general-
ization of (3.26) which applies when two clusters, say g(" and g('~, are observed:

gN

N, k!C„g" (q„. . . , q, )
' ~ l tC, ~g ' (q„„,. . . , q„,)

~Qlt+l t —(N-lt-l) i ~@n+l+l, . . .x ~ ~ ~ ~ ~

I
lma {Vl,„„,. . . , qN)

'Vlf+ y QQ+ l

~lf —(l )( 'V& %if yl —.(l){g' 'Qlt+] y
~ ~ e

~ Qlt +
~k '6+y '6+ l

~ N-l -lt A —s(N -l —l)l ~i+k+1. . . IN
{Ql+l l. VN)

~l+lf+& QN
(3,36)

Summing over X gives

(&*&» ( =(»'&(» . »'( '" " »'1'"(q ~ » ~
'" '")

%+i Vl +l

Using (3.4) we see that this can be written

(3.37)

(d'(T. )~.( («). (d~)1
&r &r ~r (3.38)

where (d(r), /(TT is the normalized contribution of the kth-order cluster to the one-particle spectrum. The
full two-particle spectrum is obtained by adding (3.35), summed over n, to (3.38), summed over k and l.
Defining

1—d'(T, —= —(d'(T, )„
&r „&r {3.39)
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and

(3.40)

We see that the full two-particle spectrum is given by

—d o= —(d (r, +d v,).1, 1

&r &r

But since, by (3.38),

d g2 do' do

(3.41)

(3.42)

we have that

d 20& d'0 dg dg (3.43)

But by definition, the right-hand side of (3.43) is equal to the correlated part of the two-particle spectrum
and accordingly

0' d 0'

O'T (X p
(3.44)

From the preceding we observe the important result that in the two-particle spectrum, particles can be
correlated only if they come from the same cluster. It is intuitively clear that, if we wish to interpret the
clusters as independent of each other and as describing correlations among the particles they contain, it
is essential for consistency that whenever particles are correlated they must originate in the same cluster.

It is relatively straightforward to extend this analysis to the general case of m-particle spectra. The
same arguments as given above suffice to establish that to calculate the correlated part of the m-particle
spectrum we simply consider the contribution of each cluster g~ "l(q„.. . , q„) (n ~ m) independently and then
sum over all allowed n. From (3.27) we see that in the general case the contribution of the nth-order ex-
clusive cluster to the correlated part of the m-particle inclusive spectrum gives

d pcs

(d mc ) ql. . . qm . . . qm*1. . . qn —(n)( ) (3.45)
&r (™). % qm p'grs ~p'yr qm i qn

C. The Nearest-Neighbor Approximation

The analysis of the previous subsection provides a general understanding of the introduction and applica-
tion of the q-variable cluster decomposition. To complement this approach, we wish to give a sample cal-
culation illustrating the technique directly. In Sec. IV we shall calculate the contributions of the first few
cluster functions to the one-particle spectrum in the fragmentation region and to the two-particle pioniza-
tion spectrum. For these purposes, as an explicit check on the validity of the cluster techniques, it is use-
ful to be able to compare the cluster calculation with a known exact result. Hence we shall implement the
k-space "nearest-neighbor approximation, " introduced in I, as this will enable us to calculate both spectra
in closed form. In the present subsection, in preparation for the calculations of Sec. IV, we shall derive
the form of the first few cluster functions in the nearest-neighbor approximation in both the fragmentation
and pionization regions.

Consider first the pionization region in which v s»q;, q, » p /v s. In this region, we see that (2.11},
(2.15b), and (2.24) imply

Ima' "(q„.. . , q„) = Ima' "'(q„.. . , q„} f;" (q„. . . , q„). (3.46)

Here the first reduction follows because for q «Ws and q, «Ws, 8(v s-g q,') and 8(v s-g q, ) —1. Thus
in the pionization region the troublesome 8 functions can be ignored. From (2.25b} we have that, in terms
of the scaled momenta x; =q /v s,

(3.47)
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The k-space nearest-neighbor approximation to b " is given by Eq. (3.27) of I. This is

b'„"„,'(y„. . . , y„) = 1-—' 1- ~ ~ ~ 1— (3.48)

Hence the first few f,'"' can be calculated explicitly; we obtain

f s(1)(x )

x' x
p s(2)( ) x, +x, (x, +x,)' '

(3.49a)

(3.49b)

(3.49c)

(3.50a)

The corresponding cluster functions, defined in terms of these f; ' by equations analogous to (3.1), are

g,'"(x,) =1,

and

(2)(
tg2 '( )t 2

( )2
1 2

(3.50b)

+ +
(x)+ x2+x2) x1+ x2 x2+ x2 x)+ x2

(3.50c)

Higher cluster functions can be calculated in the same manner, albeit with rapidly increasing effort.
In the fragmentation region of particle a the momenta satisfy v s& q» p, '/v s, g'jv s &(I, «0s. Hence

in this region the 8 functions involving plus components cannot be ignored and the full expression for
Ima'~"' reduces to

t t"'(tt„. . . , tt )9( t —rtt f '( „.t. . , @i"t ) —rt; ) 1;" (tt„. . . , tt ). =
4= I 2= 1

Equation {2.25a) indicates that

(3.51)

~ ~ ~

' ('=") ('= ')
l f"I. xy. ~ xy

i=1 i=2
(3.53)

Since our calculation is intended primarily for verification and clarification of the cluster techniques, in
addition to introducing the nearest-neighbor approximation to f I we shall take I,= 0 for further simplicity.
Then Eq. (4.13) of I yields

tt)=(1 —t ) (1-—*

) (1— "
)

.

Combining {3.52) and (3.53), we obtain

(3.53)

f "(x,) = (1 —x,) 9(1 —x,), (3.54a)

2 2

(x, + x2) (x, + x2)
(3.54b)

and similarly for higher f ',
" . Notice the "dynamical vanishing" of these functions as any of the x; —1.

It is this damping which, reflected in the g (q„.. . , q„), guarantees in this simple model the validity of
(3.18) even near the "surface" of the kinematic region. From (3.54) we obtain for the first two fragmen-
tation cluster functions,

g', "(x,) = (1 —x,) 8(1 —x,) (3.55a)
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and

g,
' I*„*,)= GI1 —», —*,)Il —*,—*,) (

' ' ',
)

—I1 —*,)9(1 —*,III —*,)8(1—
1 2

(3.55b)

Notice that if in (3.54) and (3.55) we consider the case 1»x„ in which the fragmentation region approach-
es the pionization region, the fragmentation amplitudes and cluster functions reduce correctly to the cor-
responding pionization functions.

IV. EXPLICIT CLUSTER CALCULATIONS IN

THE LADDER MODEL

g"'(x, ) = (1 —x, ) //(1 —x,), (4.1a)
2 2

g"~(x„x,) = 0(1 —x, —x.,) (1 —x, —x,)
1 '~2

—(1 —x,)//(1 —x, ) (1 —x, ) //(1 —x,) .

(4.1b)

Hence we see from (3.30) that the contributions
of g"'(x1) and g'"(x„x2) as given in (4.1) to the one-
particle fragmentation spectrum are

(da') A. (1 x1)
1 dX1

O'T X1
(4.2a)

and
1—(do), = p' ' g

' '(x„x,)
if 2/ ~1

= A'[ 2(x, —1) —2x, lnx, + (1 —x,) ln(1 —x,)]
X1

(4.2b)
to within powers of s.

Notice that, as a consequence of our dynamical
model, both terms approach zero smoothly as x-1.

A. The One-Particle Spectrum in

the Fragmentation Region

In I, to demonstrate the smooth transition of the
spectrum between the fragmentation and pioniza-
tion regions, we calculated the full one-particle
spectrum in the fragmentation region in the "near-
est-neighbor approximation. " In that analysis we
did not attempt to compare the complete result
with a cluster-expansion calculation of the one-
particle spectrum because of the kinematic compli-
cations that arose in the fragmentation region in
the relation between the phase space in terms of
the 0 variables and that in terms of the q variables;
that is, the simple relation d/z'/0' = dq'/q', which
holds in the pionization region, does not apply to
fragmentation events.

Now that we have established the validity of a q-
variable cluster decomposition, it is a simple mat-
ter to check the first few orders in A. of the cluster
result with the corresponding orders in the com-
plete solution given in I. From Sec. III, we have
that in the fragnientation region the first two clus-
ter functions are, in terms of the scaled momen-
tum variables x, =—q,'/v~s,

To compare expressions (4.2) with the appropri-
ate terms in the complete result for the fragmen-
tation spectrum in the nearest-neighbor approxi-
mation, we refer to Eqs. (5.34) and (5.35) of I
which give, in our present notation,

(4.3)

with

where

8 1/x -1

J1 (u+1) "

By a careful expansion of I about the point A =0,
we obtain

""= /z(1 —x)+ A'[(1 —x) ln(1 —x)
(7T

—2x lnx+ 2(x —1)]+ )dx/x,

(4 4)

which as required agrees with (4.2). For a more
detailed discussion of the qualitative features of
the one-particle fragmentation spectrum in this
simple model we refer the reader to I.

B. The Two-Particle Spectrum in

the Pionization Region

X1X2 dX1 dX2= —2A2
( )

(4.5)

As a second illustration of the validity and use-
fulness of the q-cluster decomposition, we shall
consider the two-particle spectrum in the pioniza-
tion region, Ws +& q,', q,

' » p. '/Ws. To permit a
comparison of the cluster expansion with an exact
result, we shall again make the nearest-neighbor
approximation in both calculations.

In the cluster-expansion approach the two lowest-
order contributions in A. to the correlated part of
this spectrum come from the cluster functions
g

' (q„q,) and g
' (q„q„q,). Using the simplifi-

cation that in the pionization region g'" (q„.. . , q„)
(q1 . , q„), we see that in terms of x, = q,'. /v~s

the contributions of g" and g" are, respectively,

—(d'O )o = 12g '
(X X )

1 dx dx
(7 "

X XT 1 2
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where we have used the explicit form of g "(x„x,) given in (3.50) and"

—{cl 0') =A. g
gT X1 X2 g~2/~ 3

3 1 24 1 21l 1 2 2j1 2 1+0 (4.6)

The last equation follows from the form of g"~(x„x„x,) given in (3.50).
By a direct calculation using the method of I, we establish that the full two-particle spectrum in the

pionization region is, in the nearest-neighbor approximation,

d'o(x„x, ) x' dx, dx,
(

VT 1+ A ~I

where

(4 7)

~p2)~ w (w+x)) ~2~~ z (z+ X2) x2+ z x2+ z

+ x(1+4x)' ' 2 2a-1 X1 A2

(w+x, +x,)" (w+x, )' ' (4.8)

where

n =-,'(-1+ (1+4'}'"].
Recall that the correlated part of the two-particle spectrum is given by

d Crc(~1~ X2) d g(xl) X2) dCr(X1) do'(XZ) ~ dX1 dXZ )

X1 X2 + X2) .lt I
+T +T ~T +T 1+4~

where we have used the result, established in I, that in the pionization region

dv(x, ) z dx,
o (1+4k)'/2 x

(4.9)

(4.10)

A careful Taylor's expansion of (4.9)

d'v, (x„x,),dx, dx, x,x,c

about A =0 yields

3 dx1 dx2 A'2 A ] + X2 X 1 4 1 + A 1X2
+ 4X3 ' — —ln +—ln + 2 + ~ ~ ~

1 2 - 1 X2 X2 X1 (x, + x,)
(4.1 1)

which again agrees with the cluster results as
given by (4.5) and (4.6). Interested readers are in-
vited to reproduce the calculations.

There are several qualitative features of this two-
particle spectrum which merit comment, since
they appear to be more general than our extremely
simple model" and further since some of them
clarify certain aspects of cluster techniques.

First we note that the normalized spectrum is inde-
pendent of s (to order 1/s) and indeed depends only
on the magnitude of the difference of the rapidities
z, and z, of the two particles; that is,

where z, —z, = ln(q, /q, ).
Second, we observe that for integral values of e

the function H(x„x,) of (4.8), which determines the

two-particle spectrum, can be evaluated exactly
analytically. For o. = 1 and o. =2 (so that X=2 and

A. =6) —recall that our definition of n is n= n, +1,
where n, is the conventional Regge trajectory func-
tion —the resulting forms of the correlated part of
two-pa, rticle spectrum, as given by (4.9), are
plotted in Fig. 4 as functions of z, —z, -=ln(q, /q&).
The general shape of these curves agrees with that
found by numerical methods in a (3+ 1)-dimensional
y' model. " For purposes of comparison, the in-
dividual contributions of the two- and three-parti-
cle clusters only, normalized to their respective
magnitudes at z1 —z, =0, are plotted in Figs. 5{a)
and 5(b). From (4.5) and (4.6) we see that to obtain
the actual contribution to the spectrum for a given
X from these curves, we must multiply by 2A.

' for
the two-particle cluster and by (8 ln2 —3)a' for the
three-particle cluster. Clearly for A=2 and X=6
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FIG. 6. The ladder amplitude corresponding to
A (s, t =0) in a (3+1)-dimensional theory.
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FIG. 4. The over-all correlated part of the two-parti-
cle spectrum in the nearest-neighbor approximation for
o.'c =0 and 1

these separate contributions are of much greater
magnitude than the final result and hence impor-
tant cancellations must occur. We shall return to
this point later.

From Figs. 4 and 5 we can also comment on an-
other important qualitative feature of the spectrum,
namely, the total width and the widths of the indi-
vidual contributions. In Fig. 5 the half width at
half height of the two-particle cluster contribution
is shown to be 1.77, whereas that of the three-par-
ticle cluster is 2.07. We believe this reflects the
general result that higher-order clusters give rise
to correlations which have longer-range effects
and which therefore produce contributions of great-
er width to the two-particle spectrum. This agrees
with the physical intuition which suggests that in
higher-cluster contributions the many unmeasured
particles can lie between the two observed ones in

rapidity space, linking them even for large separa-
tions.

In view of the increasing widths of the higher-
cluster contributions, it is very interesting to note
that the widths of the full spectra for a =1 (A. =2)
and +=2 (A. =6) are 1.34 and 1.25, respectively;
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FIG. 5. (a) The contribution of two-particle clusters
to the correlated part of the two-particle spectrum.
(b) The contribution of three-particle clusters to the cor-
related part of the two-particle spectrum.

FIG. 7. (a) The nth-order iterated cross diagram.
(b) Diagram involving only a single iterated cross.



3676 D. K. CAMPBE LL AND S. —J. CHANG

further, in the limit o.-0 (A. -O), the width of the
full spectrum approaches that of the two-particle
cluster. Thus in our model we find that the sum
over all cluster contributions has a narrower
width than any of the individual terms. This result
is made possible only by cancellations occurring
between different terms.

Finally, let us return to the question raised
above regarding cancellations between terms and
the size of individual cluster contribution in our
model. The form of the cluster functions g "' is
such that after integrating over q, to q„, the re-
maining expression, as a function of q,/q„ is
roughly of O(1) at q, /q, =1 (z, —z, =0). Hence for
large values of A, the individual contribution of
the nth-order cluster to the two-particle spectrum
will grow like A.". In this limit, then, any approx-
imation which consisted of keeping only a finite
number of clusters would be very inadequate. It
is relatively easy to see that this difficulty is not
intrinsic to the cluster technique but arises from
the specific form of the p' theory we are consider-
ing and, in particular, from the nearest-neighbor
approximation to this theory. To verify this we
can recall that for our model in the nearest-neigh-
bor approximation the one-particle spectrum in
the pionization region takes the form

do A. dx
ur (1+4X)'" x

Considered as a function of P., this expression has
a power-series expansion about ~ = 0 which con-
verges only for (X~ & —,. That the power series in
~ for the two-particle spectrum also converges
only for ( ~t & follows from (1.9). Since by con-

struction each cluster function g'"' is associated
with the factor A.", the increasing size of X"g

"

with n merely reflects the divergence of the power
series for large coupling in our model and does
not alter the possibility that in using the cluster
approach to analyze data one may be able to keep
the contributions of only the first few clusters.

V. EXTENSION TO LADDER DIAGRAMS IN (3+ ] j

DIMENSIONS AND FURTHER COMMENTS

AND SPECULATIONS

The extension of our results concerning q-vari-
able factorization and cluster decomposition to a
p' theory in (3+1) dimensions offers some impor-
tant insights into the crucial differences between
the k- and the q-variable approaches. It develops
that many of the desirable properties of perturba-
tion-theory amplitudes expressed in terms of the
0 variables simply do not apply in terms of the q
variables. In particular, complete factorization
of the differential excl~csive cross sections —that
is, factorization in terms of both plus and trans-
verse components of momentum —in the f: variables
does not imply complete factorization in terms of
the q variables. In fact, as we shall now demon-
strate, the assumption of complete factorization
of the differential exclusive cross sections in
terms of the q variables is unrealistic in the sense
that it is definitely not motivated by the behavior
of the model field theory we consider.

To gain some understanding of the difficulties
associated with q-variable factorization and clus-
ters in (3+1)-dimensional theories let us begin by
considering the simple ladder diagram correspond-
ing to Fig. 6. The imaginary part of the amplitude
in the forward direction is

2Imd'"(s, i=0) = (g')' j ', (2w)5(P,"—p') ', (2w) 5(q, ' —g') ', (2 )5(q, ' —p. ')

1 1(2s)5{p, —P )(I, , ), (i, , ),

2 2 . 2 ( ~} ~ (ta Pb ~a ~b qI(k.,
' —p'+ ie)'

If we introduce plus and minus variables and proceed as in See. II, we find that at large s

ImA {s, t=0) =- „,
( ), (

)', ', ', '-, 0(Ws —q,
' —q,')0(v s —q, —q, )g

l= 1

where p,"=—v s —q, —q, , pb' = vs —q, —q, , and p denotes the two transverse components of a 4-vector p.
For simplicity let us restrict our considerations to the pionization region Ws»q, ', q.,' »lj, '/v s, as this
will serve to illustrate our point. Then using arguments similar to those preceding (2.10), we can deduce
that
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(k, ) = O(g'/ v s ), k,' = P,
' —P,"= (q, + q, )

' «v s,

(k;) =O(y. '/v s), k, =P,' —P, -=-(q, +q, ) «Ws,

and hence that

(5 8)

(k, ' —g'+ ie)'~ (k, '+ p')' and

Similarly, we can establish that

(k,' —p'+ ie)'- (k, '+ p, ')'. (5.4)

k,' = q,'+ O(g'/Ws), k, = k, —q, —= —(q, '+ g')/q, '

since k, =—O(p'/v s). Thus

(k, ' —p, '+ ie)' [(q,'/q, ') &&(q,'+ p. ') +k, '+ p, ']'.
Then (5.2) becomes

(5 5)

(5 8)

ImA ' (s, I=0) =— ', ', 8(V s —q,
' —q2')9(v s q, ——q, ), ', '. . . „,, Ima~'~(q„q„p„') .

(5.7)

Here

Im a ' (q„q„pt) = (k,' + p. ') '[(q,'/q, ')[(k, —k, )'+ p'] + k, '+ p'] ' (5.8)

=[(q, +q. +Pl)'+ ~'1 ' I(q'/q')(q '+ i ')+(q. +pl)'+ a'] ', (5.9)

(5.10)

where we have used the fact that p,'= -k, .
Notice that in the limit q,'»q,', (5.8), which expresses Ima '~ in terms of the k variables, factorizes

simply in terms of these variables,

Ima ' (k,'+ y. ') '(k, '+ g') '+ O(q,'/q, ') =f (k,)f (k, ) + O(q,'/q, ') .
On the other hand, in the same limit (5.9) becomes

Ima'" [(q, +q, +p,')'+ p'] '[(q, +p,')'+ p'] '+ O(q,'/q, ') &f (q)f(q, )+ O(q/ q, ) . (5.11)

Thus Ima " does not factorize in terms of the q;. This simple example is therefore sufficient to demon-
strate that complete factorization in the k variables does not imply complete factorization in the q vari-
ables for exclusive spectra; further, the failure of factorization in q in ladder diagrams strongly suggests
that one should not assume such factorization in phenomenological analyses of exclusive cross sections.
In addition to illustrating the lack of q factorization, however, equations (5.7)-(5.9) indicate one possible
resolution to the q-factorization problem. Namely, let us simply not measure the q but rather integrate
over them to obtain an expression of the form

ImA "(s, t=0) = '+ '+ 0(v s —q,
' —q,') &(0 function due to q ) xlma ' (q,', q,') .(g )

2s 4mq,
'

47t q,
' (5.12)

Then Imn "(q,', q.,') does satisfy the factorization
property in q; . This specific example is indicative
of a general result valid for multiperipheral-type
diagrams: If a given diagram corresponding to an
exclusive cross section satisfies complete factor-
ization in the k variables, in general complete q-
variable factorization does not follow. However,
if one integrates over the transverse momenta, q;,
the result factorizes in terms of the q (or, of
course, the q, ).

The lack of q factorization in the e.i.cl«si i e spec-
tra derived from the ladder model appears some-
what paradoxical in view of the anticipated com-

piete q-variable factorization properties, suggest-
ed by the Mueller analysis" and recently established
explicitly in dual models, "of the inclusive spec-
tra. These incli~si ve factorization properties ap-
pear to rest on the single assumption that certain
multiparticle forward amplitudes are dominated
by simple Regge poles; hence, one would expect
that y' ladder diagrams, which give rise to a
Regge pole, should also yield i nclusi ve spectra
satisfying complete q-variable factorization. Thus
we see the apparent paradox: The exclusive spec-
tra do not factorize in q but the inclusive spectra
do. It turns out that the cluster-decomposition
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technique enables one to demonstrate, to all or-
ders in perturbation theory, that any set of multi-
peripheral diagrams which satisfy complete k-
variable factorization gives rise to inclusive spec-
tra which are completely q factorizable. Hence
there is indeed no paradox; it is perfectly con-
sistent to have non-q-factorizable exclusive spec-
tra and q-factorizable inclusive spectra. We shall
discuss the details of this result in a separate ar-
ticle. For the present, we observe simply that the
integrations over the momenta of unobserved par-
ticles implicit in any inclusive spectrum effectively
remove the dynamical correlations among the
transverse momenta which destroy complete q-
variable factorization in exclusive spectra.

A natural sequel to the previous discussion is an

analysis of the case in which the diagrams consid-
ered do not have complete factorization in the k

variables. In I we discussed the iterated cross
diagrams Fig. 7(a) as prototypes of this class. In

the case of the diagrams of Fig. 7(b) one can show

that even after integration over the transverse
momenta the resulting expression does not satisfy
q,
' factorization and hence one cannot introduce q-

variable clusters for these diagrams. The skepti-
cal reader is invited to verify this result explicitly
in the simpler case of the diagram of Fig. 7(b).

In conclusion, let us summarize our results suc-
cinctly. We have examined in detail a (1+1)-di-
mensional q' ladder model in order to study the
possibility of introducing a cluster decomposition
for the differential exclusive-production cross sec-
tions in terms of the final-state momenta, q,'. We
have established the factorization of the integrand
corresponding to these cross sections in this mod-
el; however, we have also found that the kinematic
coupling in the integration limits between the q,'
resulting from momentum conservation implies
that the standard application of the cluster-decom-
position technique leads to cluster functions which
are not independent. By modifying suitably the
definition of the integrand —thereby destroying ex-
act factorization —we have been able to introduce
cluster functions which do contribute independently
to the total cross section and multiparticle spectra
and thus to establish the existence of a q-variable
cluster decomposition for a certain class of dia-
grams at high energy. The validity of this some-
what unconventional cluster expansion has been
demonstrated explicitly in the (1+1)-dimensional
ladder model by comparing with the exact results
the cluster predictions for the one-particle spec-
trum in the fragmentation region and for the two-
particle pionization spectrum. A more general
discussion of the utility of this type of cluster ex-
pansion will appear in the sequel. Finally, we
have commented on the extension of the q-variable
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APPENDIX ADDED IN PROOF

In this appendix, we wish to demonstrate that
(1) the fully integrated exclusive cluster functions
C

"' are proportional to lns,

=a„lns+P„+O(s '), (Al)

and (2) away from the kinematical boundary, the
partially integrated exclusive cluster functions,

cluster decomposition to (3+ 1)-dimensional mod-
els. Here the conclusions corroborate our earlier
contention that the most natural variables, from a
theorist's standpoint, in which to study cluster
properties of perturbation-theory amplitudes are
the "momentum transfer" variables, k;. Unfortu-
nately, as we discussed in I, the usefulness to
phenomenological analysis of a k-variable cluster
expansion is limited; it is the q variables which
are observed experimentally. In terms of the q
variables we found that factorization of exclusive
spectra in terms of both q and q' is not a general
feature; even the ladder amplitudes do not satisfy
factorization properties in terms of the q;. By
integrating over the transverse momenta, however,
we have established the factorization property of
the exclusive spectra derived from ladder dia-
grams in terms of the q,' alone. The limited valid-
ity of the assumption of q' factorizability has been
illustrated by a brief discussion of the iterated
cross diagrams, for which such factorizability
fails. We have discussed the relation between the
nonfactorizability of exclusive spectra in terms of

and the anticipated"'" complete q-variable fac-
torization of inclusive spectra. Here we asserted
that these apparently contradictory properties are
in fact mutually consistent. Our analysis allowed
us to establish that if the underlying field-theory
diagrams satisfy complete k-variable factorization,
then the exclusive spectra satisfy q' factorization,
and the inclusive spectra satisfy complete q-vari-
able factorization. Finally, we remark that in the
following paper we shall take q' factorization of
exclusive spectra as an ansatz and explore the con-
sequences for the phenomenological description of
high-energy scattering.
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—nPg.(q„q„.. . , q )

(„)(nm))gq+g(qlfq2)''')qg))
+j. qt

(A2)

have finite correlation lengths, that is, for
(qlt q2) ' ' ' t ql} (q/+1) ' ' ' \ qn

v-" —o(q', /q, '),
with ip(l+ 1, . . . , n), jg(1, 2, . . . , l). Notice that
(3.45) implies that 7-" represents the contribution
of the nth-order exclusive cluster function g'" to
the correlated part of the rye-particle inclusive
spectrum. To demonstrate this explicitly, we ob-
serve that with T"def-ined by (A2), we have from
(3.45)

1—(d o,)„=X"~"(q„. . . , q ),' ~, . (A3)

For completeness we define the full correlated
part of the gpss-particle inclusive spectrum by

(v s —q') ', 1 va &0, is acceptable. This last
property ensures that the integrated amplitude
does not diverge (except possibly from the small
q' region). This restriction is generally accepted
for a multiperipheral amplitude to guarantee that
the total cross section does not violate the
Froissar t bound.

1. Kinematical Correlations

To approach the problem, we first separate the
correlation effects due to purely kinematical con-
straints from those arising from the dynamics.
For simplicity, we restrict ourselves to the kine-
matical region in which only one 0 function, say
g(v s —Q,. q',. ), is important. The other g function
is assumed to give property (i) identically. The
generalization to include both 9 functions is
strai ghtforward.

We begin by analyzing the correlation effects
that arise solely from the kinematical constraints;
that is, we take

1
~ dq~ dq—(d (x,) -=T (q„.. . , q }

CT~ qm

Hence

(A4) f (")(q„q„.. . , q„) = e(v s gq', )—
and

(A8 }

(A9)
~„(q„.. . , q ) -=/X" ~"(q„.. . , q ). (A6)

For clarity of presentation, the properties of the
7" near the kinematical boundary will be treated
separately in Sec. A1.

We recall that the exclusive distribution function

f (n) can be written as
(n) (n)f (q q. . .q.)=f (q„q„,q.)

x e(&s —g q,'. ) e( vs —Q q,. ),
(A6)

where the e functions in (A6) describe the kine-
matical constraints on the final-particle momenta
due to energy-momentum conservation. All
dynamical information is contained in the
f~")(q„q„.. . , q„), which are assumed to satisfy
(i) the factorization property that, for

(ql, . , q'.)»(q'. „,. . . , q„'),
(.)f (q„q.. .q„)

It is convenient here to use the scaled momentum
variable s

x,. = q',. /v s, 1 ~ x, ~ 0

and to introduce

(A10}

(Al 1)

We now define a set of "cluster functions, "
9)„(x„.. . , x„), from the g„by

q), (x}=- e, (x) = e(1 —x},

q, (x„x,}= e, (x„x,) —e, (x,}e, (x, )

(A12 a)

= g(1- x, —x, ) —e(l —x, )e(1 —x,),
(A12b)

and, in general,

e„(x„.. . , x„)= Q q)„q)„~ ~ ~ q)„. (A12c)
all partitions

=f' '(q„q. . .q.)f'" '(q „,. . . , q„)

+ 0(q,'. /q, '. ) (A7}

with iC(1, 2, , m), jE(m+1, . . . , n) and (ii) the
scaling properties as outlined in the text. We as-
sume further that as a q', or as the sum of certain
q', approaches the kinematical boundary Ws, the
amplitude is not more singular than (v s- q') '.
A less divergent amplitude, for example,

q), (0) =1,

q)„(0,x„.. . , x„)= 0 for all n o- 1.
(A13)

(A14)

(2) For small x„q)„(x„.. . , x„) remains zero

The cluster functions y„have only kinematical
correlations and vanish identically if Q, ,x,. &1.

The following properties of q„are crucial to our
analysis:

(1) For 0 ~x,. &1, we have
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until x, passes through the root of one of the equa-
tions

O(2) 1 2~ (. . ) — v ~O
1 ' dx dx , , 1

2 1& 2 12 s]./s -ll ~2

x, + Q x,. =l.
some f

(A15) and

lim " p„(x„x ~ ~ x )f(x.)dx ff

xl x2 0 0 x

= smaller of O(x, ) and O(x, ) .

(Al'7)

Property (1) can be verified easily for the first
few orders and can be established in general by
induction. Property (2) follows from the fact that

y„ is a function of e(1 —Q„, , x,. ) only. Thus,
will remain constant (in this case, zero) until one
of the 0 functions changes its value. To prove
(A16), we note that for small x, the only regions
of the x„ integration in which y„g 0 are given by

x+x+ P x, »&x+ Q x, ,

or, equivalently,

1 — g x,. &x„&1— Q x,. —x, . (A18)
some i some l

Since the intervals of the x„ integration are of
O(x, ), so is the integral in (A16). The extension
of (A16) to (A17) and then to the general case is
strai ghtforward.

The properties (1)-(3) permit us to establish
immediately that the fully integrated cluster func-
tions are linear in lns and that the partially inte-
grated cluster functions have finite correlation
lengths. Actually, the above properties imply
some much stronger results. First, they imply
that only the first fully integrated cluster function,

G"'= —'(p, (x) =lns+O—
s

contains any factors proportional to lns. All other
fully integrated cluster functions, such as

(3) Let f(x) be an arbitrary continuous test func-
tion and let x, &0 be small. Since we are explicitly
excluding the kinematical boundary from our pres-
ent discussion, we may assume that none of the
differences, 1-Q„,, x, , ie(2, 3, . . . , n —1), is
both positive and of the order of x, . Then we have

lim " y„(x„x„.. . , x„)f(x„)=O(x, ) .dx„

xl ~0 0 Xn

(A16)

Similarly, if both x, and x, are small [and since
none of the differences, 1-Q„„.x, ,
i = (3, . . . , n —1), is permitted to be positive and
of the order of x, or x2], we have

lim 7"(x„.. . , x„)=O(x, ) .
xi~0

(A20)

To derive (A20), we have, as before„assumed
that none of the differences, 1 —g „,, x, , is of
O(x, ) and positive. For simplicity, we refer to
quantities such as x, (lnx, )" as O(x, ).

2. Combined Kinematical and Dynamical Correlations

Now we consider the general case. To get some
feeling for the results, let us work out the first
few correlation functions explicitly. The function

g ~"(x„x,) is given by

g"'(x„x,) = f"'( „xx,)e(1 —x, —x, )

-f '"(x,)f '"(.;)e(1 —x,) e(1 —x,)

=g"'(x„x,)e(1- x, —x, )

+g'"(x,)g'"(x,)(p, (x„x,) . (A21)

Equation (A21) reveals that g~" is composed of
two terms. The first term, g "(x„x,)e(1 —x, —x,),
contains all the dynamical correlations, whereas
the second term contains only the kinematical cor-
relations. Note that y2(x„x,) vanishes as any of
the x's-0. Based on the results given in Sec. Al,
it is easy to see that the second term in (A21) does
not contribute to any lns factor in G ". Thus the
entire lns factor in G~" comes from the first term
and hence can at most be linear in lns.

A similar technique can be applied to g" and in-
deed to g

" as well. For simplicity, we denote

and

g"'(x„x„x,) by g'"(1, 2, 3),

cp, (x„x,+x, ) by y, (1,2+3),

(p,(x, +x, +x,) by (p, (1+2+3),

(A22)

and similarly for all other functions of the x, We
then have

g"'(1, 2, 3) =g'"(1, 2, 3)rp, (1+2+3)

+g'"(1)g'"(2, 3)(p,(l, 2 + 3)

gti&(2)g(2)(l 3)p2(2 1i3)

+g~ "(3)g~'~(1, 2)(p, (3, 1+2)

C"'=— ' ' '(p (x„x„x,) = -,g(3)+O—dx dx dx 1

3t g x x x s

approach constants. Second, they imply that the
partially integrated cluster functions 7. " actually
approach zero as any x, , say x„approaches zero,
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The first term in (A23) represents the purely
dynamical correlations, and the last term repre-
sents the purely kinematical correlations. All the
remaining terms represent combinations of the
two effects.

It is straightforward to see that the entire lns
dependence of G ' comes from the integration of
the first term in (A23) and consequently that this
dependence can at most be linear in lns. To under-
stand this result, we consider a typical term in
G'", say,

' ),"*'(2 2)2.)2, 2 2~) f=—'*2)*)2.)*„*)
0 2 3

=O(x, ) .

(A26)

Equation (A26) implies that (A24) does not contrib-
ute any Ins factors.

Similar methods are applicable to the analysis
of the partially integrated amplitudes. Consider,
for example,

' d 2 2 2 (2)(I)g(2)(2 3)y (I 2 + 3)
1/s X1 X2 X3

' d'(1 2)= ' "'(1 2 3)
g/ ))j X3

(A27)

(A24)

Since g "(2,3) ha.s a finite correlation length, the
integration over the relative coordinate leads to
a well-behaved function even as I/s-0,

l ' g')(2, 3)X5(x +x, —x):—l2(x). (A25)
Q X2 X3

At small x„we obtain from the discussion in
Sec. A I

' g")(1,2, 3)e(1 —x, -x, —x,)
X3

(A28)

which has a finite correlation length. Hence,
r', (I, 2) has a finite correlation length as well.

The above analysis can be generalized to all
orders. In particular, one can show that

As x,-0 and if 1-x, 220(x, ), one can verify that the
contributions to 'r(I, 2) from the last four terms
in (A23) approach zero. Further, the contribution
from the first term leads to

all partitions

(A29)

where (NJ stands for (1, 2, . . . , N), (n,) is a subset
of (g with (N) = (n2) e) (n,j )9 ~ .)9 (n, , and Q(n, j
stands for Q, ,~„,)x;. Equations (A21) and (A23)
are special cases of (A29). Using (A29) and the re-
sults of Sec. A1, we can show that the only term
in (A29) which survives in a partially integrated
cluster function as any x,.-0 is the term

g~")(1,2, . . . , N)(P2(1+ 2+ +N)

=g'x)(I, 2, . . . , N) e(1 —x, —x, — ~ -x,) . (A30)

This is also the only term which contributes to
the lns factor in the fully integrated cluster func-
tion. Hence the lns dependence is linear. Since
g'"'(1, 2, . . . , N) has a finite correlation length
between any two pairs of x's, we conclude that
the 7.„also have finite correlation lengths.

matical boundary: That is, we have considered the
case 1-Qx;=O(1). In this section, we wish to
study the properties of the inclusive cross sections
near the kinematical boundary, in the region where
l-gx, «1. We shall examine two separate cases:

(1) f " remains finite as P x; - 1
and

(2) f'"'-(I -gx, )-' as Px, —1.
To demonstrate the essential points, let us con-
sider the two-particle inclusive cross sections with
1»1 —xi —x2 &0

If f "'(1, 2, . . . , n} remains finite (or approaches
zero) as x, +x, -1, we have for 1»1 xy x2
&Q,"=,x; (and hence x)+x2»p", =, x;),

f'"'(I 2 ~) =f"'(1,2)f'" '(3 ~)

3. The Kinematical Boundary
+O{1—x, —x,). (A31)

%e have thus far restricted our considerations
to the inclusive cross sections away from the kine-

This is, of course, the basic factorization prop-
erty of f„. Thus, we have, to within O{1 xy x2),

dx dx A.
" " ' dx dx n'=2'j'"t) 2) ' '' Q ' " '" ')2 )2) —* —* -r, *)x, x, {n—2). „,x, x„
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The contribution due to the undetected particles
exponentiates into

x2 . . . xIIf(n-2)(3 4 )
~

~ ~ ~
~ ~ ~

(n —2)! 0„, x2 n

g /g, = p()()s '"'. (A34)

Since the trajectory function u()() is determined by
the contribution from the small-x region (i.e. , the
pionization region), both expressions (A33) and

(A34} have the same o((X) as indicated. Thus, the
s dependence disappears in the quotient

n
x6} 1 —x —x — x

t =3

=y()()[(1 —x, —x,)s] '" . (ASS)

Recall that the total cross section exponentiates
into

finite correlation length. Similarly, in this case
the correlated parts of all inclusive cross sections
have finite correlation lengths even when the sum
of the x's is near the kinematical boundary.

The situation is more subtle if f(")(1, . . . , n)
blows up like (1 —xi —x2 — ~ —x„) ', 0(a( 1, near
the kinematical boundary Then, Eq. (A31) may
not be valid because of the singular nature of f "

near x, + x, = 1. However, one can assert that since

h "(1,2, . . . , n) = (1 —x, —~ ~ ~ —x„)'f ")(1,2, . . . , n)

(A36)

is finite near the kinematical boundary, one has
for x, + x, = 1 and P ", ,x, «1

d'g(1, 2) d'g(1, 2)/g,
gr gr/go

h2 y() ) f(2)(1 2)(1 )
(2) «i «2

p()()
' ' 2 x, x2

(A35) or

h "(1,2, . . . , n) = h ' (1, 2)h(" ' (3 . . . , n)

+O(1 —x, —x, )

(A37)

Note that (x(A) &0 and f ' (1, 2) is finite. Hence,
the inclusive cross section d'g/g„vanishes like
O((1 xl &p) ) at the kinematical boundary. Thus,
the correlated part of the two-particle inclusive
cross section, 2 2(1, 2) = d'g, /g r, vanishes as
x, » x„either as O(x, /(1 —x,)) if 1 —x, » x„or as
O((1 —x, —x,)') if 1»(1—x,„x,) and 1 -x, is of
the same order as x, . Therefore, T, (1, 2} has a

f (II)( 1 2 )
h '

(1, 2)f " (3, . . . , n)
(1-x, —x, -px, )'

x [1+O(1—x, —x2)j. (A38}

Now, the inclusive cross section can be written to
within a fractional error of O(1 —x, —x, ) as

d'g(1I 2) X'h 2)(1 2)~ X ' ' dx,
g, ' ~(n —2)! )y, x,

dx„ f(" ')(3, . . . , n)
xn 1 —x —x -~~x1 2 ~ j

j=3

)('h"'(1 2) dy, dy, f " '(3 n)2 II I ' ' 'I ()(1, )(1 —x, —x,)' (n —2)! ((i-.,- *,).)-' » y (1 —y, — .- y„)'

(A39)

with y, = x, /(1 —x, —x, ). The kinematic restrictions
require x„.. . , x„ to be small. Then the invariance
of f " under scale transformations in the pioniza-
tion region implies that

f (II 2)(3 n) f (II 2)(x x ) f—(II 2)(y y )

(A40)

Thus, the sum of the remaining y integrations
leads to y()()[(1 —x, —x,)s) ' as before, whereas
the total cross section g„/g, exponentiates to

p()()s"( . Dividing d'o/go by gr/g2 we obtain to
within a, fractional error of O(1 —x, —x,)

d g(1I 2) )( y()() h( )(1, 2) dxi dx2

A. h(')(1 2)(1 —x —x )" '

(A41)

Since h(2)(1, 2) remains finite near the kinematical
boundary, the properly normalized inclusive cross
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section vanishes near the kinematical boundary if
n(A)&a but becomes singular if a&n(A). Thus, for
n(X) & a, the inclusive cross sections have finite
correlation lengths as demonstrated earlier. How-
ever, for a& n(X), the inclusive cross section di-
verges at the kinematical boundary. The factori-
zation for the inclusive cross sections then fails
at the boundary. Actually, this is not surprising.
At small A. [and hence at small n(A)] the inclusive
spectrum approaches the exclusive spectrum.

Thus, the inclusive spectrum blows up if the ex-
clusive spectrum does. The failure of the factori-
zation of the inclusive spectrum at the kinematical
boundary is a reflection of the failure of the factor-
ization of the exclusive spectrum near the bound-
ary ~ We find, however, that the inclusive spec-
trum is always better behaved than the exclusive
spectrum near the kinematical boundary. This is
especially so if the coupling is strong.
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