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A general method of calculation within the multispinor formalism is proposed. It is then
used to calculate the eigenvalues of the theory of particles with any spin moving in a homo-
geneous magnetic field, without explicitly solving the equation of motion. The spin-1 theory
with anomalous-magnetic-moment couplings is examined specifically. The results differ
from those obtained by Tsai and Yildiz using the vector theory, and from those obtained by
Goldman and Tsai and by Krase, Lu, and Good using the six-component theory. It is found
that the discrepancies are due to the fact that different nonminimal couplings are in fact
added to various theories. However, when only minimal couplings are considered, all three
theories predict the same eigenvalues. In this case, the square of an eigenvalue is a perfect
square and is positive definite. In the case where nonminimal couplings are added, the
square of an eigenvalue can become negative in all three theories, i.e., the energy eigen-
values can become pure imaginary. Possible physical interpretations of the results are
discussed.

I. INTRODUCTION

It is well known that systems with integer spins
can be described by tensor fields, while systems
with half-integer spins can be described by tensor-
spinor fields. ' It is also known that they can be
alternatively described by multispinors with defi-
nite symmetry properties. ' So far, most calcula-
tions involving higher-spin fields have used tensor
or tensor-spinor theory. The reason is that, while
in the former theory the calculation method is
well known, in the latter no method exists at the
present stage. It is important to find a general
method of calculation within the multispinor for-
malism.

The problem of the motion of charged particles
in an external electromagnetic field has been with
us for a long time. ' Until recently, the only cases
discussed have been the spin-0 and spin--,' sys-
tems. Recently, the spin-1 system with anomalous-
magnetic-moment couplings has been discussed
by Tsai and Yildiz4 in the vector theory, and by
Goldman and Tsai' and by Erase, Lu, and Qood'
in the six-component theory. It is found that the
squares of the energy eigenvalues can become
negative and that the results obtained from the two
theories are different. 4' It is interesting to see
whether pure-imaginary eigenvalues also occur in
the multispinor theory, and to compare the re-
sults obtained from various theories.

The purpose of this paper is to propose a general
method of calculation within the multispinor for-
malism. ' The method is then applied to calculate
the eigenvalues of the theories of spin--,' and spin-1
particles, with anomalous magnetic moment
(a.m. m. ), moving in a homogeneous magnetic field.

By starting from the eigenequation and by elimina-
ting the dependent variables, we obtain an eigen-
equation for the independent components of the
eigenfunctions. It is at this stage that comparison
among various spin-1 theories is made. We found
that, when only minimal coupling is considered,
all of them have exactly the same form and hence
predict the same eigenvalues. However, when
a.m. m. couplings are added, they differ by terms
proportional to ~, the strength of the a.m. m. , and

by terms of order H' or higher. The discrepancies
are due to the fact that different nonminimal cou-
plings are in fact added to various theories. In
Sec. II, the general method of approach is pre-
sented for the spin--,' case. It is then extended, in
Sec. III, to the spin-1 case and applied to solve the
eigenvalue problem. The eigenvalues are solved
for explicitly, and comparisons among various
spin-1 theories are made. In Sec. IV, the eigen-
values are discussed, as well as possible physical
interpretations of the results.

II. METHOD OF APPROACH

In this section, we give a detailed discussion of
the method of approach for the spin--, system.
The techniques learned here can be directly applied
to multispinors of higher rank.

To simplify our argument and for later applica-
tion to the eigenvalue problem, we consider only
the case when particles are moving in a homoge-
neous magnetic field, which is chosen to be in the
z direction. The other cases can be similarly
discussed. Under this condition, the eigenvalue
equation is

m —y P +y w — eq(r ~ H q(r)=0,
2m
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with
1x= —. & —eqA (r).

Our calculation method is first to decompose the
identity into

(io H x v}2 = —Fpm, ' —eqo ~ H,

P = 4m'. A'e,

Y= x'+ u2H2(w, 2 —eqo ~ H),

in which

A~') = —.'(1~y').

(2)
are used. However, from the identity

H'(o 7r, ) = (o ~ H }(io ~ H x w),

Eq. (9) becomes

[Y—4m'(o ~ H)x]4' =0, (10)

A'"y'= ~ A'"
k

A"A" =O,

A 'iy =iy, A ', A 'y„=+a„iy A' .

~ith this decomposition and from Eq. (1}, we ob-
tain

The latter quantities satisfy the following relations:
where we have used Eq. (7).

Now since Eq. (10) is a function of 5~2 and o ~ H

only, we may choose 4 as an eigenfunction of m~'

and o„with %~' = (2n+1)eH and o2' =+1. The result-
ing characteristic equation becomes

x' —4m'(o ~ H )x 4X'H'-(x2 —eqo ~ H) = 0. (11)

(M- p')q" = (o —)( r~.)C'

(M+ p'))t)i ' =+ (o m)(i' ,))t)",

where

(3)

(4)

The solution of Eq. (11}which satisfies the weak-
field result implied by Eq. (6) is

x=2m'(o ~ H)(1 —[1+(x~ —eqo ~ H)m ]' ].
More explicitly, the eigenvalues are

Then by defining

q(+) ~ g(-) g 4+

g/2

(p')'=m' (1+ g
'"—,+p, ',

where

b = 2mko. H, $ = eB)m, 2) =(2n+ 1 —qo2)$.

(12)

we may rewrite Eqs. (3) and (4} as

p g, =M)I) +(o ~ x)(iy, ))I), ,

p ))) =M))) —(o' 7r)(2y, ))))

which can be combined to yield

P'4'=[Mp, +(o ~ n}(iy, )p ] 2,4 (5)

(po)'4 = [M +P —eqo H + u(io. H x v) J4,
which may be rewritten as

x4 = o(io ~ H x7r)q,

with

x= (p')' —(M'+ x2 —eqo ~ H ),

~=2~(~p, )(~y,), ~'= -4~'.

(6)

(8)

The multiplication of Eq. (7) by n(io ~ H x71) yields

where p, is the Pauli spin matrix. This is the
eigenvalue equation we want to study.

The method to obtain the eigenvalues of Eq. (5)
is as follows. By multiplying Eq. (5) from the left
by po, we obtain

This is just the result obtained by Ternov et a l. ,
'

by using the differential-equation technique and
solving for the eigenfunctions and eigenvalues of
the system.

We see that even though the second-order form
of the eigenvalue equation cannot be diagonalized,
it can be diagonalized in the fourth-order form,
and the eigenvalues are then easily obtained. The
methods of decomposing the eigenfunctions into
various parity subspaces and of going to the fourth-
order form to diagonalize the eigenvalue equation
are quite general and can be applied to any spin
cases.

III. SPIN-1 CASE —MULTISPINOR
OF SECOND RANK

The method illustrated in Sec. II will be applied
in this section to calculate the eigenvalues of the
spin-1 theory in the multispinor formalism. The
eigenvalue equation, for the spin-1 particle with
anomalous magnetic moment, is'

2(r, ' +r.')p' + '( r, +r, ) x-
Y4' = P(cr ~ m~)4',

where the relations

[x, io ~ H x w] = 4m XH'( vo, ),

(s) -', q(2, ~,) H))=0.
2n1

'

(13)

By applying the decomposition method described in
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Sec. II to Eq. (13) with

0 ng ~a a' ~ g f3'0a' 8'

(A(+)+ii(-)) (A(+)+ii(-))

&(++ ) + &(
- +) + &(+ -) + &(--)

( «) (~) (+)
ag A aa'~ 8g'0a'g' ~

(~) (~) (~)
0(g no' g 8'4n' 8' ~

we obtain

p0)q(++) r[( ) q(-+) ( ) q(+ -)
J

(M+ p0)~( - -) &[ ( ) (C)(+ -) + ( ) rc)(
- +)

]

Mq(+-) &[( )
~(--) + ( ) ~(++)J

Mq( -+) r[ ( ) q(++) ~ ( ) g( --)]

(14)

(15)

(1~)

(17)

where

S = —,'(0, +&a,), M=m —A.S - H,

( ),. = ((r w, ), (iy0)
2m '

((r w );=((r; ~ w ), i=1, 2.

Then by multiplying Eq. (14) from the left by M and
using Eqs. (16) a.nd (17), we obta, in

[M(M- p')+ -'(,' —eqS H ) J rt"' —-'(()„(),jr}'

= —l GM, ( ),) 0' '+ [M, ( ).Jy' '}

Further multiplication by Ion the left-hand side
of Eq. (18) yields

[(M —A H )(M-p )+ 2M(rri' —eqS ~ H) —zA(wi'S H —~ eqH')](()"

={M[(S~ wi)' ——2'(wi' —eqS ~ H)] —A S ~ H(S ~ w, }'+A eqH'(1 —S,') + —,'A wi S H)(iy, ),(iy, ),g

where we have used Eq. (14) and the relations
(19)

[M, ((r ~ wi),. J= —A(io ~ Hxw}c 2,

[M, [M, (o w, ),. JJ= A'(o ~ w, ),.H',

—,'[(i(r H x w), (o ~ w, ), + (i(r ~ H x w) 2((r ~ w, ),] = (i S ~ H x w) (S ~ w, ) —,' w,
' S H,—~

—,'-(((r w, )„((r w, )2] = (S w, }2- 2'(w, 2 ——eqS IT),

—,'([M, ((r ~ w, ),](o ~ w )„+[M, ((r ~ w ),](o ~ w ),}=—( A/)2( w'S H —eqH ),

and we have chosen v, =0 to simplify the calculation. Similarly we have

[(M' —A'H )(M- p ) + 2M(wi' —eqS H)-(A/2)(~ wi' 8.H —eqH') J g(

=(M[(S ~ w )' ——,(w
' —eqS ~ H }]—AS H(S. w ) +AeqH (I —S )+ 2Aw S' H) (iy0)r(iy2)2~"

Equations (19) and (20) are the two basic eigenequations from which the eigenvalues are to be calculated.
Direct manipulation from Eqs. (19) and (20) is quite complicated. However, it becomes much simpler if

we separate the eigenvalue equations for the S, =0 and the $, =+1 cases. This is accomplished by using the
projection operators

P(S, =0) = (1 —S,'), P(S, = 1) =S,',
which satisfy the relations

[S2, (S ~ wi) ] =0, S,(1 —S2'}=0, (1 —S2')(S wi)'= w2 (1-S2 ) .

In the following, we will discuss these two cases separately.
(a) S, =0 case.
By applying P(S, =0) to the left-hand side of Eqs. (19) and (20), and by defining

y"=(1 S')q" (ir ) (~r ) y"=y"'
we have

[(m' —A'H')(m-p )+ , mwi'+ ,A'eqH'] (p
' = (——,mwi—'+ AeqH')(p'

[(m'-A'H'}(m+ p')+ —.'mw, '+ —,'A'eqH'] y(-) = ( ,'mw, '+AeqH-'}y" . (20')
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The combination of Eqs. (19') and (20') yields

([m(m2 —&'H') +—,( mr,r' +)('eqH )]' —(p')'(m' —)2'H')') p" = ( ,'m—rr,'+ XeqH')'(t)(' .

In the case when m'c X'8', we obtain

(p )'Q ' = m' —)2'H' —)(H' m'+ rr
' A'H-'+

m' gq. . . SeqAH'
(m' —Z'H')' 2m ' 2m

eq)(H' 1,eqH', 3eq),H' eq)2'H'
m+7t, + + ~i'+

m m' -X'H' 2m ' 2m 2m

1 eqh. H 2 SeqA, H (,)

(m -)('H')' 2m 2m
(21)

This js to be compared with the results obtained from vector theory and from six-component theory. They
are

(p )'4 = (mo+)r, ')42 (vector theory),

(p )'r}) ' =[m'+rr~'+ r(e'H'(m — er('H') '(m'+rr~')](})" (six-component theory).

(22)

(23}

We see that Eqs. (21)-(23) differ from each other by terms proportional to r( and by terms of order H' or
higher. This may be interpreted as due to the fact that the effect of adding a.m. m. c. in one theory is equiv-
alent to the effect of adding more nonminimal-coupling terms, which are scalar functions constructed from

F„„to the other theories.
From Eq. (21), we obtain the following eigenvalue for the multispinor theory:

(l')'= '( '- H')2'( '-2'B'- H' '+(2 ~ 1) B-2'B' 3eqA. H'
2m 2m

(21')

In the case when m' = A. 'H', we have

(3)(eqH'+ mrr, ')(mrr, '+ )(eqH')(}) ' = 0,

which in general does not hold unless Q" = 0.
(b} S, =+1 case.
By applying I'(S, = +1) to the left-hand side of

Eqs. (19}and (20), we obtain

D(A+P'}q)(' = —(D[(S ~ rr )' ——,'(rr, '-eqS ~ H)J

with

2XB= —(S ~ rr )'--,'(rr ' —eqS ~ H}+a 1+ —S ~ H
m i —— i m

&& (ix,)2(iro)2,

a =m(mo —4)(oH2) ' —,'XeqH2.

By defining

where

+ ,XeqH') @' '— (24)

one has

p(+) ~( -) y ~+

A =m —)(S H+ —(rr~' —eqS ~ H), D=m —2)(S H,

4() S g( )
4

()
( )(i )@(

If m'g4X'H', then D has an inverse. And it is
easy to show that the inverse is

4A.2H2

Therefore, when ' m4 2'2)'(HEqs. (19) and (20) be-
come

P )fl =(Ap, +Bip, )4(,

or in second-order form, one has

(po)'4' = (A' —B' —p, [A, B])qr.

Since

[A, B]= - )(S H+ —S ~ H, —( S ~ rr)'
2m 'm

eq(1 —K)H—N

(25)

po)y(+) Bq ( -)

(A ~ po)p( -) Bq, (+)

(19")

(20")

N=S m +S m'

we have
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eq(1 —«)-(b')'4' = m'+«, ' -eq(1+ a)S H +, S ~ H (v, ' —eqS ~ H)+X'H'

a eq(1 —a)H1+ —S H — N, +p 4, N (iy, ),(iy ) 4' (26)

which is the eigenvalue equation to be solved. This is to be compared with the result obtained from both
the vector theory and the six-component theory,

eq(1- «)- -, - - eqH(1 —«)
(p ) 4= m +z, —eq(1+«)S H +, S.H(«, ' —eqS H)s, N 4.

2m2 4m
(2q)

Again the difference is due to anomalous-moment
couplings and is of order H' or higher.

Our object is to solve Eq. (26) by using the meth-
od outlined in Sec. II. To do this, we rewrite it as

The iteration procedure described in Secs. II and
III (a) can be applied here. By multiplying Eq. (28)
on the left by y, one has

[ y' —(n~' —a, ')N+'Jql = [y, (u, —u, S, )N, ]4',
y4 = (Z4+ n, S,)N, C',

where

y = (p')' —(a, + n,S.H),

n =m'+m —2eqS I+A. H'

e H' a2 4A.'H'
+ (1 —K) ——1+

2mz m2 m2

(28)

which, by using Eq. (28), becomes

[ y'+ 2u, S Hy —(a~ —n, )b]4' = 0,

where

N, '4 = 4(w, '+ 3e'H' —4eqS ~ H v, ')~I =—b@.

(29)

(30)

1, - — a 4X
e, =eq(1 —K) 1+,(~,' —2eqS ~ H) ——,—,2m' m'm '

eq(1 —«) a
,m' ' 4 2m' '

u, = —p, (iy,),(iy, ),eq(1 —«)H(4m') ',

And the eigenvalues are

y = —a2S H+ (a,'H'+ (a4' —a~')b J'",
or more explicitly,

(p')'= n, + [n, 'H'+(n, ' —u, ')b] '". (31)
and we have used the identity'

N, = —S3N, .
The solution of Eq. (30) which satisfies the weak-
field limit implied by Eq. (26) is

')I rl ~ !'tl —,'- '1 0'S, j(I1 — )(I "II —,)
(1 «)' a' 2 «a'

x 1 - (n' - h')
4

— . , (I - «)(I + q)-

(32)

where

a = —,
'

m «$ (1 —«$ ) ', 5 = eH/m,

g = (2n+ 1 —2qS, }(.
Equation (32) is our final result. We note that as
« = 0, Eq. (32) becomes

with

(p ) =m'[(1+ rl+ —,'g')'"+ —,'qS, te]',

which is the same result as obtained in the vector
theory and in the six-component theory.

IV. CONCLUSIONS AND DISCUSSION

Equations (21') and (32) are the eigenvalues of
the eigenvalue equation (13). We see that both the
method of calculation and the form of the result
are quite different from those of the corresponding
vector theory and the six-component theory. Some
properties of the eigenvalues can be easily obtained
by considering the following particular cases:

(i) From Eq. (21'), it is easy to show that (po)'
can become negative when the inequality -1 & ~ & 3
is satisfied.

(ii) In the case when n =0 and qS, =+1, Eq. (32)
becomes
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(34)

which is positive definite only when ~ is a negative
number.

(iii) When case (ii) is excluded, and when $»1
and x c 0, we have

(P')'- —,m'$'IK'+ 2(1+qS~)(1 —z)l, (35)

which can become negative when qS, =+1 and
2 —2u 2 & I(. &2+2& 2 . Therefore, from cases
(i)-(iii), we conclude that, outside the region
2 —2v 2 & ~&0, (p )' is not positive definite.

Up to now, all the three popular spin-1 theo-
ries -the vector theory, the six-component theory,
and the multispinor theory —have been examined
explicitly, and the pure-imaginary eigenvalues are
found. We also found that the addition of a.m. m. c.
in one theory corresponded in its effect to adding
more coupling terms in the other theories —terms
of order H' or higher. This suggests that the con-
ventional way of adding the a.m. m. c. to the eigen-
value equation is only good for the weak-field case.
In the strong magnetic field, more nonminimal-

coupling terms, which correspond to the magnetic
polarizability effects, must be added to the eigen-
value equation. It is interesting to find a way to
add these terms such that (P')' becomes positive
definite.

It has been suggested that the inconsistency of
the result may be due to the omission of pair crea-
tion and radiative corrections. However, we should
like to point out that these corrections cannot ex-
plain the following two points: (i) For sufficiently
large II, p' is pure imaginary in spin-1 theory;
(ii) the same processes occur in the spin- —,

' case
and there is no indication of why (P )' is positive
definite in the spin- —, theory while it is not positive
definite in the spin-1 theory. We argue that the in-
consistency is due to the formalism itself, not due
to the incompletion of the processes. ' The usual
way of adding a.m. m.c. is good for the weak-field
case only. For the strong-field case, other scalar
functions of F must be added.

We finally remark that the method of decompos-
ing the eigenfunction into various positive- and
negative-parity subspaces is quite general and can
be applied to other cases, especially for low-ener-
gy processes. '
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