
3648 TSAI AND A. YILDIZ

Moscow Univ. Phys. Bull. 21, 21 (1966).
3A. Proca, Compt. Rend. 202, 1490 (1936); N. Kemmer,

Proc. Roy. Soc. (London) A173, 91 (1939); J. A. Young
and S. A. Bludman, Phys. Rev. 131, 2326 (1963).

V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci.
U, S. 34, 211 (1946); J. Schwinger, Particles, Sources
and F'fields (Addison-Wesley, Reading, Mass. , 1970).

5D. Shay and R. H. Good, Jr. , Phys. Rev. 179, 1410
(1969).

6Throughtout this paper we consider the case when the
homogeneous magnetic field is along the z direction.

7After the completion of this paper, our attention was
brought to the result obtained by L. D. Krase, Pao Lu,

and R. H. Good, Jr. , Phys. Rev. D 3, 1275 (1971). Our
result disagrees with theirs in the S3 = 0 case. This dis-
crepancy is due to the theories themselves (Refs. 9 and
10), not due to the method of calculation. The effect of
adding a.m. m.c.t. in one theory is equivalent to the ef-
fect of adding more nonminimal couplings to the other
theory.

SG. Velo and D. Zwanziger, Phys. Rev. 186, 1337 (1969);
182, 2218 (1969). However, their conclusions are in con-
flict with ours.

Wu-yang Tsai, this issue, Phys. Rev. D 4, 3652 (1971).
T, Goldman and Wu-yang Tsai, following paper, Phys.

Rev. D 4, 3648 (1971).

PHYSI CA L REVIEW D VOLUME 4, NUMBER 12 15 DE C EM BER 1971

Motion of Charged Particles in a Homogeneous Magnetic Field. II*

Terrence Goldmanf and Wu-yang Tsai
Jefferson Physical Laboratory, Harvard University, Cambridge, Massachusetts 02138

(Received 29 March 1971)

The general method proposed by Tsai and Yildiz to obtain the eigenvalues of any spin theory
has been used to solve the eigenvalues of the 6-component theory of Shay and Good. This cal-
culation method clearly demonstrates how the vector theory of Proca and Kemmer differs
from the 6-component theory. An extra term which contributes to the S3 =0 case only is ob-
tained in the 6-component theory, which explains the difference in the results obtained from
the two different theories. With the result obtained, it is observed that the 6-component
theory is consistent only when there is no anomalous-magnetic-moment coupling. Possible
interpretations of the inconsistency are also discussed.

I. INTRODUCTION

Recently a general and simple method to obtain
the eigenvalues of any spin theory has been pro-
posed by Tsai and Yildiz. ' With this method, they
easily reproduced the spin--,' results of Ternov et
al. ' Furthermore, they went on to obtain the eigen-
values of the spin-1 theory of Proea and Kemmer'
and observed that the spin-1 theory is consistent
only when there is no anomalous-magnetic-moment
coupling (a.m. m.c.). While the vector theory is in-
consistent, it is important to see whether the in-
consistency also occurs in the other spin-1 theo-
ries, namely, the multispinor theory4 and the 6-
component theory. '

The eigenvalues of the 6-component theory have
been obtained recently by Krase, Lu, and Good'
by using the quite complicated conventional method
of solving the differential equation. However, their
results are different from that of Paper I in the
S, =0 case. Hence, it is important to see whether
the discrepancy comes from the theories them-
selves or from the caleulational methods.

The purpose of this paper is to obtain the exact
eigenvalues of the 6-component theory by using the

simpler method of Paper I. By starting from the
same eigenvalue equation as Ref. 6, we explicitly
show that the discrepancy of the results obtained
from the two theories is due to the theories them-
selves, not due to methods of calculation. An ex-
tra term which contributes to the S, = 0 case only
is obtained in the 6-component theory. Further-
more, the eigenvalues are obtained explicitly and
from the result obtained, we observe that the same
inconsistency as in the vector theory also occurs
in the 6-component theory with a.m.m.c. There is
even an additional inconsistency in the 6-compo-
nent theory at a e'8'=m'. Possible interpretations
of the inconsistency common to both theories are
discussed.

II. SPIN-1 EIGENVALUE PROBLEM

In this section, we obtain the eigenvalues of the
eigenvalue equation of Shay and Good by using the
method of Paper I. Before commencing the calcu-
lation, we briefly recapitulate the general method
of Paper I, which can be summarized as the fol-
lowing three steps:

Step 1. The procedure starts from the eigenvalue
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(—,'-(1+ p, )[w ' —(p')'j —P, (S w)' —p'ip, (S.w)

+m' ——,'(p, +X)eqS ~ H j((r = 0,
(1)

where p, is the Pauli spin matrix. By introducing

(1+2P,)r}r}rr= z(1+Pi)ip, (}r, «= z(A —1),
and by multiplying Eq. (1) from the left by —,'(1+p, )

and by —,'(1+p, )ip„respectively, we obtain

[ jC"=p'(S')q( (2)

M((r' '= -p'(S w)r(r" (3)

with

[ j=m'+w' —(p')' —(S w)' —eq(1+«)S H,

M =m'+(S ~ f)' —eqzS ~ H.

By multiplying Eq. (2) from the left by M and by
using Eq. (3), we have

(M[ ]+(p'}2(S w)'jr'"= p'eq«(iS ~ Hxw)g(-&-

where we have used the commutation relation

[M, S ~ w]= eq«(iS Hx -w) . ~

(4)

equation. The dependent components of the eigen-
functions are eliminated from it by using the con-
straint equations devolved from the eigenvalue
equation. This leaves an eigenvalue equation for
the independent components of the eigenfunetions
which is rewritten in matrix form by introducing
or reducing to the spin matrices for the spin case
in question.

Step 2. The eigenvalue equation is rearranged
so that only terms which are a function of S ~ H and

m,
' appear on the left-hand side and all terms

which do not commute with these appear on the
right-hand side. The iteration-elimination proce-
dure of Paper I is applied to this form of the equa-
tion just as in the spin- —, ease described in Paper
I to create a new equation in which every term is
a function of S ~ H and fi' only. This is the charac-
teristic equation in the usual matrix algebra sense.

Step 3. The eigenfunctions ean now be chosen to
be simultaneous eigenfunctions of 7] ~' and S H which
reduces the characteristic equation to an algebraic
one in (P')' of finite order. The roots of this alge-
braic equation are found and extraneous roots are
eliminated by comparison with the result obtained
from the original eigenvalue equation in particular
simply calculable states, and by comparison with
the approximate solution of the original equation
in the weak-field case.

Following these procedures, we start from the
eigenvalue equation of Good and Shay, "which can
be written in the form

Further multiplication of Eq (.4) from the left byI yields

(M'[ j+(p')'M(S w)' —(p')'eq«(iS Hxw)(S w)('r}r"

=-eq«p'[M, iS.Hxw](' '.
(4 4)

In the following, to simplify the calculation, we
consider only the case when m, =0. In this case,
with the help of the relations

(S ~ w, )'= (w, ' —2eqS H)(S w, }',
(iS Hxw)(S ~ w, ) =(S ~ H)(S ~ w, )' —eq8'(1-S, '),
((S wi), S HQ= (wi —eqS H)(S H),

[S ~ H, iS ~ Hx wj = (S ~ wi)H',

[(S ~ w, )', iS ~ Hxw]=A(S ~ w, )+B(iS Hxw),

A = —[2(S ~ H)w~' —eqH'+ 2eq(S H)'],

B= m~'+4eqS ~ H,

we obtain

( po}2L~(+) Rq(+)

where

L = (M —B)(m' —eq«S ~ H ) + eq«A

—«'e'B'+eq«(i S.Hx w)(S w},

R = [(M —B)M+ eq«A —«e'H']

x [m' +,w' —(S ~ w~)' —(1+ «)eq(S ~ H)].

If we let

R = L[m'+ xi' —eq(1+ «)S ~ H ] —L(S ~ w )'+R',
with

R' = [(M —B)(S ~ w, ) —eq«(iS H x w)(S ~ w, )]
x [m'+ w, ' —eq(1+ «)S H —(S w, )']

= [m —(6+ 2«)eqS ~ H] (S ~ wi)' [m'+ eq(1 —«)8 ~ H ]

+ m«'e' 'B(1 —S,'),

L(S ~ w, )'=(m' [m' —(6+ 2«}eqS H ]

—«'e H'(1-S, ))(S ~ w~)',

and use the relations

L(1 —S,') = (m' —«'e'H')(1 —S,'),

(1 —S,')(S ~ w, )'= (1 —S,')w~',

L(S ~ w~) (S ~ H) =m'[m' —(6+2«)eqS- H]

x (S ~ w, p(S ~ H),
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it is straightforward to show that

Rg ' =(L[m 2+@~'-eq(1 +«)S ~ H+eq(1 —«)m (S ~ fr~) (S ~ H)]+«e H (1-S, )(m2+«v~ ))P~+&

= L [m'+w '-eq(1+«)S ~ H+eq(1 —«)yn '(S ~ v~)'(S ~ H)+«e'H'(m'+«v, ')(m —«e H') '(1 —S, )]g ', (6)

where we assume that m't ~'e'H'. The case when m'= w'e'H' will be discussed in Sec. III. Note that
when m's «'e'H', L has an inverse; the combination of Eqs. (5) and (6) gives

(p')'tll'=[m'+v~' —eq(1+«)(S H)+eq(1 —«)m '(8 ~ v~)'(8 ~ H)+«e'H'(m'+«v~')(m~ —«'e'H'} '(1 —S,'}]t) '.
(7)

Further simplification is achieved by the relations'

( (S ~ 77, )', S ~ H ]= (v, ' —eqS H)(S H),

(S ~ w, )'S ~ H = &(v, ' —eqS ~ H) + —,AN

and the final result is

(p')'g '= [m'+ w~' —eq(l+ «)S ~ H+ eq(l —«)(2m') '{v,' —eqS ~ H)(S ~ H)

+ eqH(1 —«)(4m') 'N + «e'H'{1 —S,')(m'+ «v, ')(m' —«'e'H') '] g ', (8)

which is equivalent to Eq. (18) (with v, =0) in Paper I. We note that the coefficient of N differs in sign
from that of Paper I. However, it does not affect the final results. The last term in Eq. (8), which con-
tributes to S, =0 only, is completely new in the 6-component theory which explains the different results ob-
tained in Ref. 1 and Ref. 6.

The procedures to solve Eq. (7) are exactly the same as those outlined in Paper I, because of the relation

N, (1 -SB ) =0.
The solution of Eq. (8), which satisfies conditions (26) and (27) of Paper I, is

2 g2 1/2

( p')' =m' ([1+g+ 4(qS, t)']'"+ —,'eqS, (]' ——,'«(qS, )'( $+ qS, (2+ q) 1—,+«$', , (1 - S,')

(9)

for m'e a'e'H'.

III. CONCLUSIONS AND DISCUSSION

Even though the 6-component theory looks quite
different from the vector theory, the decomposi-
tion techniques [Eqs. (2) and (8)] and the iteration
procedures [Eqs. (4) and (5)] simplify the eigen-
value equation (1) and bring it to the form of
Eq. (8) which is similar to Eq. (18) of Paper I.
In this way, we can easily compare the two theo-
ries. And they differ from each other by a term
contributing to the S, =0 case only which explains
the two different results obtained by Paper I and
Ref. 6.

From Eq. (9), by letting S, =0, we have

2H2 1

(p )'= (1—, ' ~ [2 ~ 1) H ~ (1 — )

(10)

which is exactly the same result as Eq. (15a) in
Ref. 6 while it differs from Eq. (25) in Paper I.
As we stated before, the discrepancy is due to the
theories themselves, not due to the method of ap-
proach. This difference can be removed by adding

a nonminimal-coupling term which is bilinear in

F„,to the vector theory. '
We comment that the above solution can be ob-

tained from Eq. (5) directly by multiplying Eq. (5)
from the left by g'~"*0, the eigenfunction for which3- '
the eigenvalue of S, equals zero. In this way, we
obtain

(m —«'e'H')[(p )' —m' —(2n+1)eH]

'Ps =0 r tt's =o r~dr

= «e'H' [m + «(2n+ 1)eH]

x q.. .(r)*q,, ,(r)d r .

When m'c «'e'H', we get back to Eq. (10) which
checks our calculation. However, in the case
when m'= z'e'H', the left-hand side is zero while
the right-hand side is not and we have a contradic-
tory result. Furthermore, inconsistency also oc-
curs in Eq. (10) if we require that (p')'&0. This
makes the 6-component theory more unpleasant
than the vector theory.
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In the case when $, = ~1, we have

(po)2 2 [(1+q + 1 (2}1/2 + 1 S (]2

2 (2 l/2
$+ qs, (2+@) 1 —,

k2 +'g)

(11)

which is exactly the same result as Eq. (28) in
Paper I. We observe that, from Eq. (9), (P')' is
positive definite only when w =0. Therefore, we
conclude that the 6-component spin-1 theory is
consistent only when z =0.

We note that while there are at present three
popular spin-1 theories, two of them have now
been found to be consistent only when z =0; it re-
mains to be seen whether the inconsistency also
occurs in the multispinor theory of second rank. '
The eigenvalues given in Eq. (8) do not include
corrections such as pair creation and radiative
corrections. It has been suggested that the omis-
sion of these corrections may be the cause of the
inconsistency. While there is no existing method
which tells us how to calculate these corrections
even in the spin--,' theory with a.m. m. c., it is un-

clear whether these effects will cancel out the in-
consistency of the theory. We would like to point
out that these corrections cannot explain the fol-
lowing two points: (1) For sufficiently large val-
ues of H, P' is Pure imaginary in the spin-1 theo-
ry; (2) the same processes occur for spin —,

' and
there is no indication of why (p')' is positive def-
inite in spin--, theory while it is not positive def-
inite in spin-1 theory.

We argue that when we start from an equation
which is inconsistent, it is unlikely that a consis-
tent result will be obtained. The disease is in the
formalism itself, not in the incompletion of the
processes. A possible interpretation is that the
spin-1 particle with anomalous magnetic moment
is a composite particle and it simply decomposes
into lower-spin particles at sufficiently high mag-
netic field. We also comment that it is more in-
teresting to find an argument or a method to make
the spin-1 theory consistent. One of the possible
ways to remove the inconsistency is to start with
the assumption that g is H-dependent. The other
is to find a new way to introduce the electromag-
netic interactions into the free-particle Lagran-

giann.
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