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It is shown that, given SU(2) and T invariance, their outer automorphisms, which must
themselves be symmetries, form a one-parameter gauge group. Thus, from isospin con-
servation and time-reversal invariance, one gets hypercharge conservation. Similarly,
from angular momentum conservation and T invariance, one has fermion-number conserva-
tion. Further, the well-known empirical relations (—1)Y =(=1)2/ and (=1)F =(=1)%/ are

derived.

1. INTRODUCTION

Recently! it was emphasized that the automor-
phisms of internal-symmetry groups are inherent
conventions associated with their physical applica-
tions. Since there is a one-to-one correspondence
between conventions and symmetries, this means
that the outer automorphisms of internal-symme-
try groups play an important role. In fact, accord-
ing to the discussions in I, if one has an internal-
symmetry group G containing a degenerate sub-
group S, then outer automorphisms of G which
leave S invariant are themselves symmetries.
These new symmetries are in general hidden sym-
metries. Indeed, in the numerous examples inves-
tigated in I, we could not decide whether the de-
rived symmetries were degenerate or hidden. The
identification can only be done by comparison with
reality.

Let us emphasize that there is no fundamental
difference between hidden and degenerate symme-
tries. (In this connection, we may remark that the
familiar term “spontaneously broken” symmetry
is somewhat misleading.) If G is a symmetry
group, and if S is a subgroup of G, then hidden
symmetries arise when the physical states form
irreducible representations, not of G, but of S.
Indeed, the cosets of S in G constitute the hidden
symmetries.

The physical significance of outer automor-
phisms may also be visualized in another way.
When we have a (degenerate) symmetry group S
(elements labeled as S%) and some physical states
(labeled as | @,)), we are accustomed to thinking
that the labeling has already been given. Further,
an element S° is understood to operate on the
states and give rise to a reshuffling of them.
Thus, |a;) % |a,) and $°5°s% so that

(CARIEY ECTIRH a;) =(a;| 8| a;),

where S°=(5°)"'$°5°. The symmetry of our system
is reflected in the equivalence of the states | a;),
which may be reshuffled. On the other hand, we
could have regarded the elements S° to operate on
S, and leave the physical states unchanged: |a;)
82| @), S*$£S°. In other words, the operation of
S¢ gives rise to a reshuffling of elements in S. The
symmetry of our system is reflected, then, in the
equivalence of the elements in S. Therefore, we
had in the beginning the labeling of S and | @), the
symmetry results as a consequence of our free-
dom in reshuffling the states | @) or the elements
S®. The first view is the usual one, while the sec-
ond view corresponds to interpreting S° as ele-
ments of the inner automorphism of S. According
to this second viewpoint, it is quite clear that outer
automorphisms are just as good as the inner ones.
Having adjoined these outer automorphisms to our
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symmetry group, we have still to go back to the
first, and “usual,” viewpoint. It is then necessary,
as was found in I, to interpret them as hidden sym-
metries, in general. The two viewpoints are actu-
ally complementary. If S has neither a center nor
an outer automorphism (except the trivial ones),
then the two views are the same. If S has a center
C, then to regard S as inner automorphisms actu-
ally maps C to the identity.? On the other hand, if
S has some outer automorphisms, the “usual”
viewpoint becomes rather cumbersome for visual-
izing the existence of these symmetries.

In this work we wish to extend the previous con-
siderations to include antiunitary symmetry oper-
ators - the time-reversal operator 7. One of the
most interesting properties of 7T is that phase fac-
tors of state vectors become nontrivial under 7.
Taking advantage of this property, we will show
that the outer automorphisms of 7 and SU(2) (the
isospin or rotation group) are realized as phase
factors. Further, being just phase factors, these
newly obtained symmetries are necessarily degen-
erate symmetries. By explicit construction, we
will in fact find that the outer automorphisms of 7
and SU(2) generate a gauge group U(1). Moreover,
this U(1) group combines with the SU(2) group to
form a U(2) group. Thus, given 7 and isospin, we
derive the hypercharge conservation. Similarly,
from 7 and the rotation group SU(2), one obtains
the fermion-number conservation. Further, the
well-known empirical relations (-1)?/=(-1)¥ and
(=1)?7 =(=1)2*L = (~1)F are direct consequences of
our construction.

In Sec. I, we give some general discussions on
the questions of the structures of internal-symme-
try groups. It seems obvious that these structures
are rather nontrivial. Particular emphasis will be
laid on the conflicting nature of the various famil-
iar symmetry groups. Section II is devoted to a
discussion of some properties of the discrete C,

B, and T symmetries when they are adjoined with
other internal-symmetry groups. The adjunction
of T to an SU(2) group is considered in Sec. IV.
Finally, some concluding remarks are offered in
Sec. V.

II. GENERAL REMARKS

It was recognized some time ago that the problem
of combining several internal-symmetry groups
into a larger one is rather nontrivial. In fact, one
is naturally led to studying the group extensions.?™®
Thus, Michel® was able to show that, in combining
the Poincaré group to the gauge groups

(Ug(1), Us(1), UL(D)],
a relation of the form

(_1)21 - (_1)610 +€2B+€zL

must hold, where €,=0 or 1. The different solu-
tions correspond to different possible extensions
of the gauge groups by the Poincaré group. The
“physical choice”

(_l)zJ — (_1)B+L - (_I)F

can only be decided by comparing with reality.

Another familiar example has to do with the
problem of adjoining the time-reversal operator
T to the internal-symmetry groups. For instance,
it is well known that 7 and the isospin operators
satisfy

{T, L}=[T, 1, 5]=0.

These nontrivial commutation relations originate
from the antiunitary nature of 7 and the require-
ment that 7 does not change the charge of a phys-
ical state.

In I, these considerations were carried one step
further. It was argued that, by the very nature of
the degenerate internal-symmetry groups, their
outer automorphisms must themselves be sym-
metries. This requirement turns out to be very
restrictive, as was discussed in I.

As a further example along these lines, let us
begin with the chain of symmetries

Uy(1) C U(2) CSU(3). (1)
(A chain G,CG,CG,C* - is established if each G,
is a subgroup of G,,,.) What happens if we consider

the outer automorphisms of the groups in Eq. (1)?
It turns out! that they are

(S
Up(l): @ --9;

C C. C2
U@Q): Y-V, L=+, Iy—-I4; (2)
. C3 C3
SU@): Fisuase~Fisase Fasng~Fasm-

Since we obviously have the chain

C,CC,CGy, (3)
Egs. (1)-(3) may be combined (with C;2=1) into
UQ(I)XSZZC U(z)xsZZCSU(3)><sZzy (4)

where X, denotes the semi-direct product. Thus,
given Eq. (1), it turns out that the outer automor-
phisms (the charge conjugation) have a natural
generalization as we enlarge the symmetry groups,
so that Eq. (4) results.

The situation is completely different when we
consider, in addition to Ug(1), U(2), and SU(3), the
parity operator, which forms a Z, (P, P2=1)
group. Instead of Eq. (1), we now have
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Uy(1)XZ,CU(2)xZ,CSUB) %X Z,. (5)

Besides C, , ; the introduction of parity gives rise
to two new outer automorphisms,*

Up(1)XZ,: P%(-1)°P;

U@)xZz,: PY¥(-12p. (6)

[The automorphism V may be easily obtained with
the methods discussed in I (further, V2=WZ2=1).]
Also, SU(3)XZ, has no outer automorphism ex-
cept C, as was given in Eq. (2). Our argument
shows that U, (1) X Z, must be enlarged to [Ugy(1)

X Z,)X Z,, and U(2)X Z, to [U(2)XZ,]x,Z, where
the Z,’s behind the semi-direct product signs are
formed out of V and W, respectively. However,
Eq. (6) shows that V cannot be included in U(2)X Z,
or W, and W not in SU(3)X Z,. We have

[Uo(1) X Z,]%Z, ¢ [U(2) X Z,]X s Z, ¢ SU(3)X Z, .
("

Thus, consideration of parity brings out the in-
compatibility of the symmetry groups Uy(1), U(2),
and SU(3). We may in fact call Uy(1)XZ,, U(2)XZ,,
and SU(3)X Z, “conflicting symmetries.” Even
though they may be included in a chain as in Eq.
(5), their outer automorphisms cannot be so en-
larged, as in Eq. (7).

Physically this result is easy to understand.
Given Uy(1)XZ,, V corresponds to the ambiguity
of the relative parity between states with even and
odd charges. If we embed Uy(1) in U(2), then Vis
violated since in U(2) X Z, members in the same
isospin multiplet must have the same parity. The
same consideration applies to W when we embed
U(2) in SU(3), as was discussed in I, where we also
showed that, in order to preserve W, we must en-
large U(2) to SU(3) xSU(3).

The conflict between Uy (1) X Z, and U(2) X Z, may
be interpreted in the following way. The strong
interaction is known to conserve isospin and parity,
as well as the charge. However, one may ask
whether the strong interaction only conserves U(2)
approximately, in the sense that there may be a
genuine isospin-breaking term in H,. Equation (7)
says that such a picture is inconsistent, theoret-
ically. Conversely, given that the symmetry group
of H.,is Ug(1) X Z,, it is also inconsistent to en-
large it to groups with an SU(2) structure.

One has to be a little careful in dealing with the
“conflicting symmetries” and the related problem
of “broken symmetries.” Our analysis was based
on the assumption that one “knows” that H, pre-
serves U(2) and H,y,, Ug(1). Suppose one were to
insist that U(2) X Z, be only a remnant symmetry
of SU(3)XZ,; then indeed one might break SU(3) in
such a way that the absolute parity of /=1 states

STRUCTURE OF INTERNAL-SYMMETRY GROUPS 3639

be fixed. (In reality, of course, the parity of /=3
states is not absolute.) What we are empasizing is
that the reverse procedure is more physical and
consistent. We should start from U(2) X Z, and en-
large it. In this case the absolute parity of =3
states is never measurable. Similarly, the sym-
metry properties of Hy and H.,, should be regarded
as having entirely different characteristics.

We should also emphasize that, even if we were
to insist on starting from SU(3) X Z,, to break it
without preserving W, in a sense, yields a U(2)

X Z, which is not “pure.” For, what we get is a
U(2) X Z, with an extra, exterior, constraint (that
the I=3 states have absolute parities). Finally, in
assigning symmetries to H,, we are not saying
that SU(3) is in principle not possible. We have
merely opted for U(2) as a better choice.

Mathematically, these results seem to hinge on
a number of “accidents.” We may observe that, in
physics, the enlargement of symmetry groups is
often “noncentral,” in that for G;C G,,,, the center
of G; is not in the center of G,,,. The enlargements
of Ug(1) to U(2) and of SU(2) to SU(3) are all ex-
amples of noncentral enlargments. The conflict
between SU(2) and SU(3), for instance, has its root
in that (-1)?/, which is essentially the identity in
SU(2) (rotation of 27), becomes just an undistin-
guishing member in SU(3). Coupled with these
facts are the existence of involutional (reflection-
like) symmetries C, P, and 7. The adjunction of
these operators enhances the importance of ele-
ments of order two [such as (-1)°, (-1)?!] in the
internal-symmetry groups. In a way SU(3), which
has in its center only elements of order three,
would be the “natural” symmetry group to consider
if we had discrete symmetry operators which show
“triality” rather than “duality” properties. All of
these seem to suggest a rationale for the fundamen-
tal importance of the group SU(2), which happens
to posses in its center a nontrivial element of or-
der two. A further illustration will be given in
Sec. IV, where we consider the problem of adjoin-
ing the time-reversal operator to SU(2).

HI. INVOLUTIONAL SYMMETRIES

To facilitate our considerations later, we will
now proceed to discuss some general properties
of the involutional (reflection-like) symmetries C,
P, and T in connection with their adjunction with
the continuous internal-symmetry groups. Since
their squares C?, P2, and T2 represent the iden-
tity operation physically, it seems safe to make
the following ansatz:

Ansatz. Given any internal-symmetry group G,
the operators C?, P2, and T2 must be in the cen-
ter of G.
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As an immediate consequence, we have the fol-
lowing theorem:

Theorvem. If we exclude from our considerations
the Poincaré group, then C2=P?2?=7T%=1, the iden-
tity element in any internal-symmetry group G.

Several things need clarification.

(1) G shall be understood to stand for any inter-
nal-symmetry group, whether it be for the strong,
the electromagnetic, or the weak interactions.
Here we are assuming that even though the “usual”
C and P symmetries are violated by H,,, the vio-
lation is known and it is meaningful to talk about
C? and P? which, furthermore, are not violated
by Hwk .

(2) It is not generally necessary to assume that
C?, P2 and T? be the identity in G. In fact, itis
well known that 72 =(-1)?’ so that, for the Poin-
caré group, T2 is indeed not the identity.

(3) The ansatz limits, to a certain extent, the
freedom which the operators C, P, and T enjoy
from the general viewpoints of group extensions.
In such considerations, say extending G by P, it is
usually argued that gP, where g is any element in
G, may be used as the parity operator. Clearly,
the ansatz dictates the choice of g to those for
which (gP)? is in the center of G.

(4) The theorem follows immediately since in re-
ality the enlargments of symmetry groups are non-
central. Consider the strong-interaction symme-
tries. If we believe in the possibility of the chain
SU(2) C U(2) CSU(3) XSU(3) in the sense that it
makes sense to talk about an exact SU(3) xSU(3)
limit, then C?=P2%=T2%=1, since the identity is the
intersection of the centers of SU(2), U(2), and
SU(3)XSU(3). Alternatively, we may consider U(2)
for H, and Uy(1) for H,,, the intersection of whose
centers again yields the identity uniquely.

(5) Note that in studying, for instance, the ad-
junction of P to SU(2), it is perfectly all right to
have P%2=(-1)?!. However, if P has also to be ad-
joined to other groups, which do not have (-1)* in
their centers, then we must give up the solution P?
- (_1)21_

(6) 72=(-1)*/ is compatible with our discussions
only because the rotation group is a symmetry
common to all interactions. Note also that 7'2
=(-1)?/ forbids any noncentral enlargements of the
rotation group. (In fact, any “higher-symmetry”
schemes which mix half-integral- with integral-
spin states are forbidden.)

IV. ADJOINING THE TIME REVERSAL TO SU(2)

Consider the internal-symmetry group composed
of SU(2) (isospin) and 7 (time reversal), with 72
=1 (see Sec. IlT). As we mentioned before, the
antiunitary nature of T and the fact that 7 is not

supposed to alter the charge of a physical state
imply the following relations:

[T’ 11]:[T, 13]:0,
{1, L,}=0, (8)
T?2=1.

For our discussions it is convenient to introduce’
a slight variant of 7,

T=el™T =Tei"2, (9)
which satisfies
{Ty 1 }:Os
- 1,2,3 _ (10)
T2=(-1)*, T*=1.
Since T is also antiunitary, we have
Teto 'l =0 1T, (11)

The symmetry 7 and SU(2) now form the direct-
product group, [SU(2)XZ,]/Z, where the factor
group has to be taken since 7T 2 must be identified
with the center of SU(2).

From our discussions in I, it follows immediate-
ly that the only outer automorphism of the group
[SU(2)xZz,]/ z, is

T 2, Tg,™ = (-1 T =T ~*. (12)

[g, is necessarily an outer automorphism since 7'
commutes with SU(2).] Equation (12) is similar to
our earlier discussions of the W symmetry,

PY(-1yp,

However, owing to the antiunitary nature of 7, the
physical consequences of g, are entirely different
from those of W.

In order to analyze the properties of g, we start
from an I=} state, say |a), which will be as-
sumed to be “elementary,” in the sense that all the
states may be regarded as composite states of
| @), as far as their isospin properties are con-
cerned. [Of course, on a composite state g, is to
operate in the usual way: g,(| a)| a)+-|a))
=(g,l @)+ * (g, @)).] Without loss of generality,
then, we will only consider the state | a).

We now observe that the automorphism g, may
be realized on | a) by the operation of multiplying
by the phase ei™2,

Zolay=e"?ay. (13)
Algebraically, this solution satisfies

8o =(-171,

& T=Tg, !, (14)

g 11=0,

where the second equation follows because T is
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antiunitary. Equation (12) is obviously an immedi-
ate consequence of Eq. (14).

The important point about Eq. (13) is that g,
when applied to | a), does not create a new state.
Thus, the fact that T is antiunitary has the re-
markable consequence that g,, which induces an
outer automorphism on 7, is a degenerate symme-
try operator.

Given that g, is degenerate, we must now study
the enlarged, still degenerate, symmetry group
consisting of SU(2), T, and g,. There are now two
new outer automorphisms,

2ot gy = (-1)"g,,
(15)
[/, T1=1£1]=0,
and
T%g,T,
(£, 1] =81, £]=0. 19)

[Note that (g,T)(g,T) =g,(g,"*T)T=T2.] The na-
tures of f and g, are completely different. Just as
before g, must again be a degenerate symmetry,
being realized on | @) as a phase factor ei™

glay=e"a). (17)
Algebraically, we have

&°=8o,

&T=Tg,™, (18)

[gv-i] =gy &J)=0.

On the other hand, for f we may define a state | @)
by

flay=|a). (19)
Then
&l @) =e "2 @). (20)

[Incidentally, Eq. (20) shows that | @) must be dif-
ferent from | @).] We have still to find the effect
of fon g,. Since g,®>=g, we have, from Eq. (15),

fglf—l =g1-l~ (21)

Summarizing, we find, from SU(2), 7, and g,
an additional degenerate symmetry g, (satisfying
&% =g,) as well as an (in general) hidden symmetry
/f, satisfying fg,f~'=g,"" and fg,f~'=g,"".

Entirely similar reasoning leads then to the
existence of another, degenerate, symmetry oper-
ator g,, with

T2g,T,
ngz ng—l )
8 =&,

(82 80) =8 £1) =82 1120, (22)
&l a)y=e"%a),
fng—l :gz-l .

Obviously, in this way, starting from 7 and
SU(2), we generate the symmetry f and a sequence
of degenerate symmetries, g, g, &5, - .., with the
properties

&T=Tg ™,

8%=8i_1

(g, g5]= 2, T =0, (23)
f&:i /" =87t

glay=e"? " a).

Further, it is clear that any product of the g’s,

&g
is also a degenerate symmetry operator. It follows
that the g’s actually generate an Abelian U(1) group
(since any real number x, 0< x <1, may be written
as x=Ya,/2", for a,=0 or 1). Let us define this
U(1) group as U,(1) ={e'®*}. Then

Y|a)=la),
8o=e' T [g2=(=1)4, g,t=1], (24)
8, = eil 1r/4)y’ .

so that ¢%Y can always be written as a product of

the g/’s.

Therefore, given 7 and SU(2), we have gener-
ated a one-parameter degenerate gauge group
Uy(1) ={e®"} satisfying

lv,1]=0,
[Y, T]=0 (ei"T=Te oY),
and, by Eqs. (14) and (24),
(=1)'=g2 = (=1)*". (26)

[In other words, SU(2) and Uy(1) generate U(2).]
Needless to say, Uy(1) is nothing but the hyper-
charge gauge group. The other symmetry f [Eq.
(15)] corresponds obviously to the usual G parity,
satisfying [Egs. (15), (21), etc.],

(£, 1)={, v}=0. @7

Let us now pause for a moment, in order to get
rid of a number of ambiguities neglected earlier.
In Eq. (13), actually another solution exists,

Sola)=e"i"2| @) . (13%)

This obviously corresponds to starting with | @) in-

(25)
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stead of | @), as in Eq. (20). Next, in obtaining g,
s - - - [Egs. (17), (22), etc.], one may take the so-
lutiorn (—1)%/g, instead of g;. However, since (-1)*/
=¢'™ all these solutions are recovered when we
have generated the Uy,(1) group. Lastly, in extend-
ing f from g, to operate on g, since we can only
require fg,’f ' =g,_,”', we may, besides fg,f !
=g;”!, get another solution fg;f~*=(~1)*’g;~*. This
ambiguity is removed, however, by considering
S8 f™'. For, either solution [g,,,~" or (-1)*g,  ~!]
givesfgif-l :fgi-uzf-l =g~

In summary, we find that hypercharge conser-
vation follows from time reversal invariance and
SU(2) symmetry. Further, an “elementary” iso-
spinor must have Y=+1. In general, for compos-
ite states, even and odd Y values correspond to
integral- and half-integral-isospin states, respec-
tively.

If we start out from 7 and the rotation group
[SU(2)], then, algebraically,

{r,J}=0,

T2 =(-1)%/ (28)

It is clear that, by identical arguments as above,®
we necessarily generate the fermion-number
(F =B +L) gauge group U,(1) ={e’®F} and the fer-
mion-number-conjugation (Cj) operator, satisfy-
ing

(F, J)=[F, 1]=0,

eiOF T = Te~i0F

(-1)F=(-1)*,

{Cr F}=[Cp F]=0.

(29)

V. CONCLUDING REMARKS

In this work we have found some rather nontriv-
ial consequences in studying the outer automor-
phisms of symmetry groups. Specifically, we
found that the outer automorphisms of the time re-
versal and an SU(2) group generate unambiguously
the degenerate symmetry group U(2). Thus, hy-
percharge conservation follows from 7 and isospin
conservation. The fermion-number conservation
is a consequence of the angular momentum conser-
vation. The well-known empirical relations (-1)¥
=(-1)*" and (-1)F =(-1)*/ were derived in the pro-
cess,

In retrospect, these results are not as surpris-
ing as they might first appear. We may note that
the “number laws” are realized as phase factors
on the physical states. Since the time-reversal
operator is intimately related to phase factors, it
is perhaps not too surprising to find a cause and
effect relation between them. Another important
ingredient in our discussion is the existence of
spinors and isospinors, or the empirical fact that
the centers of SU(2) [(~1)?/ and (-1)?] are nontriv-
ially represented. If there are only integral-spin
and -isospin states, or, if SU(2)/Z, instead of
SU(2) were to be our symmetry group, then Eq.
(12), which is the starting point of all our discus-
sions, is trivial and nothing would have been
learned from our considerations. The empirical
relations (=1)¥=(-1)?/ and (-1)F =(-1)2/, in this
connection, may be taken as further clues to the
intimate relationships between half-integral repre-
sentations and the “number laws.” Indeed, start-
ing from these relations, what we showed in Sec.
IV was that we may take “square roots” succes-
sively. These “square roots” generate the gauge
group U(1).

Our heavy reliance on 7' may lead to the follow-
ing objection. Since we know that T is violated
(by the “superweak interaction”), but the fermion
number is not, is there not something wrong with
our derivations? Actually this dilemma is only an
apparent one. We may start from the strong, the
electromagnetic, and the weak interactions, for
which 7' and SU(2) (rotation symmetry) are exact.
We then obtain Ug(1). Having obtained the larger
group, we ask: How does the superweak interac-
tion behave under this larger symmetry group? It
is not hard to imagine that indeed the superweak
interaction behaves so that it violates 7, but still
conserves U(2). In a similar way, for 7 and iso-
spin, we have obtained the hypercharge conserva-
tion, which is a symmetry for H,,, even though
H,,, does not respect the isospin conservation.

Finally, it is not difficult to convince oneself that,
had we started from 7 and U(2) or SU(3) xSU(3),
we would only have obtained inner automorphisms.
This, again, testifies to the fundamental impor-
tance of the SU(2) group.
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A general and simple method is presented to calculate the eigenvalues of the eigenequation
for the theory of a particle with any spin with anomalous-magnetic-moment coupling moving
in a homogeneous magnetic field. The eigenvalues of the spin-} and spin-1 systems are ob-
tained specifically. This method of approach does not require an explicit solution of the eigen-
function equation. Different spin-1 theories (vector theory, multispinor theory, and 6-compo-
nent theory) are discussed, and in the case of no anomalous-magnetic-moment coupling terms,
all these theories predict the same eigenvalues. Furthermore, by requiring that the energy
eigenvalues be positive definite, we show that the vector spin-1 theory is consistent only when
no anomalous-magnetic-moment coupling terms exist.

I. INTRODUCTION

The problem of describing the motion of charged
particles in an external electromagnetic field has
been with us for a long time.'? Until now the only
cases discussed have been the spin-0 and spin-3
systems, and the generally accepted method of ap-
proach is to define the Lagrangian equation of mo-
tion and to use the differential-equation technique
to solve for the eigenfunctions and eigenvalues of
the system. This approach becomes increasingly
complicated when anomalous-magnetic-moment
coupling terms (a.m.m.c.t.) are introduced? and
when we discuss the higher-spin cases.

The purpose of this paper is to present a simple,
general method for calculating the eigenvalues of
particles of any spin with anomalous magnetic mo-
ment moving in a homogeneous magnetic field. The
method is introduced in Sec. II, and the results of
Ternov et al.? are easily reproduced. In Secs. III
and IV, the eigenvalues of a spin-1 theory with

a.m.m.c.t. are calculated explicitly within the vec-
tor theory of the Kemmer-Proca equation.® By ob-
serving the physical requirement that the squares
of the energy eigenvalues be positive definite, we
show that the spin-1 theory is consistent only when
the a.m.m.c.t. are not present. The predictions
from three different spin-1 theories —vector theo-
ry,® multispinor theory,* and the 6-component
theory® —are discussed in Sec. V. We find that for
the case where the a.m.m.c.t. are absent, these
theories all predict the same results.

II. METHOD OF APPROACH

In this section we illustrate the method of ap-
proach in the spin-3 theory with a.m.m. couplings.
Our starting point is the eigenvalue equation®

w°p°zp=<m +¥-ﬁ—%o,ﬂ)w, (1)



