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It is proposed that outer automorphisms of degenerate internal-symmetry groups must be
symmetry operators themselves. In general, however, they are hidden (spontaneously bro-
ken) symmetries. Consequences of this proposition are studied. It is found that internal-
symmetry groups are not arbitrary but that their intrinsic properties play an important role.
The existence of discrete symmetries (such as charge conjugation) follows naturally from
assuming the continuous symmetry groups (such as gauge groups). We also find that the en-
largement of the isospin symmetry and parity leads directly to the chiral SU(3) x SU(3), so
that the existence of an “exact SU(3) limit” is in principle not allowed.

I. INTRODUCTION

Symmetry has always played an important role
in physics. Historically the rotational and trans-
lational symmetries were the first to be studied.
The theory of relativity brought in the Lorentz in-
variance. With the advent of quantum mechanics,
discrete space-time symmetries (parity and time-
reversal) came into existence. Finally, the study
of elementary-particle physics brought forth a
whole new class of symmetries —the internal sym-
metries, such as the charge conjugation, isospin,
unitary spin, and many more “higher symmetries.”

The basic difference between space-time (ex-
cluding possibly the discrete symmetries) as com-
pared with the internal symmetries seems to lie
in that the space-time coordinates are physically
measurable quantities, while the corresponding
group space of the internal-symmetry groups are
fabrications with no physical significance whatso-
ever.

Thus, the “isospin space” is only introduced to
facilitate the comparison of isospin with ordinary

spin. The physically important (and meaningful)
quantities are the isospin operators. In fact, we
need not talk about the isospin space at all. (Of
course it may happen in the future that even the
isospin space will acquire some physical meaning.
For the moment, at least, this is not the case.)

If the only physically meaningful quantities in the
internal-symmetry groups are the group elements,
then we may expect that the intrinsic group struc-
ture plays an important role. In this work we will
discuss the restrictions on the internal-symmetry
groups which arise from their automorphisms.

In order to facilitate our discussions, it is con-
venient to first clarify the origin of symmetry
operators in physics. This will be done in Sec. II.
We will show that there is a one-to-one correspon-
dence between symmetry operators and conven-
tions. Indeed, in the quantum-mechanical sense,
each symmetry operator actually carries out a
change of convention.

We are then naturally led to ask the question: Is
there any convention in our use of internal-symme-
try groups? Section IV is devoted to this problem.
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We will find, loosely speaking, that the automor-
phisms of these groups are indeed inherent con-
ventions associated with their physical applica-
tions. A more precise analysis can be done only
by a more refined classification of the internal-
symmetry groups. This is done in Sec. III, where
we emphasize the role of hidden (or spontaneously
broken''?) symmetries as compared with the degen-
erate (or ordinary) symmetries. It turns out that
the automorphisms of the internal-symmetry
groups are symmetries, but in general they are
hidden. In Sec. IV, these considerations are sum-
marized in a proposition which is the main result
of this work.

The applications of our results are carried out
in Sec. V, in which a number of concrete examples
are studied. The sort of intrinsic restrictions on
the internal-symmetry groups are evident. We
find, for instance, from charge conservation, an
additional symmetry identifiable with the charge-
conjugation symmetry. The SU(2) and SU(3) sym-
metries are analyzed. It turns out that considera-
tions of parity invariance lead necessarily to a
broken SU(3) symmetry. The natural enlargement
of the isospin symmetry (plus parity) is shown to
be SU(3)xSU(3), but not SU(3). Therefore, it is
perhaps rather unfruitful to consider “the limit in
which SU(3) is exact,” since only “the limit in
which SU(3)xSU(3) is exact” exists. This is actu-
ally in line with recent trends, where more em-
phasis has been put on the study of the SU(3)xSU(3)
symmetry. Other detailed questions in connection
with the chiral symmetry are studied in Sec. VI.

The difficult task of handling space-time sym-
metry along the same lines is taken up in Sec. VII.
Our considerations seem to unveil more puzzles
than answers. Obviously much more has to be
done before we understand the problems involved.

A few final remarks are offered in the concluding
section, Sec. VIII. Appendix A is devoted to a
brief discussion of the mathematical tools neces-
sary in our analysis. Appendix B deals with the
considerable controversy generated in the wake of
some earlier suggestions®~® concerning broken
SU(3)xSU(3) symmetry. By relating them to a
larger class of physical theories, hopefully the
present work will shed some more light on these
suggestions.

Summaries of this paper were given elsewhere.®

II. CONVENTIONS IN PHYSICS

In our description of a physical system, we are
often confronted with different, but equivalent,
choices. It has been a time-honored practice to
make a particular choice, or a particular conven-
tion, and proceed with our description. Thus, in

describing a charged system there are a priori
two possible choices —to say that the system is
positively or negatively charged. Similarly, in
describing a spherically symmetrical system the
orientation of the coordinate system is free for
our choice. We are accustomed, in these cases,
to pick a particular convention (say, positive
charge and any particular orientation, respectively)
and disregard the problem. The question that one
may ask is: What relations, if any, are there be-
tween the different choices? In particular, if we
change our convention, does ‘“‘changing a conven-
tion” correspond to any physical operator? In
quantum mechanics, coordinate transformations
are generally carried out by unitary operators. If
the choice of the coordinate is a convention, the
unitary operator is furthermore a symmetry oper-
ator. Our problem is to study if there is any limit-
ation to this association. We would like to propose,
as a general rule, that the operation of changing a
convention has a one-to-one correspondence with a
symmetry operator.

It was remarked some time ago by Lee” that
symmetries correspond to “nonmeasurables.” It
is not surprising that “conventions,” which are
nothing but nonmeasurables, are intimately re-
lated to symmetries. What we wish to emphasize
is that a “symmetry operator,” in the quantum-
mechanical sense, actually carries out the physi-
cal process of changing a convention.

In the following, we enumerate a number of
familiar examples to illustrate our point.

(1) Rotation symmetry: Let us consider a
spherically symmetric system. The orientation of
the coordinate system that we may choose to de-
scribe our physical system is arbitrary, i.e., it
is a convention. To change the orientation, or the
convention, is therefore a symmetry operator. It
is the rotation operator which, quantum mechani-
cally, either rotates the coordinate or the physical
system under consideration.

(2) Parity symmetry: If left-handedness is not
distinguishable from right-handedness, then,
changing this convention is a symmetry operator.
It is carried out by the parity operator.

(3) Lorentz invariance: If, in describing a
physical system, it is a convention to use what-
ever initial frame one likes, then, changing from
one initial frame to another is a symmetry opera-
tion. It is the Lorentz transformation operator
which effects this transition.

(4) Charge conservation: If the state vectors in
the physical world may be grouped into sets (each
set consists of states with the same “charge”), so
that we may attach a common phase factor to the
states in the same set, with no measurable con-
sequences, then, the phase factor that one uses
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for the state vectors becomes a convention. In
particular, one may change this phase factor by
the physical operators ¢'°?. These operators e'°?
are then symmetry operators of the physical world.
They form the symmetry group U(1) —the gauge
group for charge conservation.

Before we proceed, it may be worthwhile to
analyze the “converse” of our statements. If, in
our first example, orientation of the system be-
comes important, and ceases to be a convention,
then, correspondingly, rotation also ceases to be
a symmetry operator. Similarly, if left-handed-
ness is distinguishable from right-handedness,
then, the parity operator, which effects the transi-
tion, is no longer a symmetry operator.

Now, when we describe a system by a Hamil-
tonian H, an operator S is a symmetry operator if
and only if

[H, s]=0.

If we may assign S to a physical operation, such
as changing the orientation of a system, then, if

[H’ S]= 0’
the orientation is a convention. Conversely, if
(#, s}#0,

the orientation is not a convention so that we may
measure the orientation of our system in an ab-
solute way.

The above are a few familiar examples. It is the
purpose of our work to study the conventions as-
sociated with the internal-symmetry groups. We
will find that these conventions should also gener-
ate symmetries. In other words, our considera-
tion suggests that the internal-symmetry groups
are not arbitrary, but must satisfy certain re-
strictions from their intrinsic group structure
which, it turns out, is intimately related to these
conventions.

III. INTERNAL-SYMMETRY GROUPS

Before we proceed, it is useful to sharpen our
definition of internal-symmetry groups. We may
classify the internal symmetry into two types: (1)
the degenerate (or ordinary) symmetry, (2) the
hidden'*? (or spontaneously broken) symmetry.
Both types of symmetry operators commute with
the Hamiltonian, by definition. They differ, how-
ever, in their effects when applied to physical
states. Alternatively, the possibility of the two
types of symmetry is a reflection of two possible
types of structure of the Hilbert space for a sys-
tem described by a given Hamiltonian.

Consider a physical system with the state vectors
|#?, ¥, ... . The existence of a symmetry opera-

tor G consists in having®

Glo)=lo7, ... 1)
with

Kol = Ko [y (2)

It should be emphasized that no a priori restric-
tions are placed on the transformed states |¢7, ...,
as far as their relationships with the original
states |¢), ... are concerned. Now, if the ground
state of our system, called the “vacuum” |0), is
nondegenerate, then the uniqueness of the vacuum
forces the relation,

[0 =G0y =10). ®)

In this case, G is said to be a degenerate symme-
try.° On the other hand, the Hilbert space of our
system may be more complicated. There may be
a number of disjoint,'° isomorphic subspaces:
(10, |92, ...); (J0D, |87, ...);.... As long as the
inner products are preserved, i.e., for all states
Eq. (2) holds, the operator G, satisfying

Glg) =197, ...,

is a (hidden) symmetry operator. Thus, the hidden
symmetry originates from the possibility that the
Hilbert space is a direct sum of isomorphic sub-
spaces. Each subspace may be used to describe
our physical system. (The choice of a particular
subspace is a convention.) To switch from one
subspace to another is realized by a symmetry
operator, in fact, a hidden-symmetry operator.

We may summarize our discussions in the fol-
lowing definition. A physical system with an in-
ternal-symmetry group is characterized by a
Hamiltonian H, a set of degenerate eigenstates of
H [lay, la), ...; 1B, 1B, .. .; with the ground
states (vacua) |0), |0),...], and a group G, which
contains a subgroup S and its cosets S, with the
following properties:

(1) For S (the degenerate, or ordinary symme-

try),
S0y =10y, (@)
Slay =S;lay, ...,

where S;; is a linear representation of S.
(2) For S (the hidden, or spontaneously broken!’?
symmetry),

S|0y=[0) # |0),
Slay=lay,..., (5)

where |a;)are not linearly related to |a;).
(3)
GHG™'=H. (6)

Let us make the following remarks:
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(a) We could have used, instead of the state
vectors |a}),..., the “field operators” ¢(x),...
with corresponding transformation laws under G.
However, we believe that our considerations are
valid for ordinary quantum mechanics, and there
is no need to introduce field theory into our frame-
work.

(b) From Egs. (4) and (5), we can easily deduce
that S is a subgroup of G, and that S forms cosets
with respect to S. Now, the identity element neces-
sarily belongs to S. It follows that |0) =S~1(S|0))
=$710), so that the inverse of any element in S is
also degenerate. Also, if S; and S; belong to S,
then S;S;|0) =S;]0) = |0).

(c) In our definition, S is associated with a cer-
tain vacuum state. One may ask: What is the
state S|0)? This is obtained by observing

S|0) =S5|0) = (SSS~1)S|0)
=(SSS71)|0).

Thus, S|0) is determined by the group structure
which specifies SSS™'. In general, SSS7! gives
another element 5’ and therefore S|0) =(0").

(d) The number of degenerate vacua is clearly
equal to the number of cosets of S in G. It should
be noticed that S may be said to be defined only by
the cosets of S (actually the right cosets: SS).
Since, given a particular element S, the complete
coset SS is already determined. It is then con-
venient to talk about S as a coset. Also, we may
choose to pick a particular representative in SS by
imposing conditions such as S?=1, if one of the
elements in the coset SS has order 2.

(e) In the usual discussions of hidden symme-
tries, much attention has been paid to the case
when the number of cosets of S in G is not finite
(such as the usual case of exact chiral symme-
tries). We are then faced with the existence of
zero-mass bosons, or Goldstone bosons. Let us
emphasize that if the number of cosets of S in G is
finite, no zero-mass bosons need exist.

(f) The degenerate symmetries are observed
physically through the existence of selection rules.
On the other hand, hidden symmetries only lead to
relations among matrix elements. Thus, for
chiral symmetries we obtain relations between
processes involving different number of Goldstone
bosons. When S has only a finite number of ele-
ments, even less can be learned. That its exis-
tence is not totally irrelevant will be demonstrated
in the subsequent sections (in particular, Sec. VII).

(g) We will propose in Sec. IV that the automor-
phisms of internal-symmetry groups are hidden
symmetries, in general. Since the groups used in
physics are often semi-simple Lie groups, accord-
ing to Appendix A 5, they have only a finite number
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of outer automorphisms. Thus, although for chiral
symmetries the absence of zero-mass bosons im-
plies that they cannot be exact, in our case the hid-
den (discrete) symmetries are exact. As we will
see, hidden, discrete symmetries abound in na-
ture. It seems that much can be learned if more
efforts are put into the study of discrete, hidden
symmetries.

IV. AUTOMORPHISMS OF
INTERNAL-SYMMETRY GROUPS

Consider the physical meaning of an automor-
phism of G which is also an automorphism of S.
[The case when S is mapped to other elements in
G (but not in S) will be discussed later.] We shall
denote the elements in S by an ordered set S={a,
b,c,...}. An automorphism of S means that a
rearrangement of its elements leaves the group
structure unchanged. Thus, if f is an automor-
phism of S which interchanges the elements a and
b, S(a,b,...) %S, a ...), then, since S is only
defined through the group structure, the existence
of f implies that we cannot distinguish « from b.
In other words, to choose a over b or vice versa
is a convention. Quantum mechanically, changing
this convention is realized by the operator f, which
must then be a symmetry operator. Thus, by our
very assumption that S is an internal-symmetry
group, we find that f, which is an automorphism
of S, must itself be a symmetry operator. We
emphasize that, in drawing our conclusion, it is
important that elements of S are specified by the
group structure. If there are other external con-
straints that one might impose on S, then one must
investigate the behavior of f upon such constraints.

The above discussion is trivial when f is an
inner automorphism of G. But if f is an outer
automorphism of G, then we must enlarge G to
include f. In other words, if a system has an in-
ternal-symmetry group, say G, which possesses
some outer automorphisms, then the system ac-
tually has as its internal-symmetry group a larger
group, namely, the extension of G by its outer
automorphisms. (See Appendix A 6.)

This result brings out the important role played
by the intrinsic property of an internal-symmetry
group. In rarticular, to serve as a complete in-
ternal-symmetry group, the group G must be such
that it has no outer automorphism which is also an
automorphism of S.

Our discussions, as well as our language, are
similar to considerations of group extension.'!:!2
The difference lies in that we argue that an inter-
nal-symmetry group must be extended by its outer
automorphisms, while in group-extension prob-
lems we are given some extra symmetry to begin
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with. Also, in group extensions one studies the
question: How many different extensions are pos-
sible? In our case, the outer automorphism de-
termines the extension unambiguiously. (It is in
general a semi-direct product.)

It is useful to spell out in detail the way the sym-
metry f is enforced. We start from a system de-
scribed by a Hamiltonian H, with the eigenstates
|0); |ay,...; IBp,..., satisfying

H|0)=0, Hl|a)=E,jap,...,
Slap =Si;lap,. ...

If we define
lap =flay,...,

then the physical systems (|0), |@),...) and (|0),
|a;),...) have identical behavior if [H, f]=0, for
both systems obviously have the same energy
spectrum. The states |a; also form a linear rep-
resentation of S,

(fSf Hlay =S;;la,,

which is a linear representation since fSf ™! is an
element of S. Furthermore, all matrix elements
are equal,

(a; |8,y =Ca; (8.

The existence of f also implies that the original
Hilbert space must be enlarged by the barred
states. This doubling of the Hilbert space gener-
ates the symmetry f. Alternatively, we may say
that the choice of either of the two identical sub-
spaces in the enlarged Hilbert space is a conven-
tion. The change from one subspace to another is
carried out by the symmetry operator f. We may
thus call f a “duplication symmetry.” Let us il-
lustrate this point further by an example. Consider
a system in which charge is conserved, but all
states have positive charges. We say that this sys-
tem has the symmetry U(1)={e*°?}. Now, when we
say @>0, we are making a convention. It is obvi-
ous that we may equally well use @<0. That is,

we may duplicate the original system by changing
@>0 everywhere to @<0. The duplication so
created has the identical behavior to the original
one. It corresponds to the only outer automorphism
of U(1): ¢°?—~¢7#9  Therefore, given U(1) as a
symmetry group, due to the existence of a non-
trivial outer automorphism of U(1), there are in
general two systems with identical physical be-
havior. The automorphism of U(1) is realized
physically by carrying one system into the other.
This example also shows clearly that the duplica-
tion symmetry is, in general, hidden. Only when
the two systems coalesce do we have a degenerate
symmetry.
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At the risk of repetition, we wish to discuss the
question: What would happen if [H, f]#0? In the
previous example, this would imply that the two
systems characterized by @ >0 and @<0 are dis-
tinguishable. In other words, to use @>0 or @<0
is no longer a convention. This situation is en-
tirely similar to the case of parity violation.” The
parity operator changes right-handedness into
left-handedness. If [H,P]=0, then what we call
left-handedness or right-handedness is a conven-
tion, and is not physically distinguishable. If
[H, P]#0, then the “handedness” ceases to be a
convention, and is absolutely measurable.

We must now discuss the possibility when G
possesses an automorphism, say g, which maps
elements in S into S. Should we also require g to
be a symmetry operator? The answer is no, in
general. For, as we saw in our definition, a
general symmetry group is characterized by both
its group structure and its actions on the state
vectors. To the extent that S and S behave differ-
ently on the states, we cannot require g to be a
symmetry operator. Alternatively, this follows
from a remark in Sec. III, where it was pointed
out that S really corresponds to cosets of S. Since
they refer to different entities, a mapping S—S
does not establish a physical equivalence. This
does not mean that we should exclude all such au-
tomorphisms, though. The inner automorphisms
of G, in general, contain mappings S—~S. They
are by assumption symmetry operators. Their
existence is due, however, to the particular prop-
erty of G under consideration.

We end this discussion by summarizing our re-
sults in the following proposition. If an internal -
symmetry group G has an outer automovphism f
which is also an automorphism of S, then f itself
is also a symmetry opervator. The symmeltry
operatoy f, in geneval, is hidden.

Let us add a remark concerning the practical
aspects of our proposition. If we start from an
internal-symmetry group G with an outer auto-
morphism f, we must decide, by comparing with
the real world, whether f is degenerate or hidden.
(This question cannot be decided within our frame-
work.) If f is degenerate, we repeat our process.
It may appear that when f is hidden, the proposi-
tion is ratheruseless. Actually this is not the case.
We note that the symmetry groups in physics usual-
ly come in “chains”: G,C G,C G,C - -. We are in
fact accustomed to start with a certain symmetry
group G, and then enlarge it to G,, etc. Without
studying the outer automorphisms of Gy, Gy ..
the chain is established by requiring that each G;
is a subgroup of G,,,. It is clear that things are
not so simple when outer automorphisms of G; are
introduced into the picture. An example of the
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severe restrictions so obtained is presented in Sec.
VI, where it is found that SU@)xZ, (P, P*=1) and
U(2)xZ, cannot fit into a chain.

V. EXAMPLES

In this section we will apply the results of Sec.
IV to a number of concrete examples in physics.

1. U(1) symmetry. The U(1) symmetry corre-
sponds to the “number laws.” They are, for in-
stance, the charge, the hypercharge, the baryon-
number, and the lepton-number conservation. We
may denote these gauge groups by Ugy(1), Uy(1),
Ug(1), and U, (1). The abstract group U(1) consists
of the elements ', 0<0<27. The physical sym-
metry operator corresponding to e'® is %9, 0%,
etc. The condition ¢'2" =1 leads to the restriction
that @, Y, B, and L can only take integral values.'*
The group U(1) is Abelian, hence all its inner auto-
morphisms are trivial. It can be shown'? that the
only outer automorphism of U(1) is ¢*® ~¢~i%, For
the physical operators, we have then the outer
automorphisms,

Cq
Qc—> Q' =CuRCy =-@,

Y

Y —-Y%,

Cp 7)
B—-B,

CL
L — - L.

Thus, the “charge conjugation” C,, the “hyper-
charge conjugation” C,, etc., are consequences of
the corresponding number laws. It should be em-
phasized that, separately, our C, C,, etc., are
not quite the usual charge-conjugation operators
which change all these additive quantum numbers.
Another important point is that the symmetry
operators C, etc. are in general hidden, while the
usual charge conjugation is supposed to be a de-
generate symmetry. We also emphasize that,
within our framework, we are unable to judge
whether a given automorphism gives rise to a de-
generate or a hidden symmetry.

What other algebraic properties can we say
about these operators? We note that C,, when
applied twice, reduces to the identity automor-
phism,

02
Q—>q.

This means that C;® is essentially the identity.
Actually, we have only to require that C? be in the
center of U(1), which is here the entire group,

C2=e%99, (8)

However, the associative law may be used!® to
narrow down the choice of . Consider
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CQcQZ = CQeZiOO = e-zieQCQ
and

CotCy=€*%C,,.
We see immediately

£2i6Q = ,=2i0Q

It follows that
6=0 or 3m.
Thus
CP=1 or (-1)9 ©)

are the only possibilities. If C, is a hidden sym-
metry, then either solution in Eq. (9) expresses
the fact that there are two cosets of Uy(1) when
enlarged by its outer automorphism. And there is
no distinction between these two solutions. On the
other hand, if C, is a degenerate symmetry, then
C2=1and C?=(~1)? are different. They would
have different physical consequences. This situa-
tion is analogous to the analysis of Wigner,® who
found it necessary to introduce different types of
representations of the Poincafe group. Just as in
the case of the Poincafe group, the analysis is not
complete!® without considering the other internal-
symmetry groups. We observe that, in nature,
only C?=1 seems to correspond to a degenerate
symmetry.!” From now on, we will only consider
the following case:

CP=1. (10)

Mathematically, we may say that if we have U(1)
as an internal-symmetry group, then we must have
a larger one: U(1)X, Z,, where X, denotes the
semi-direct product (Appendix A 7).

With the new internal-symmetry group U(1)

X, Z,, we must study whether it has any further
outer automorphisms (when C, is degenerate). In
Appendix A 13, we shall show that U(1) is a char-
acteristic subgroup of U(1)X, Z,. Therefore, the
only possible new automorphism is of the form

Cy—~ €'9C,,
which is actually an inner automorphism,
Gy~ €'99/2C 0710972
2. U(1) xU(1). We may take it to be Ug(1)xUg(1),
for definiteness. The elements in Uy(1)xUg(1l) may
be denoted as (e!99, e'*?). It can be shown that the

most general outer automorphisms of Uy(1) X Ug(1)
are of the form:

() () )

where a, b, ¢, and d are integers and the determi-
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nant of the transformation satisfies

a b

d =+1,

[This prescription admits of an obvious generaliza-
tion to U(1)xU(1)x -+ xU(1).]

Physically, if we only have @ and B conservation,
both taking integral values, then a pvio»i we cannot
distinguish @ from B. This symmetry corresponds
to a=d=0, b=c=1. As another example, the case
when a=d=-1, b=c=0 obviously corresponds to
the charge conjugation. It is not difficult to con-
vince oneself that similar interpretations holds for
the general solution given above.

We should also emphasize that in reality the
symmetry groups involving @ and B are more com-
plicated than U(1)xU(1). Our considerations are
not complete without including those larger sym-
metry groups.

3. Ug()XUg (1)X Uy(1) XU, (1). The usual charge-
conjugation operator corresponds to'®

C=CyG,CyCy. (11)

Again we are not in a position to claim that C is a
degenerate symmetry. On the other hand, our con-
siderations are in line with the proposal'® that one
must define the discrete symmetries with reference
to the types of interactions (strong, electromag-
netic, and weak). In particular, Eq. (11) suggests
a natural reason for the breakdown of C, since
U,(1) is broken by the weak interactions. The vio-
lation of charge conjugation stems from the hyper-
charge nonconservation. Within the realm of strong
and electromagnetic interactions, however, C is
conserved (even though it may be hidden).

4. SU(2) (isospin conservation). It turns out'?
that all automorphisms of SU(2) are inner automor-
phisms. Our considerations do not give anything
new for SU(2).

5. U2 (Y, 1 consevvation). We begin by em-
phasizing that U(2) is not identical to U(1)xSU(2).
(See Appendix A 10.) It is an extension of SU(2) by
U(1) satisfying the constraint (=1)¥ = (-1)*.

In Appendix A 12 we will show that SU(2) is a
characteristic subgroup of U(2). From examples
1 and 4, we conclude that the only outer automor-
phism of U(2) is

Y5>y, 151 (12)

f corresponds clearly to the usual G parity, as
far as its effect on the group U(2) is concerned.
Just as in example 1, f? induces the trivial auto-
morphism. f? belongs therefore to the center of
U(2), which is U(1) [with (-1)¥ =(=1)2!]. The usual
convention is to choose!®

A= (=17 = (1,
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Thus, from U(2) we have the extended group
[U(2)x,2,1/Z,, where Z,=(f,f?,f% f*=1) and the
factor group is taken since f? must be identified
with the element (-1)¥=(-1)?/ in U(2).

It is easy to see that U(2) is again characteristic
in [U(2)%, Z,]/Z,. Hence the only possibly new
automorphism is a transformation on f. Let us
write f —f' =y f, with x €U(2). In order for f’ to
commute with T [Eq. (12)], x must be in the center
of SU(2); in order for /=2, y must be of order 2.
It follows that y =(~=1)27 is a unique solution. Thus,
the only possible transformation on f is®

FE5 = (=DM f= (=1,

However, g does not give anything new since it is
actually an inner automorphism,

f —‘—»f’=e'lﬂ¥/2fe_mw2‘

6. Ug(1)X U(2). From examples 1 and 5, the out-
er automorphisms are C, and f. [Note that B— Y
is not an automorphism because of the constraint
(-1)¥ =(~1)?!.] The usual G parity actually corre-
sponds to fCy=Cyf.

7. SU(3) and Uy (1)XSU(3). For SU(3) the only
outer automorphism'? is the complex conjugation
of the 3 X3 unitary, unimodular matrices, which
are usually written as ‘i, The corresponding
physical symmetry operators are ¢'%¥i, where the
F;’s are the familiar generators of SU(3). Since
X, 5., are imaginary, and the other x;’s real, the
automorphism (denoted by C,)

10 Ni ﬁ(eioixi)*=e-ie,~,\f

corresponds to

C3
F1,3.4,6.s _F1,3,4,e,3,
C3
Fy 57— +F,5,4.

(13)

Just as before we may normalize C, by
Ci=1. (14)

Thus, from SU(3), we have SU(3) %, Z,. That no
further outer automorphisms exist is shown in
Appendix A 16.

The transition from SU(3) to Ugz(1) xSU(3) is
straightforward, since SU(3) is a characteristic
subgroup (Appendix A 12). We only note that the
“usual” charge-conjugation operator in strong
interactions actually corresponds to

C=GG,,

provided the combination C;C, is degenerate.

It is also important in this connection to distin-
guish the R reflection from the charge conjugation.
While both the R reflection and the charge con-
jugation induce the same transformations on the
SU(3) generators as in Eq. (13), they differ in



| >

their effects on the physical states. The R re-
flection changes the quantum numbers of a particle,
but it does not transform a particle into its anti-
particle (e.g., it sends a proton into Z7). The usu-
al charge conjugation transforms a particle into its
antiparticle, but it still leaves the vacuum in-
variant. For a hidden symmetry, the transformed
state is an independent state and the vacuum is
also not invariant. Therefore, the automorphism
C=(3C, does not necessarily coincide with the
usual charge conjugation, or, even less so, with
the R reflection.

8. [sue3) ><SU(3)]><S Z,. This is the case of chiral
symmetry where the parity operator forms?! the
group Z, (P, P?=1), The outer automorphisms are
easily seen to be the two charge-conjugation opera-
tors in SU(3), and SU(3)_. They induce the trans-
formations

c+
(F1,3,4,s,s) hans (_F?.3,4.6,8))

+

c
(Fz,s,v;F§,5.7) — (Fy,5,75 F;,sn)’

and

c-

(F1,3.4,s,a) s (Ff.s,ms,s)’

c-

(F2,5,7;Fg,5.7) hane (F2,5,7;Fg,5.7)~
Since we usually assume that F} are hidden and F;
degenerate, both C* and C~, in the notation of Sec.
III, map elements in S to elements in S. Accord-
ing to Sec. IV, we cannot require them to be sym-
metry operators. However, we may construct a
composite operator C=PC*C~, which induces

C
(F1,3,4,6,8;F2,5,7)—) (—F1,3,4,s,8;F2,5,7)’

c 5
(F§.3,4.6.8;F2,5,7)—’ ( ?.3,4,6,8; =F3 5.

Thus C is an automorphism of the diagonal SU(3)
and is thus a symmetry operator. It obviously cor-
responds to the usual charge conjugation.

9. SU(3) x Zy [SU(3) and pavrity]. According to
Appendix A 15, the only outer automorphism of
SU(3)xZ, is the charge conjugation C, defined in
example 7. The addition of parity invariance to
SU(3) does not lead to anything new.

10. SU(2) X Z, (isospin and pavity). According to
Appendix A 14, the only outer automorphism of
SU@2)x z, is

P pr= wpwi=(-1)p,
- 15
[w,1]=0. (15)

Using the proposition of Sec. IV, W is itself a
symmetry operator,

[w,H]=0. (16)

From Eq. (15), we immediately obtain
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(w2, P]=[w?2,1]=0.
Thus W2 must be in the center of SU(2)x Z,, so that
W2=1 or (=1)%. (17)
The two solutions are related to each other by
W~ W'=e"3W =Wweims,
We may therefore choose??
w2=1. (18)

Hereafter Eq. (18) will always be used.

Finally, then, from SU(2)x Z,, we find the en-
larged symmetry group [SU(2)x Z,] X, Z,.

11. U@2)x Z, (Y, 1 and P). According to Appendix
A 17, the only outer automorphism (besides the G
parity) of U(2)x Z, is

P2 PP =WPW ' =(-1)* P = (-1)*YP,

(w,i]=[w, y]=0. 9
Except for the constraint (=1)3Y = (-1)2!, this case
is identical with the previous example. We may
state, then, that from U(2)xZ, we must have
(U(R)xZ,] %, Z,.

The physical consequences of these results will
be discussed fully in Sec. VI.

VI. CHIRAL SYMMETRIES

Recently much effort has been put into the study
of chiral symmetries, be it SU(2)xSU(2) or SU(3)
X 8U(3). We wish now to discuss the implications
of our previous discussion (especially examples
9, 10, and 11) to the chiral symmetries.

Let us start from the strong-interaction sym -
metry group U(2)xZ,. In Sec. V we showed that
its outer automorphisms are the G parity and the
W operator, given by

pr-lz(_1)21P=(_1)3YP ,
(w.i]=[w, v]=0,

(20)
w2=1.

We emphasize that the same automorphism W re-
sults if one considers, instead of U(2)xZ,, the
symmetry group SU(2)xZ,. From now on we will
often not make the distinction between U(2)x Z,
and SU(2)x Z,.

According to the proposition in Sec. IV, W is
itself a symmetry operator, satisfying

[H,w]=0. (21)

Thus, given U(2)xZ,, we have a larger symmetry
group [UQ2)xZ,]X, Z,.
It turns out that most existing model Hamilton-
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ians for broken chiral symmetries do not satisfy
Eq. (21). In Appendix B we analyze these models
in detail, and point out explicitly “what is wrong”
if

[H,w]=#0.

It seems important, at this juncture, to say a
few words about the physical origin of the W sym-
metry. Let us consider, for a moment, the famil-
iar rotation group. It is well known that a spinor
¢ is ambiguous up to a sign. Indeed, rotation of
27, which is the identity, is equal to (-1)*/, and
transforms ¢ into —¢. As Yang and Tiomno??
pointed out 20 years ago, this ambiguity is carried
over when we consider the parity operator (in
fact, any discrete symmetry operator). Indeed,
they defined four types of spinors:

Ppygecp=(+1,-1,+i, =i W, p.cp- (22)

For our purposes we will concentrate on the types
A and B only.?* Equation (22) is merely a reflec-
tion of the fact that P or /P, where / is the iden-
tity rotation of 27, are not distinguishable. If,
however, i, and 5 exist simultaneously, then

we “know” that they are different, even though
there is no “intrinsic” difference?® between them.
To put it differently, we may define an exchange
operator

Yalovs. (23)

Then, fis a (hidden) symmetry operator.?® It
turns out, however, that only type A or type B
seem to exist in nature. The symmetry f, then,
is not very restrictive. (More discussions on
these problems will be presented in Appendix B.)
We turn now to isospin symmetry. Again an
“isospinor,” ', enjoys the ambiguity of a sign
change due to rotations of 27 in isospin space.
We may then define two types of isospinors ¢, ,:

Pyl o =(+1, -1yl 4. (24)

Just as before, as long as isospin symmetry is
good, there is no intrinsic difference between types
a and B, even though they behave distinctively when
they coexist. In particular, the exchange operator
effecting ¢ — ¢} is a symmetry operator. Ac-
cording to Eq. (15), this exchange operator is just
the W operator:

Yot 0h (25)

The W symmetry originates from the ambiguity of
using for the parity operator either P, or IP,
where [ is the identity rotation of 27 in isospin
space.

So far the isospin symmetry and the rotation
symmetry parallel each other exactly. But there

is an important difference between them. Whereas
only one type of ordinary spinors seems to exist,
both types ¢/ and ¢} do exist in nature. They are
in fact the “vector” and “axial-vector” strange-
ness-changing current operators in the weak inter-
actions. Physically, the K, and K,, decays neces-
sitate the existence of two types of I = } hadronic
currents. On the other hand, to say that the axial-
vector current is responsible for K,,, and the vec-
tor current for K,,;, depends on the conventional
assignment of the kaon to be a pseudoscalar parti-
cle. To be sure, these currents are different. But
the important point is that there is no intrinsic dif-
ference between the two. No physics can change if
we switch the two currents, since we are only re-
placing P by IP. It is now clear that Eq. (21) is a
consequence of the existence of isospinors. That
Eq. (21) is highly restrictive, as we are going to
demonstrate in the following, stems from the fact
that both types ¢! 5 do exist in nature simulta-
neously.

After this long digression, let us return to the
discussion of Eqgs. (20) and (21). Suppose that we
wish to enlarge our symmetry group [U(2) x Z,] by
the addition®” of the strangeness-changing charge
operators F, ;.. According to the fundamental
postulate of Gell-Mann,* even though these opera-
tors may be time-dependent, they satisfy, together
with £ , ; 5, the exact SU(3) algebra

[Fi, F;]=if;n Fy. (26)

So far we have not discussed the role of the parity
operator. Suppose that now F,,,; are even under
parity, then we may naturally ask about the behav-
ior of F ., under P. It is immediately clear that,
since F, ¢, are isospinors, they can be either?
vector or axial vector. More precisely, if one as-
sumes

PFy56:P=+F 544, (27)
then the operators WF, .., W are odd under P,
P(WF4,5,6.7W)P =-WF, 56, W, (28)

and vice versa. In other words, owing to the exis-
tence of W, which originates from the spinor rep-
resentations of SU(2), we see that the operators
with I = 3 must appear in “parity pairs.”

With this observation it is easy to see that the
validity of Eq. (26) actually implies the existence
of the chiral SU(3)xSU(3) algebra. Let us choose
the convention that F, ., are even under P [Eq.
(27)]. We may define

F:,s,e.'/ =WF 56, W . (29)

Equation (28) says that Fj ;,, must be odd under
P. Let us further define the (time-dependent) op-
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erators F3,,, by
ifiikng[Fi ’F?]’
k=1,2,3,8; i,j=4,5,6,17.

(30)

It is easily verified that, starting from Eq. (26) to-
gether with the definitions Eqgs. (29) and (30), that
Fiand F;, i=1,...,8 satisfy the chiral SU(3)
x SU(3) current algebra of Gell-Mann,?®

[Finj]:ifiijk’

[F,- ’ F?]=if,-,-kF2,

[Ff, F?]:ifeijk-

(31)

We may summarize our results in the following
way. If one assumes (1) exact U(2) xZ, symmetry
and (2) SU(3) algebra as in Eq. (26), then, owing to
the existence of W as implied by assumption (1),
there must exist operators F;. Further, F; and F;
necessarily form a closed algebraic system, which
is the chiral SU(3) xSU(3) algebra. Alternatively,
given SU(3) and W, one may generate®® a larger
group by forming all possible products of the form
WSU(3), SU(3)w, WSU(3)w, WSU(3)WSU(3), ... in
an obvious notation. This larger group, according
to the previous discussion, is precisely the SU(3)
xSU(3) group. In this sense, we see that SU(3) and
parity generate uniquely the [SU(3)xSU(3)] %, Z,
group.

Several remarks are in order:

(1) The physical interpretation of Eq. (31) re-
mains an assumption, i.e., the identification of F3
with the physical weak-interaction currents cannot
be obtained from our construction. On the other
hand, if one identifies F; with the vector weak-
interaction currents, the symmetry of F; and F?}
make it very difficult to do otherwise.

(2) We showed that SU(3) and W generate SU(3)
xSU(3). It is not difficult to identify W explicitly
with a finite rotation in SU(3) xSU(3). Since, ac-
cording to Eqs. (20) and (30), W commutes with
F, .35 and F},, 4, it follows that W ~exp(i0Y +i¢ Y,).
[W may also be in the center of SU(2),. However,
since (=1)** =(-1)3Yt  they may be expressed in the
given form.| Using W2=1 and WPW =(-1)%YP, 9 and
¢ are uniquely determined to give??

W =ei3"Y- :eiznl; .

(32)

(3) We have emphasized how [SU(3) xSU(3)] %, Z,
is built up from U(2)xZ,. This is to be contrasted
with the viewpoint of “broken symmetries” accord-
ing to which U(2) xZ, is supposed to be the remnant
symmetry when SU(3) xSU(3) is broken. As far as
[SU(3)xSU(3)]x, Z, is only an enlargement from
U(2)xZ,, there may or may not be an exact SU(3)
xSU(3) limit. Only Eq. (31), but not the time de-
pendence of F; and F}, is important. On the other
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hand, if one does believe in a limit in which SU(3)
xSU(3) is exact, then, since W is identified as an
element in SU(3)xSU(3) [Eq. (32)], we must re-
quire that [H, W]=0 [Eq. (21)] when SU(3) xSU(3) is
broken. Similarly, if there is an SU(2)xSU(2) limit
which is subsequently broken, then we must also
have [H, W] =[H, ¢*"’3] =0 (even though the infini-
tesimal generator I; is time-dependent).

(4) If we compare example 9 with examples 10
and 11, we see that the automorphism W for SU(2)
xZ, and U(2)x Z, is lost when we go over to SU(3)
XZ,. W is restored only if we enlarge SU(3)x Z,
to [SU(3)xSU(3)] %, Z,. We may then state: If U(2)
x Z, is exact, then SU(3) must be broken if SU(3)

X SU(3) is broken. In other words, there does not
exist an “exact SU(3) limit,” there is only an “exact
SU(3) xSU(3) limit.” The construction of SU(3)

x SU(3) makes this point amply clear. If one has
SU(3) then one must have SU(3)xSU(3). Mathemat-
ically, the reason why SU(3) must be broken is that
SU(3)x Z, does not contain W, even though it does
contain U(2) X Z, as a subgroup. This result illus-
trates the internal consistency properties of inter-
nal-symmetry groups. It shows that the construc-
tion of higher symmetries is not as arbitrary as
one might think. Physically, this result is easy to
understand. The W symmetry originates from the
inherent ambiguity in defining the parity of iso-
spinors. If SU(3) were exact, then this ambiguity
would be removed. [For instance, the kaon (I = %)
would have to transform like the pion (/ =1) under
parity, if SU(3) were exact.] Only by going to
SU(3) xSU(3) can we recover this ambiguity. (See
also Appendix B.)

(5) According to Eq. (29), since [H,W]=0, the
time dependence of F, ., and F; ;¢ , must be iden-
tical. Physically, we may in principle measure
the time dependence of these operators. The non-
measurability of the absolute parity of these oper-
ators can only mean that their time dependence
must be the same. We may note that it is usually
stated that SU(2) xSU(2) is an approximate symme-
try, so that F3},, are “approximately conserved.”
On the other hand, F,;,,and Fj,, are “worse”
symmetry operators in that they have “stronger”
time dependence. Our result shows that, even
though F, ., and Fj, , may have stronger time de-
pendence, their dependence on time must be iden-
tical.

(6) So far our discussions are confined to the
strong interactions. What if we introduce the elec-
tromagnetic and weak interactions? The electro-
magnetic and weak interactions break the U(2)
symmetry. However, it is usually assumed that
the symmetry is broken in a definite way. Using
the transformation properties of JS™ and J¥*, it

u I
was shown® earlier that they both commute with W.
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If we assume, as usual, the current X current form
for H,, and H,, , we have immediately

[Wv?Hem l:[W’ HWk]:O' (33)

Thus, we find that the W symmetry, owing to the
particular transformation properties of J;" and
J:”k , is actually a symmetry of the strong, the
electromagnetic, as well as the weak interactions.
It is also interesting to note that, conversely, we
may say that the universal V —A form of J;‘,"k is a
result of requiring W invariance even in the pres-
ence of the weak interactions.

VII. SPACE-TIME SYMMETRIES

So far our considerations have been confined to
the internal symmetries (including the parity).
We now turn to a discussion of space-time sym-
metries., As was mentioned in the Introduction,
the fundamental difference between internal as
compared with space-time symmetries seems to
lie in the measurability of the space-time coordi-
nates. Thus, in discussing the isospin, it is ade-
quate to study only the group SU(2), without paying
any attention to the “isospin-space coordinates.”
For space-time symmetries, the (restricted) Poin-
caré group ®, is obtained by requiring the invari-
ance of distances in the Minkowski space:
gh"(x =x") (x =x'),. We then go over to the gener-
ators of ®,, satisfying

[Pu’Pu]:O’
i[‘lluu’P)\]:guXPu _gl/)\PU’ (34)
i[MuwMPuJ :gup‘w vo +guo‘)wup —gIJUA/[ vp = g"pM po *

On the one hand, just as for isospin, it seems that
one may study ¢, without reference to the coordi-
nates. Thus, one talks about irreducible repre-
sentations of @,, the transformation properties of
operators under #, etc. On the other hand, the
coordinates do come in in a subtle way. For in-
stance, we must consider superposition of (non-
local) eigenstates of momenta to form wave packets
which correspond to particle states. In field the-
ory, @, and the coordinates are certainly insepar-
able.

It is not clear whether our considerations on the
internal -symmetry groups may or may not be ap-
plicable to the space-time symmetries. In the
following we assume that it is meaningful to study
®, as 1if it behaves like an internal -symmetry
group.

It has been shown by Michel®! that the outer au-
tomorphisms of @, consist of P (parity), T (time-
reversal), and D (dilation). Moreover, there is
no further outer automorphism for the extended
group. If @, is an exact symmetry, as is usually
taken to be true, then, applying the proposition of

Sec. IV, we are faced with the dilemma that P, T,
and D must all be exact symmetries. But experi-
mentally we know that none of the three are exact
symmetries. Something must be wrong.

It may be that our considerations simply do not
apply to the space-time groups. Yet it is not clear
to us why it does not apply. On the other hand, P,
T, and D are approximate symmetries, it would
be desirable if some rationale can be found for
their existence.

Let us observe that P, T, and D violations are
actually a very puzzling problem. As was empha-
sized by Lee and Wick,'? if P and T are what they
are supposed to represent, i.e.,

- P -
X — =X,

; (35)
t—> —t,

then P and T must commute with the Hamiltonian
operator, which is the displacement operator in
time,

(R GHED 451, (36)

The violation of the P and T symmetries implies
that the “geometrical interpretation” [Eq. (35)]
somehow breaks down. The same remark applies
to the dilation operator. K D is really the dilation,

.e i D\ hN
xS0 etx,,
then we must have
[D,H]=-iH, (37)

which leads to dilation invariance,

d

ED =0.
When dilation invariance is broken, Eq. (37) is no
longer true,* which again implies the breakdown
of the geometrical interpretation.

We may summarize the situation in the following
way. If P, T, and D are what they are supposed
to be, they must be conserved exactly. In reality
we seem to be observing the physical operators
P’, T', and D’, which do not coincide with P, T,
and D that originate from the geometrical interpre-
tation. What are these operators P’, 7', and D’'?
We don’t know.

But, if the physical operators P’, T’, and D’ are
not conserved, they are also not outer automorph-
isms of ®,. (Since their commutation relations
with P, are different from those obtained from B,
T, andD.) I P’, T’, and D’ are not outer auto-
morphisms, then they also are not entitled to be
symmetry operators.

The whole thing is very puzzling, to say the
least, and we do not know how it may be resolved.
We wish to offer a few speculative remarks,
though. It is noteworthy that the homogeneous
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Lorentz group, SL(2, C), is complete (Appendix

A 3). All the trouble seems to have come from the
displacement operators P,. Now, if we are really
dealing not with a flat space-time, but rather, say
a de Sitter space,3? then only the commutators
[M,,,M,;] are exact. The operators P, are limit-
ing cases of rotation operators in the 5-dimen-
sional de Sitter space. The 5-dimensional rota-
tion group,3® however, has no outer automorphisms.
Therefore, we may say that the PTD dilemma
actually originates from our assumption of exact
Poincaré invariance. If the Poincaré invariance is
approximate, we might have approximate P, 7, and
D invariance. All these remarks are very specula-
tive. It is hoped that something definite can be said
about these questions in the future.

VIII. CONCLUSION

In this work we have discussed what may be
called the internal consistency properties of in-
ternal -symmetry groups. Loosely speaking, the
suggestion was made that their automorphisms
are themselves symmetries, so that, in the sense
of (Appendix A 3), all internal -symmetry groups
are complete (if only degenerate symmetries
exist). It turns out that things are not so simple.
It was found that hidden symmetries emerged na-
turally. In fact, there seem to be an abundance of
hidden symmetries in nature. Although usual dis-
cussions of hidden symmetries necessitate the
existence of zero-mass bosons, in our case this
problem does not arise, since only discrete sym-
metries are involved.

Through a number of examples, some conse-
quences of our suggestion are demonstrated. Thus,
charge conjugation, or at least a close analog of
charge conjugation, is found to originate from the
gauge groups of charge conservation, baryon-num-
ber conservation, etc. For the chiral SU(3)xSU(3)
symmetry, it turns out that U(2) and parity con-
servation imply that there is only an exact SU(3)

%X SU(3) limit, but there is no exact SU(3) limit.
This perhaps is the root of the discrepancies of
our results with many other authors concerning
broken SU(3) xSU(3) symmetry. Indeed, it seems
that there has always been an assumption, tacit or
explicit, that it is in principle meaningful to talk
about an exact SU(3) limit, whether it be in the
symmetry-breaking terms of a Hamiltonian model,
or in the specification of the properties of the vac-
uum state. We believe that this procedure is not
possible, in principle.

We have also applied our considerations to
space-time symmetry groups. The results are
very perplexing. In short, if a blind application
to the Poincaré group is made, then we are faced
with (exact) parity, time -reversal, and scale in-
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variance. On the other hand, these invariant op-
erators are geometrical operators which are
known to deviate from the physical operators. But
what are the differences of these two sets of oper-
ators? Or, what are their definitions? We do not
know. Some speculations attempting to clarify this
very unsatisfactory situation were made in Sec.
VII.

It was suggested by Lee® that the discrete sym-
metries should be defined with respect to the dif-
ferent types (strong, electromagnetic, and weak)
of interactions. Our discussion is in line with this
suggestion. In our framework, the discrete sym-
metries arise from symmetry groups pertaining
to a particular type of interaction. Actually we
can say more about the automorphism symmetries
if we know how the original symmetry is broken.
Thus, as we discussed in Sec. VI, the W symmetry
(which arises from the strong interaction) turns
out to be a symmetry also of the electromagnetic
and weak interactions, if J em and Jyk transform in
the usual way.

Before we conclude, it seems appropriate to
enumerate a number of unsolved problems which,
in our opinion, deserve the greatest attention.

(1) Our considerations brought forth a whole
class of discrete, hidden symmetries. It is cer-
tainly desirable to study these types of symme-
tries, which have so far been almost completely
neglected.

(2) Of particular relevance is the application to
chiral symmetries. We have shown that there is
a perfect symmetry between the vector and axial -
vector strangeness-changing currents. However,
we have not been able to exploit its practical con-
sequences. For instance, the significance of par-
tial conservation of axial-vector current (PCAC)
for the strangeness-changing current certainly
needs reexamination, since PCAC as usually for-
mulated is not symmetrical with respect to inter-
changing vector and axial -vector currents.

(3) There have been a large number of results
pertaining to the exact SU(3) limit. K only an
exact SU(3) XSU(3) limit exists, many of these re-
sults need reexamination.

(4) As we discussed in Sec. VII, the space-time
symmetries should clearly be studied in connec-
tion with their automorphism properties.

(5) We have not studied the so-called “higher
symmetries,” which have been proliferating rap-
idly. It is conceivable that, by examining their
automorphisms, at least some of them will be
found to be unsatisfactory symmetry groups.
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APPENDIX A

In this Appendix we collect a number of mathe-
matical definitions and theorems (sometimes with
proofs). Further discussions may be found in the
literature,?®

1. Automorphisms of a Group

The automorphisms of a group'* G form a group
Aut(G). Aut(G) contains an invariant subgroup
Int(G), which are the inner automorphisms, i.e.,
those automorphisms which assign to each element
g in G the element g’ =xgx ™!, for a fixed x in G.
The factor group Aut(G)/Int(G)=0ut(G) consists of
the outer automorphisms of G. If G has a center

C, then Int(G)= G/C, where = denotes isomorphism.

2. Complete Group

Mathematically, a group G is said to be com-
plete'! if G has only inner automorphisms and if
the center of G has no other element except the
identity. Thus, for a complete group G, Aut(G)
~Int(G)= G. For continuous groups, and for appli-
cations to physics, it seems convenient to relax
this definition, as in Appendix A 3. This will be
the definition adopted in this work.

3. Continuous Complete Group

A continuous group G is complete if G has no
outer automorphisms and if the center of G con-
tains only a finite number of discrete elements.
Under this definition, for a continuous complete
group G, we have Aut(G)=Int(G)= G/C. Note that
the groups SU(2) and SL(2, C) are complete. (See
Appendix A9.)

4. Characteristic Subgroup

An invariant subgroup K of G is characteristic'!
if any automorphism of G is also an automorphism
of K (i.e., K cannot be mapped onto other ele-
ments of G). The center of G is characteristic,

If K is an invariant subgroup of G, and if G does
not contain another invariant subgroup K’ which is
isomorphic to K, then K is a characteristic sub-
group of G.

5. Semi-Simple Lie Group

If G is any semi-simple Lie group (see Ref. 13,
p. 180), then Out(G) contains only a finite number
of elements.

6. Extension of a Group

The group E is said to be an extension of a group
G by a group K if G is an invariant subgroup of E

and K is the factor group E/G. (In Ref. 11, how-
ever, E is said to be an extension of K by G. To
avoid confusion, the extension under consideration
is expressed by the exact sequence 1-G—~E~K

- 1. Our definition is the one used in the modern
mathematical literature. See, e.g., MacLane in
Ref. 35). Note that since G is invariant in E, in-
ner automorphisms of E induce automorphisms on
G. In particular, any element in K induces an auto-
morphism on G. K we write o and a for arbitrary
elements in G and K, respectively, we may denote
the induced automorphism by a®=aaa™. In this
work we are studying primarily the extension of
internal-symmetry groups (G) by their outer auto-
morphisms (K). To be precise, we are just study-
ing the “split extension” of G by Out(G): 1-G—~E
=0ut(G) - 1.

7. Semi-Direct Product

E is said to be a semi-direct product!! of G and
K (denoted by G X, K) if the elements in E consist
of pairs (a, a), where ¢ €G and ¢ € K, with the
multiplication law (a, a)(8, b) =(aB®, ab). The di-
rect product (G XK) is a particular case of the
semi-direct product for which g*=g3, for any g
and a.

8. Extension by Outer Automorphism

The extension by outer automorphisms discussed
in this work is in general a semi-direct product.

9. The Lie Groups A4,

The Lie groups A, have either no outer automor-
phisms (for n=1) or one outer automorphism (for
n>2). Thus, SU(2) (isospin) and SL(2, C) (homo-
geneous Lorentz group), both belonging to A4,, do
not have outer automorphisms. (Other concrete
examples are treated in Sec. V.)

10. The Group U(n)

The group U(n) is’* an extension of SU(x) by U(1),
but is not a direct product of SU(z) and U(1). In
particular, in U(n), the intersection of SU(xz) and
U(1) is nonempty, and consists of the elements
Z,=e®™M m=0,1,...,n-1. This means that
we must identify the center of SU(n) with the ele-
ments Z, in U(1). For U(2), this identification
reads (-1)" =(-1)?’, Note also that the group U(n)
is a subgroup of SU(n +1).

11. Useful Identities in the SU(3) Group

It is useful to note the existence of several iden-
tities in the SU(3) group. Regardless of whether
SU(3) is a symmetry group or not, as long as the
SU(3) commutation relations hold, we have
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ieny i41er=1
’

e =e ji=1,2,...,7.

This follows immediately since the eigenvalues of
Y are of the form 3n, and those of F,, zn. For the
SU(3)xSU(3) group, there are two such sets of
equations for SU(3), and SU(3)_. Using F}

= 3(F, £+ F?), it follows immediately that

: : ; 5 .
e iz ti2amFy j=12...,7

and

i3ny

e :ei137r1’5.

This last equation was first pointed out explicitly
by Okubo and Mathur.?® Note also that ¢i*77-

=€i21r1§-

12. Characteristic Subgroups of U(2)

In the group U(2), both SU(2) and U(1) are char-
acteristic subgroups. [Similarly, in U(1)XSU(3),
both U(1) and SU(3) are characteristic.] This may
be proved directly following a method of Lee and
Wick in Ref. 12, Sec. IV. Thus, the generators
of U(2) satisfy

(4, Ll=dein b,
[%, Y]=0.

Since any continuous®’ automorphism f maps the
neighborhood of the identity into the same, we
have

Ii= f(I)f T =a;;1,+b,Y,
Y'= f(Y)f =, +dY .

Using the condition that 7] and Y’ satisfy the same
commutation relations as J; and Y, the coefficients
are immediately determined,

bi=c¢;=0,
so that

Ii=ayl;,

y'=dy,

for any automorphism f of U(2). In other words,
both U(1) and SU(2) are characteristic subgroups
of U(2).

Note that in the foregoing proof we have used the
very important property that the automorphism is
continuous - it preserves the neighborhood of the
identity. It is well known that for Lie groups, a
neighborhood of the identity determines the Lie
algebra. Conversely, the Lie algebra is almost
enough to determine the Lie group. In studying
the automorphisms of Lie groups, this property
is very useful.

13. Characteristic Subgroups of U(1)XZ,,
SU(2)XZ,, etc.

Consider an arbitrary automorphism of SU(2)
X Z,. The neighborhood of the identity is ecili
=(l+ie;L,)~(1+1ielL), so that I;~ay,I;, a;;=3¢€}/
d¢;. This means that the generators of SU(2) must
transform amongst themselves, or that SU(2) is a
characteristic subgroup of SU(2)xZ,. Entirely the
same arguments apply to the groups U(1)xZ,,
U(2)XZ,, U(2)X, Z,, SU(3)XZ,, and SU(3)X, Z,,
where U(1), U(2), and SU(3) are characteristic,
respectively. Geometrically speaking, the group
space of SU(2)xZ, (P,P*=1) consists of two pieces
—SU(2) and PSU(2). The identity is in SU(2). The
invariance of the neighborhood of the identity car-
ries with it the invariance of the whole piece.
Therefore SU(2) is characteristic.

14. Outer Automorphisms of SU(2)XZ,

Having shown in Appendix A 13 that SU(2) is
characteristic in SU(2)X Z,, and since SU(2) is
complete (Appendix A 3), we may easily find all
the possible outer automorphisms of SU(2)XZ,
(P, P?=1) —they must be transformations on P.
Now, the center of SU(2)XZ,, which is character-
istic (Appendix A 4), is (1, (-1)?’)x(1,P). Thus, P
can only be mapped into either (-1)?!, which is
ruled out since SU(2) is characteristic, or

P¥ (-1 p=wPWw!,

W is the only outer automorphism of SU(2)XZ,.

15. Outer Automorphisms of SU(3)XZ,

We turn now to the case of SU(3)XZ,, in which
SU(3) is characteristic (Appendix A 13), Here the
center is (1, e2™/3, ¢*"/3)x (1, P), which, however,
admits of no nontrivial automorphism, It follows
that the only outer automorphism of SU(3)xZ, is
that of SU(3) —the charge conjugation.

16. Outer Automorphisms of SU(3)X; Z,

We may analogously study the group SU(3) X, Z,,
where Z, consists of the charge conjugation C,
with C®=1. Since SU(3) is characteristic (Appendix
A 13) it is sufficient to study the automorphism on
C. Let us assume

C-C'=gC, ge€Ssu(@).

Now, C induces on the SU(3) generators the trans-
formation

CEC=nF;, Mi3468=-1, Mpsq.=+1.
It follows from the requirement

C'FC'=n,F,
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that
gniFig™ =niF.

Therefore, g has to be in the center of SU(3),
which consists of the elements (1, e2™, ™),
However, C - C’ is actually an inner automorphism
since eierce-inY =ei27rYC and ei'nrl’ce-izﬂ’ = ei4ﬂ}'c
Thus, SU(3)X, Z, is complete.

17. Outer Automorphisms of U(2)XZ,

We now consider the case of U(2)x Z,, in which
U(2) is characteristic (Appendix A 13). The center
is U(1)x(1,P), with (-1)*’ =(-1)*Y, (Here, 3Y in-
stead of Y is used in order to allow for Y = 3n
states.) Besides the G parity (example 5, Sec. V),
any outer automorphism takes the form

P-¢iofp

The condition P%2=1 implies that the only nontrivial
solution is 6=3n. Therefore, just as in Appendix
A 14, the only outer automorphisms of U(2)X Z,
are the G parity and W,

w
P—(=1)4p =(-1)3YpP,
APPENDIX B

According to Egqs. (20) and (21), starting from
U(2)x Z,, an additional symmetry operator W is
obtained. If we enlarge U(2)x Z, to SU(3) x SU(3),
then Eq. (32) shows that W is actually a finite ro-
tation in SU(3)x SU(3), namely, W=¢!3"¥-=¢i2™3,
Suppose that we believe in the existence of a chi-
ral-symmetry limit which is subsequently broken,
in the sense that one may write

H=H,+H', (38)

where H, conserves SU(3)x SU(3) and H’ conserves
only U(2), then Eq. (21) becomes highly restrictive,
when one assigns definite transformation proper-
ties to H’. Let us summarize the consequences of
Eq. (21), which was discussed some time ago.*

(1) 1£%8:3% H’~ (3, 3) + (3, 3), then the only possible
form for H’ is

H ~uy—V2 ug. (39)

(2) Therefore, if H’ belongs to (3, 3)+(3, 3), then
SU(2) x SU(2) is exact. If we only want U(2) sym-
metry, H’ must contain terms*~(6, 6) + (6, 6) or
(8, 8).

Similar considerations apply to broken SU(2)

x SU(2) symmetry, with W =¢'2™3, Equation (21)
implies that the only possible forms of H’ are*'®

H~(1,1),(2,2),... . (40)
Thus, the usual assignment®*°
H'~ (%, %) (41)

| o>

is ruled out by Eq. (21}.

Since most existing models do not satisfy Eq.
(21), it is perhaps important to settle explicitly
the question: What would happen if [H, W]#0?

Let us return to the discussion of Yang and Ti-
omno?® which was considered in Sec. VI. If, for
the ordinary rotation group, both y, and ¢ 5 parti-
cles exist (all the other quantum numbers are the
same for ¢ , and ¢5), then the mass term in a
Hamiltonian model should be written

H~M (P, +dgdp) (42)
so that

(H,f]=0,

where f is the exchange operator

f
bo—9p -

If we have

H~ MAaAd)A +Mpdbgip , (43)

with M, #Mj, so that [H, f]#0, what follows?
Since M, #Mpy, which is measurable, we can al-
ways assign the “heavier” particle to be ¢, “the
spinor,” and the “lighter” particle to be 5, the
“pseudospinor.”*! Therefore, if [H, f]+#0, then we
would be able to assign a meaning to the term
pseudospinor, which is at least inconsistent with
our present physical theory.

Why, then, is it that we do not seem to have
learned anything from [H, f]=0? The answer lies
in that, so far, such pairings of states do not seem
to exist in nature. If only ¢,, or ¥, exist, we
may write

H~Myy, (44)

where § may be either ¢ , or ¥, and the symmetry
f is implicit.

Entirely parallel analysis holds for the isospin
group. Consider, as a concrete example, the case
of broken SU(2) x SU(2) symmetry where H'~ (3, 3).
Now the isospinor (3, 0) corresponds to (¢}, +¥3),
while (0, 3)~(pZ - L). The even-parity part of
(3, 3)~(3,0)%x (0, 3), or H’, transforms like

H ~9e —yabs-
Therefore, under W, for which ¢/ — g1,
WH'W=-H".
This corresponds to the case M, =—-Mj in Eq. (43).
It is obvious that, if H'~(3, 3), then it would be
possible to give absolute meaning, for instance, to
an I = 4 vector operator.

The above considerations are easily carried over
to SU(3)x SU(3). In the (3, 3)+(3, 3) symmetry-
breaking model, we have (u, = V2 ug) ~yL 9L + 9yt
and (u, +3V2 ug) ~pl ol — iyl We must then dis-
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card terms ~ (u, +3V2 ug) to preserve the W sym-
metry.

Notice that Okubo*? had shown that if H’
~a(u, +§\/2_u8), then in a linear model we have

2 2,

My"~ My +a, (45)

MZE~M:-a.
He concluded that,* for the linear model, W sym-
metry is good since it switches the kaon with the
k meson. Actually this is not the case. If a#0,
then My +# M,. We may then define, for instance,
the heavier particle to be the kaon, which means,
in turn, that an absolute meaning can be given to
a pseudoscalar, I =} particle.

Another point which we wish to stress concerns
the limit of exact SU(3) x SU(3), in particular, the
behavior of the vacuum state in this limit. Let us
consider the model

H=H,+€eH’, (46)

with [W, H|=0. Regardless of the value ¢, the vac-
uum is doubly degenerate. For € =0, the vacuum
is actually infinitely degenerate. Since SU(3) is a
(degenerate) subgroup of SU(3) x SU(3), out of this
infinity of vacua we can pick out one which satis-
fies

SU(3)[0)=10). (47)

However, the existence of |0) actually gives rise
to another vacuum, which we define as

[0)=w|0), (48)
then
Su(3)[0)=0), (49)

where SU(3) is the hybrid SU(3) defined earlier.®
As €~ 0, then, the doubly degenerate vacua of H
go over into |[0) and |0). The symmetry W is pre-
served in the interchangeability of |0) and |0),
whether € vanishes or not. It was argued*! that one
could pick out a unique SU(3) and a unique vacuum
by SU(3)|0)=|0). However, to say that we have
chosen SU(3), and not SU(3), already implies that
we can assign absolute parity to the strangeness-
changing = ; generators. We have seen earlier
that this is not possible.

We have emphasized in Sec. VI that there is no
such thing as an exact SU(3) limit, there is only an
exact SU(3)x SU(3) limit. Let us show explicitly
how this happens. If we construct a model

H=H,+H',

so that H’ breaks SU(3) x SU(3) but preserves SU(3),
then
H ~(n,7),

where » is an arbitrary irreducible representation
in SU(3),, and 7 the corresponding conjugated rep-
resentation in SU(3)_. We wish to show that, if

[H': WJ:O;
then
n=n=1,

or, H’'is a singlet in SU(3)x SU(3) and ~H,. Let us
decompose the product (x, 7) into sums of terms
with definite isospin,

(n’ h‘) ~2 (1491—)7
Iy

with I,=-I_. Since

W(I+51-)W:(_1)21_ (I-HI-)’

it is obvious that (n, 7#) can be invariant under W
only if the representation » does not contain any
half-integral isospin multiplets. For the SU(3)
group, unless n=1, there are no such representa-
tions. This proves our statement.

Finally, let us summarize our discussions of the
W symmetry in broken and exact SU(3) x SU(3)
symmetry.

(1) Linear model [SU(3)x SU(3)-degenerate]:
Here the vacuum is unique. If SU(3)x SU(3) is ex-
act, there will be 16 degenerate scalar and pseu-
doscalar mesons. If SU(3)x SU(3) is broken, they
split. The (degenerate) W symmetry is reflected
in that the kaon and k meson are still exactly de-
generate.

(2) Nonlinear model [only a subgroup SU(3)-de-
generate]: The vacuum is nonunique. If SU(3)

x SU(3) is exact, there is an infinity of vacua out
of which we can pick two, |0) and |0). One is in-
variant under SU(3), the other under SU(3). There
are eight zero-mass mesons. The (hidden) W sym-
metry is reflected in our inability to distinguish
SU(3) from SU(3) and |0) from |0). As a conse-
quence, four of the zero-mass mesons may be ei-
ther pseudoscalar or scalar. For broken SU(3)

x SU(3), there are only two degenerate vacua. Both
are invariant under U(2). Again four of the mesons
may be either scalar or pseudoscalar, due to the
doubling of the vacua. In the limit when the sym-
metry-breaking term tends to zero, these two vac-
ua go over into |0) and |0) discussed above.
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It is shown that, given SU(2) and T invariance, their outer automorphisms, which must
themselves be symmetries, form a one-parameter gauge group. Thus, from isospin con-
servation and time-reversal invariance, one gets hypercharge conservation. Similarly,
from angular momentum conservation and T invariance, one has fermion-number conserva-
tion. Further, the well-known empirical relations (—1)Y =(=1)2/ and (=1)F =(=1)%/ are

derived.

1. INTRODUCTION

Recently! it was emphasized that the automor-
phisms of internal-symmetry groups are inherent
conventions associated with their physical applica-
tions. Since there is a one-to-one correspondence
between conventions and symmetries, this means
that the outer automorphisms of internal-symme-
try groups play an important role. In fact, accord-
ing to the discussions in I, if one has an internal-
symmetry group G containing a degenerate sub-
group S, then outer automorphisms of G which
leave S invariant are themselves symmetries.
These new symmetries are in general hidden sym-
metries. Indeed, in the numerous examples inves-
tigated in I, we could not decide whether the de-
rived symmetries were degenerate or hidden. The
identification can only be done by comparison with
reality.

Let us emphasize that there is no fundamental
difference between hidden and degenerate symme-
tries. (In this connection, we may remark that the
familiar term “spontaneously broken” symmetry
is somewhat misleading.) If G is a symmetry
group, and if S is a subgroup of G, then hidden
symmetries arise when the physical states form
irreducible representations, not of G, but of S.
Indeed, the cosets of S in G constitute the hidden
symmetries.

The physical significance of outer automor-
phisms may also be visualized in another way.
When we have a (degenerate) symmetry group S
(elements labeled as S%) and some physical states
(labeled as | @,)), we are accustomed to thinking
that the labeling has already been given. Further,
an element S° is understood to operate on the
states and give rise to a reshuffling of them.
Thus, |a;) % |a,) and $°5°s% so that

(CARIEY ECTIRH a;) =(a;| 8| a;),

where S°=(5°)"'$°5°. The symmetry of our system
is reflected in the equivalence of the states | a;),
which may be reshuffled. On the other hand, we
could have regarded the elements S° to operate on
S, and leave the physical states unchanged: |a;)
82| @), S*$£S°. In other words, the operation of
S¢ gives rise to a reshuffling of elements in S. The
symmetry of our system is reflected, then, in the
equivalence of the elements in S. Therefore, we
had in the beginning the labeling of S and | @), the
symmetry results as a consequence of our free-
dom in reshuffling the states | @) or the elements
S®. The first view is the usual one, while the sec-
ond view corresponds to interpreting S° as ele-
ments of the inner automorphism of S. According
to this second viewpoint, it is quite clear that outer
automorphisms are just as good as the inner ones.
Having adjoined these outer automorphisms to our



