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We have calculated the ground-state eigenvalues of the A, x anharmonic oscillator nonper-
turbatively, using the Hill determinant. Our results are in remarkable agreement with
those obtained from the Borel-Pade approximants of the perturbation series.

From an exhaustive numerical analysis of the
perturbation series for the ground-state energy
level of the one-dimensional anharmonic oscillator
for which the Hamiltonian is given by

IJ= —
2 +X +AX,2 4

dx

Bender and Wu' have shown that the power series
in A. is divergent for all A. though each term of the
series is finite. Further, they show that the en-
ergy levels of the system orginally defined for real
A. & 0 can be analytically continued into the complex
A plane and that the continuation has an infinite
number of branch points with a limit point at A. = 0.
Such series are quite common in relativistic quan-
tum mechanics and the usual belief is that they are
asymptotic in nature. ' It is well known in the math-
ematical literature' that such series can often be
summed4 uniquely through the use of such summa-
bility techniques as the Stieltjes-Pade or the Borel
methods. Simon' has recently investigated the
anharmonic oscillator with the general anharmonic
term Ax' (m an integer &0) and has shown that the
pth energy level E, (X) is analytic in a certain re-
gion of the A. plane and that the perturbation series
is a,symptotic to the value E, (A). In pa, rticular, he
has calculated E,'(a) by converting the perturbation
series into a series of Pade approximants for
various values of A. . In a recent communication,
Graffi et al. ' have shown how improved values of
the ground-state energy level for arbitrary A can
be obtained by using Pade approximants of the
Borel transform of the asymptotic perturbation
series. In essence, their method consists in re-
placing the series g"„,a„e"by the Borel sum

l e '@(te)dt, where @(z}=g0 n-0

Within their regions of convergence both series
are identical, but for values of z for which the
series Q„",a„e"diverges, the integral represen-
tation gives the value of the series provided the

g=e * t' P Cx'" (2)

Substituting this ansatz in the differential equation,
we find that the C„'s satisfy the following difference
equation:

2(n+1)(2n+1)C„„,+ C„(e—1-4n) -AC„,=0. (3)

The condition that a nontrivial solution for the C„'s
exist is given by the vanishing of the following in-
finite determinant:

integral exists for that z. To facilitate numerical
computation, Graffi eI, al. used Pade approximants
for P(tz).

In this note, we wish to point out that exact values
of the energy levels of the anharmonic oscillator
can also be obtained without recourse to the stan-
dard perturbation series and associated summabil-
ity techniques. Our approach, essentially based
upon solving the Hill determinants in finding eigen-
values, has long been known in the literature of
mathematical physics. ' From our analysis we find
the following:

(i) For small A (A «0.1) the ground-state energy
is just that predicted by the asymptotic perturba-
tion series.

(ii) For A ~ 0.1 our results for the ground-state
energy are in remarkable agreement with those
obtained from the Pade approximants of the Borel
sum of the perturbatioa series.

(iii) The eigenvalues and eigenfunctions for ex-
cited levels can also be obtained within our frame-
work.

(iv) Our method affords a straightforward gener-
alization to the problem with the general anharmon-
ic term of the form A. x'

We give below an outline of our nonperturbative
approach. For simplicity, let us examine the level
shifts of the even-parity states and consider the
differential equation H g =eg. We now make the
ansatz
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e-1 2 0 0

0 c —5 12 0

0 e —930
D=

0

0 [e —1-4(n —1)] 2n(n —1)

0 (e —1-4n) 2n(n+ 1)

(4)

This is the well-known Hill determinant of the
problem. The eigenvalue condition of the anhar-
monic oscillator is therefore given by the vanish-
ing of this determinant. It is interesting to note
that if D„stands for the (n+ 1)x (n+ 1) approximant
to D, then the D„'s satisfy the following difference
equation:

D„= (e —l. —4n)D„, —lan(n —1)(n ——,')(n —~)D„, .

To facilitate numerical calculation we extract the
asymptotic part from D„, writing

A, =0.1 A, =1.0

38 1.065 285 509 543 767
39 1.065 285 509 543 721
40 1.065 285 509 543 701
41 1.065 285 509 543 722
42 1.065 285 509 543 721
43 1.065 285 509 543 715
44 1.065 285 509 543 717
45 1.065 285 509 543 719
46 1.065 285 509 543 717
47 1.065 285 509 543 717

100
101
102
103
104
105
106
107
108
109

1.392 351 641 522 185
1.392 351 641 527 460
1.392 351 641 537 939
1.392 351 641 526 918
1.392 351 641 527 298
1.392 351 641 534 760
1.392 351 641 529 254
1.392 351 641 527 879
1.392 351 641 532 721
1.392 351 641 530 279

TABLE I. Rate of convergence of e for polynomials
of high order (N).

D„=I"(n + 2) P„, (6)

whence the P„'s satisfy

(n+ 1)P„=(e —1 —4n)P„, —16K(n ——,')(n ——,)P„,. (7)

This equation (7) is the basis of our numerical
analysis for the determination of the eigenvalues.
The eigenvalues are the zeros of the D„, i.e., of
P„ in the limit n-~. The lowest root of D will cor-
respond to the ground-state energy level, and the
various excited energy levels will be given by the
sequence of higher roots. ' To find the energy
levels we therefore need to determine the roots of
the characteristic polynomials P„associated with
the determinants for large n. Equation (7) affords
a very simple procedure for generating character-
istic polynomials of all higher degrees. In this
connection we would like to point out some interest-
ing properties of our characteristic polynomials
P„:

(i) The characteristic polynomial of any given
order has coefficients which alternate in sign,
showing that there are no real negative eigenval-
ues.

(ii) Near the lowest root the derivatives of the
characteristic polynomials P„, and P„,for large
n are of the same sign. Hence from Eq. (7) we can
conclude that for sufficiently large n the nth-order
characteristic polynomial P„will have a zero be-
tween the zeros of P„, and P„„showing that the
lowest root of P„will stabilize as n-~. We illus-

TABLE II. Comparison of Hill-determinant eigenval-
ues e for small A, with Borel-Pads approximants cz of
Ref. 6. The values of c shown indicate the limits of the
stable solution,

0.1 1.065 285 509 543 70

0.2 1.118292 654 35(85)

0.3 1.164 047 157 0 (754)

0.4 1.204 810 324(767 4)

0.5 1.241 854 04(667 82)

0.6 1.275 983 5(218 545)

0.7 1.307 748 5(315 493)

0.8 1.337 544 9(370 465)

0.9 1.365 669 2(831 623)

1.0 1.392 350 (653 679 1)

100 1.065 285 509 543 71

100 1.118292 654 367 03

100 1.164 047 157 353 84

100 1.204 810 327 372 49

100 1.241 854 059 651450~

100 1.275 983 566 342 5g

100 1.307 748 651 120

100 1.337 545 208 148

100 1.365 669 825 786

100 1.392 351 641 54

trate this property in Table I. Similar arguments
can be used to establish the stability of all higher
roots.

We now search for this stable root numerically
by computing successively the lowest zeros of the
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TABLE III. Comparison for large A, 's.

1
2

3
4
5

6
7

8
9

10
11
12
13
14

1.392 350 (6)
1.607 50(93)
1.769 4 {141)
1.902 (6241)
2.017 (2350)
2.118 (5436)
2.209 (7320)
2.292 (8867)
2.369 (4637)
2.440 (5273)
2.506 (8834)
2.56 (91603)
2.62 {78593)
2,68 (33879)

100
100
140
160
180
180
200
220
240
240
260
280
280
300

1.392 351 6

1.607 541 3
1.769 588 8
1.903 136 9
2.018 340 6
2.120 532 9
2.212 914 2

2.297 577 8
2.375 978 5
2.449 174 0
2.517 960 8
2.582 955 4
2.644 646 5
2.703428 6

sequence of polynomials P4, P„.. . , Pypp etc. In
Tables II and III we give the stabilized value of
the lowest energy level for various values of ~,
the anharmonicity constant. For small values of
~ the stability of the root sets in for comparatively
lower-order polynomials and the energy level is
correctly given by the first few terms of the Bender
and Wu expansion. For higher values of A. we com-
pare our answers with those given by the Pade
approximants of the Borel sum of the perturbation
series. The agreement of our results with the lat-
ter is remarkable, as can be seen from Tables II
and III.

For large X, our energy eigenvalues satisfy the
condition that e(X)/X'" tends to a finite limit,
while the Borel-Pads approximants e~(A. ) have the
defect that they become constant. Also, our re-
sults always lie within the bounds quoted in Ref. 5.

For completeness we discuss briefly the nature
of the ground-state wave function. Defining R„
= C„„/C„, we find from Eq. (3) that the R„satisfy

2(n+1)(2n+1)R„=(4n+1 —e)+&(R„zR„,) ', (&)

which in the limit of large n has the solution

(Z/4n')z ".

Thus the radius of convergence of our series [Eq.
(2)] is infinite and the wave function is an entire
function of x.

It is easily checked that for large x the wave
function (2) is bounded above and below by'

r2/2
x' 'e * 'e ' " ' '(q(x) (

1 —(Z/4)'~'x'
(10)

Moreover, near the origin it behaves like e "
This establishes the normalizability of the ground-
state wave function.

We further note that if one expands the wave func-
tion in a normalized Hermite-polynomial basis, '
the associated difference equation is given by

[n(n —1)(n —2)(n —3)]' 'a„4+,'(2n —1—)[n(n —1)J' 'a„,+ —,'(2n+ 3)[(n+ 1)(n+ 2)]'z'a„„

+ —,'[(n+ 1)(n+ 2)(n+ 3)(n+ 4)]' ~'a„,~—
e-1-2n ——,'(2n' + 2n+ 1}a„=0.

H = —d'/dx' + x' +x x' ". (12)

The resulting Hill determinant is real and sym-
metric, showing that all the eigenvalues are real.
We have calculated the lowest zero of the first few
approximants of this determinant. This provides
a good check on our earlier results. " However,
the approximants to the Hill determinant corre-
sponding to Eq. (11) do not satisfy a simple dif-
ference equation of the type (5), and numerical
computation for large n becomes involved.

Finally, we remark that the Hill-determinant
method used above for the anharmonic A. x4 term
can easily be extended to the Hamiltonian"

The ana. logous (n+ 1)& (n+ 1) approximant to the
Hill determinant D„ for the eigenvalue problem
now satisfies the following recurrence relation:

D„= (e —1 —4n)D„z —(-1) Xa„a„, a„+zD„
(13}

where the a„'s are of order n'. The zeros of D„
for n- ~ are, as before, the various energy levels
of the problem.

It is a pleasure to thank Dr. S. R. Choudhury for
stimulating discussions.
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The stable roots of the characteristic polynomials

P„ for large n are always real, as we are working with
a Hermitian Hamiltonian. Complex roots can occur for
low n in various successive orders of the determinants.
However, we expect that these will never be stable.

90ur bounds are consistent with the asymptotic be-
havior of the wave function found by Loeffel and Martin

[J.J. Loeffel and A. Martin, CERN Report No. CERN-
TH-1167, 1970 (unpublished)].

Equivalently, the eigenvalues can be obtained from the
zeros of the Fredholm determinant associated with the
difference equation {ll). This equation can be written in
the form

~n =Q Bn, (t't~& ~

l=0

where g„& is the Green's function of the difference equa-
t

tion. An exact analytic form for b„& has been obtained.
~~We have also investigated mass renormalization in a

one-dimensional model Hamiltonian with nonpolynomial
interaction.
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It is proposed that outer automorphisms of degenerate internal-symmetry groups must be
symmetry operators themselves. In general, however, they are hidden (spontaneously bro-
ken) symmetries. Consequences of this proposition are studied. It is found that internal-
symmetry groups are not arbitrary but that their intrinsic properties play an important role.
The existence of discrete symmetries (such as charge conjugation) follows naturally from
assuming the continuous symmetry groups {such as gauge groups). We also find that the en-
largement of the isospin symmetry and parity leads directly to the chiral SU(3) x SU(3), so
that the existence of an "exact SU(3) limit" is in principle not allowed.

I. INTRODUCTION

Symmetry has always played an important role
in physics. Historically the rotational and trans-
lational symmetries were the first to be studied.
The theory of relativity brought in the I orentz in-
variance. With the advent of quantum mechanics,
discrete space-time symmetries (parity and time-
reversal) came into existence. Finally, the study
of elementary-particle physics brought forth a
whole new class of symmetries -the internal sym-
metries, such as the charge conjugation, isospin,
unitary spin, and many more "higher symmetries. "

The basic difference between space-time (ex-
cluding possibly the discrete symmetries} as com-
pared with the internal symmetries seems to lie
in that the space-time coordinates are physically
measurable quantities, while the corresponding
group space of the internal-symmetry groups are
fabrications with no physical significance whatso-
ever.

Thus, the "isospin space" is only introduced to
facilitate the comparison of isospin with ordinary

spin. The physicaliy important (and meaningful}
quantities are the isospin operators. In fact, we
need not talk about the isospin space at all. (Of
course it may happen in the future that even the
isospin space will acquire some physical meaning.
For the moment, at least, this is not the case. )

If the only physically meaningful quantities in the
internal-symmetry groups are the group elements,
then we may expect that the intrinsic group struc-
ture plays an important role. In this work we will
discuss the restrictions on the internal-symmetry
groups which arise from their automorphisms.

In order to facilitate our discussions, it is con-
venient to first clarify the origin of symmetry
operators in physics. This will be done in Sec. II.
We will show that there is a one-to-one correspon-
dence between symmetry operators and conven-
tions. Indeed, in the quantum-mechanical sense,
each symmetry operator actually carries out a
change of convention.

We are then naturally led to ask the question: Is
there any convention in our use of internal-symme-
try groups? Section IV is devoted to this problem.


