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We present a method of obtaining the results of renormalization which makes no explicit
reference either to perturbation theory or to the removal of infinities, but instead is based

directly on physical requirements. Applied to scalar $3 theory, the method yields a closed
expression for the renormalized scattering operator S in the Dyson form as an implicitly
time-ordered exponential of an interaction Hamiltonian plus quasilocal counterterms. Ex-
cept for the over-all phase of S, these counterterms are given as explicit functionals of the

vacuum expectation value of the bilinear product of operator derivatives of S with respect to

the asymptotic in-field a(x), which enables them to be calculated recursively to any given

order of perturbation theory from lower orders. S is calculated in a straightforward man-

ner up to third order of perturbation theory, and the two-point function to fourth order, and

all are shown to be finite, the infinities canceling automatically. The second- and third-or-
der results are identical with those of conventional renormalized perturbation theory. No

comparable calculation of the fourth-order result seems to be available.

I. INTRODUCTION

We know that the renormalized scattering opera-
tor S can be written as an implicitly time-ordered
exponential of an interaction Hamiltonian HD plus
quasilocal operator counterterms. ' However, these
counterterms have been defined only in the context
of perturbation theory as, for example, canceling
divergent integrals, or, strictly speaking, as can-
celing the cutoff dependence of the cut-off unre-
normalized scattering operator. That is, the re-
normalized S operator could be known completely
only in the process of the perturbation calculation
itself. On the other hand, many of the renormal-
ized perturbation results in quantum field theory
have been obtained by means which do not involve
the appearance of divergent integrals. ' In particu-
lar, Scattering Operator Theory (TSO)' ' has
obtained them without using the interpolating field
or the asymptotic condition, basing itself on a sin-
gle strong equation for the scattering operator S
which contains the full content of strong unitarity
and strong Bogoliubov causality. But in its present
form this theory is also tied to the context of per-
turbation calculations, because the "interaction
term" in it can be specified a Pnori only to first
order. The "higher-order interactions" are then
determined in the higher-order perturbation calcu-
lations by consistency requirements. Even so,
these do not give a unique answer, for two finite
third-order perturbation solutions were found, one
of them the conventional renormalized result. '

This paper describes an attempt to find a repre-
sentation of the renormalized S operator in closed
form, by a synthesis of these two approaches. We
devise a means of determining the counterterms of

the Dyson form for S from conditions derived from
the axioms of TSO. Thus the counterterms are de-
fined without explicit reference to perturbation
theory or to the removal of divergences. Here we

consider only the P3 model, the neutral scalar field
with cubic self-interaction. We take

the implicitly positively time-ordered exponential,
with

0=HO+AD+ A, x a x d x

+& Aax, y):ax)ay):d xd y

H, =-,'g ~I: a(x)'. d'x.

g A3 x, y, z: a x a y a z: d'x d'y d'z (1.3)

is not included in H, since P' theory is superrenor-
malizable, and so such a term is not needed to ob-
tain finite results. Nevertheless, such a term can

a(x) is the "renormalized free-field operator, " of
physical mass m. g is a constant. A, and A, are
distributions of point support. We know to write S
in this form because renormalized perturbation
theory gives us this result, ' and because this S has
been shown to be a formal solution of the fundamen-
tal operator equation of TSO.~ A, and A, will be
seen to be explicit functionals of a single matrix
element of S. Ao is not given explicitly, but this
will not hinder the calculation. A vertex counter-
term
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be included, and we indicate at the end how it may
be determined.

The balance of this paper is organized as follows:
In Sec. II we derive from the axioms of TSQ and the
asymptotic condition on the interpolating field the
conditions on S which will determine A, and A„and
we explain why we have used this mixed approach.
In Sec. III we determine A, and A, . In Sec. IV we
calculate S to first and second order of perturbation
theory, and in Sec. V to third order. In Sec. VI we

give the barest outline and the results of the fourth-
order calculation of the two-point function. Section
VII is a discussion. Appendix A is a derivation of
the results of Sec. II without using the interpolating
field and the asymptotic condition. Appendix 8 con-
tains some of the details of the fourth-order calcu-
lation.

II. CONDITIONS ON S

A, is determined by requiring that

(A) (S) =1, (2 1)

and

5a(x}/5a(y) = 5, (x —y)

S„-=6S/5a(x)

(2.3)

1 S„„(x,x„.. . , x„)
0 nf.

x:a(x, ) a(x„):d'x, .d'x„.

(2.4)
S„is determined off the mass shell by the axioms
of TSO, or by (1.1) and (1.2), regarded as "strong"
operator equations. ' It has the same symmetry off
as on the mass shell ~ A strong equation is one
whose operator derivatives (to any order) are valid
equations. Since we define operator differentiation
as being independent of other mathematical opera-
tions, the free-field Klein-Gordon equation K,a(x)
=0, where E, =B„'—&pe', must be "weak", since
from (2.3)

&K,a(x)/Da(y) = K, 5,(x —y) s) 0.

where ( ~ ) signifies the vacuum expectation value.
Later, ~0) will designate the vacuum state, and

] 1) the one-particle state.
We suppose that the asymptotic in-field [identified

with a(x) in (1.2)J generates a complete set of
states from ~0), on which S operates. Thus

s=g —, s„(x„.. . , x„)
1

n=0
x: a(x, ) a(x„):d'x, . d'x„.

(2.2)
All other operators will be given in terms of opera-
tor derivatives' of S with respect to a(x). These
are defined by

All operator equations except the free-field equa-
tion are strong, so that no special symbol need be
used to indicate this. The expansion coefficients in
(2.2) can therefore be written in terms of operator
derivatives,

S„(x„.. . , x „)= (S„„).
We require that S be strongly unitary,

S*S= 1.
One operator derivative of (2.6) gives

j{x)j(y)= S„*S„,

where

j(x) -=fS*S, .

The second operator derivative of (2.6) gives'

Re(S*S„+S,*S,),

(2.5)

(2.6)

(2 7)

(2.8)

(2.9)

where, for any operator A,
1

ReA -=—,'(A+A*) ImA -=—.(A -A*) .
2i

We also require that S satisfy strong Bogoliubov
causality, "'

(2.10)

(2.11)

outside the future light cone of (x —y). [The S op-
erator of (1.1) and (1.2) does in fact satisfy (2.2},
(2.6), and {2.11), but for the moment we do not re-
strict ourselves to that case. ] We define an inter-
polating field operator

A (x)—:S'(a(x)S)„ (2.12)

where the implicitly time-ordered product is de-
fined by substituting (2.2), and in the integrand of
every term taking the explicitly time-ordered prod-
uct

[a{x),: a(x, ) a(x„):Js

Then

=Q: a(x, ) [a(x), a(x, )]„a(x„):.
t= 1

(a(x)S), = Sa(x) + [a(x), S]„,
so that

A(x)=a(x)- b,Rx-y)j y)d'y

(2.13)

and

T,(a(x): a(x, ) a(x„):) .

The implicitly retarded commutator [a(x), S]„ is de-
fined similarly by constructing
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j(x) = K„[A. (x) —a(x)] . (2.14}

We do not delete the term K„a(x) for reasons al-
ready discussed.

One of the two conditions used to determine A,
and A, is then

(B) ( j(x)& = 0, (2.15)

which follows from (2.14) and the fact that, by

(2.12), A(x) satisfies the asymptotic condition, so
that2

(A (x)) = &a(x)& = 0 . (2.16}

The other condition (C) for A, and A, is obtained
from the Kallen-Lehmann representation'

from (2.18), (2.20), and (2.21}, we have

iA-,'(x —y) = (S*(a(x)a(y)S,)

in, -(x —y}

because

&&x —u &„y- v S*S„„dud v,

(2.22)

& j(x)a(y)) = (0 ) j(x) ( 1&&1 ( a(y} ( 0) = 0

from the asymptotic condition, which makes'

&0 I A(x) I I& = &o I a(x) I I&

and also

(A(x)A(y)) = ii(-)x3—y) (A (x)a(y)& = (a(x)a(y)&, (2.23)
d(u')

i -d(3 2 2)2 A, (x —y; 9), ,42 (y, —m
(2.17)

with J(((,') a real non-negative function, and a simi-
lar expression for

and, combined with (2.14), which makes

&0~j(x)~ 1)=0. (2.24)

From (2.22), and the spectral representation for
(2.18), we have the second condition for A, and A, :

i'(3(3-—x y) = (T,(A (x)A-(y))&,

with 6, replaced by A„and"

3,(3;3')='(33) 'fd'3 " 3(3'\3(3 3'')

&.(*;3*)=(3 ) 'f3'3 " (3*'3*—''') '

and

A()(x) =—A()(x; m') .

(2.18)

(2.19)

(C) (S*S,g=iK,K, dp. ' » A, (x —y; p ).~(u')
4m2 p —m

(2.25)

We eliminate all reference to A(x) by using (2.14),
(2.17), and (2.23) to obtain

& j(x)j(y)& =K.K,&A(x}A(y) —a(x)a(y)&

4'~(( ')A+(x - y; ( ')
3 (2.26)

4m2

We have chosen this particular form of the spectral
weight function for convenience. It is related to the
usual expression o(p') by

Z(( ') = (u' —m')'o(q') .

6,' is related to S, by the following two theo-
rem s".

(I) If A. (x) and a (x) are any two operators related
by (2.12} (not necessarily satisfying field equations),
and S satisfies (2.6) and (2.11), then

T+(A(x)A(y)) =S*(a(x)a(y)S)+ . (2.20)

(II) For any operator S that satisfies (2.2), the
implicitly time-ordered product is related to the
implicitly retarded commutator by

(a(x)a(y)S), = ST,(a(x)a(y)) + [a(x), S]„a(y)

+ [a(y), S]„a(x)+ [a(y), [a(x), S]„]„.
(2.21)

We have given here only the special case of these
two theorems required in our derivation. Equation
(2.13) is also a, special case of Theorem II. Then,

III. DETERMINATION OF Ai AND A2

Take the operator derivative of (1.1) and (1.2).
Then from (2.8),

j(x) = S*(H,S).,
where

(3.1)

l (*3)3': 3(*)+fAA. (, 3) (y)d'3 (3.3)

If we substitute (3.1) and (3.2) in (2.15), and use

which we will use, together with (2.7), to calculate
J.

It is interesting to compare the present derivation
of (2.25) with one, given in Appendix A, which does
not use A(x} and the asymptotic condition, but in-
stead uses the full content of TSO, in order to make
explicit the physical content in the former notion.
We placed the present derivation in the body of the
text, however, because it is shorter, and because
we are obliged to concede implicitly the existence
of A(x) if we wish to use the Dyson form of S in
perturbation theory.
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(2.12) and (2.16), we obtain

A, (x) = --,'g(S*(:a(x)':S),& (3 3)

2(2w)' 4 2 (y.
' —m')'(p'+ p' ie)—

(3.5)

Taking the second operator derivative of (1.1)
and {1.2), we have

and using (2.21) modified for the normal product
:a(x)a(y): in place of a(x)a(y), we have

A, ( )= vf-', vg — )v t« — )&s*s„.&d' v'v.

(3.4)

Equation (2.25) then gives us

j(p') and A, are at least of second order, and,
from (3.4), A, is at least of third order. In order
that the first-order vector S('&I 0& have finite norm,
we must modify S by inserting in the integrand of
H, in (1.2) the real c-number test function a(x).'
Then A. ..and S become implicit functionals of
o(x). At the end of the calculation we take o(x)= 1.
This is a technical requirement, and does not by
itself make S finite. It will reduce the divergence
of A y

from quadratic to logarithmic, but will not
alter the divergence of A, . We will suppress o(x)
in the following except in those few integrals that
require it, in which cases we can recover it for
every variable of integration x by multiplying the
integrand by the factor a(x).

The first-order perturbation result, from (I}, is

S„=-i (H„P ), —(H,Hys)„

where

H„=g5, (x —y)a(x) +A, (x, y) .

(3.6)

(3.7)

S'"= -zH&"

= —-2 0 X):a X:d X-2A

S '"= -~:a(x}':, (4.2)

Since j(x) and H„satisfy the conditions of Theo-
rem I,

S'(H„H,S),= T,( j(x)j(y)) .

Using (2.6) and (2.16), we see that

A, (x, y) = i(s*s„g —(T,( j(x)j(y))& .

(3.8)

(3.9)

The time-ordered term of (3.9) can be obtained
from (2.26) with n, replaced by n, . Using this and
(2.25) we have

SP,
' = i5,(x —-y)a(x),

and setting (S ' ) = 0 gives Ao' = 0.
The two-point function to second order is

(S (2)) (S v( S &(2) (4.3)

because the difference between these two expres-
sions vanishes,

(s""&",„') = —,
' v. (*-v)I (*)&: (*&"a(*)&d'*=&),

(4.4)

IV. FIRST- AND SECOND-ORDER PERTURBATION

Here we show how we obtain the results of re-
normalized perturbation theory. This is made pos-
sible by the fact that from (2.26) and (2.7), J(g') is
a functional of the bilinear expression (S„*sg . Sup-
pose that

S= I+g g"S'"'
n= 1

(4.1)

Then S, and j(x) are at least of first order in g,

where

X, (p) = dl(', , 1 —, , (3.10}
&(l ') P'+ m'

4~ p —m p. -m
As promised, A, and A, are given explicitly, al-

though recursively. We note that the unrenormal-
ized theory cannot satisfy (2.15) and (2.25), since
if Ay A2 0 we would have J(p, ')=0, a free-field
theory. %'e also note that, whether or not A, di-
verges (it does in perturbation theory), A, diverges
no matter what.

by the version of Wick's theorem which expresses
the product

:a(x, ) a(x„)::a(y, ) a(y„): (4.5)

as a sum of normally ordered products, with 6,
contractions as coefficients. ' As a consequence

(:a(x,). . a(x )::a(y,)" a(y. ):&

~nm 2++ +j 3k
(combinations)

j,k

(4.6)

s
I o& =

I o&,

as ought to be the case, because we have already
completely determined S, and therefore may not
impose any other conditions. Z('&(p ) is obtained
from the spectral representation~

which vanishes when nt m, because the maximum
number of 6, contractions will still leave some op-
erators normally ordered. We are obliged to prove
(4.3) rather than set
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A, (x;m')A, (x; p. ')= , dv'p(v', p, ')A, (x; v'),
167' (m+ p)

(4 7)
where

From (4.2) and (4.6),

(4.14)

[A, (x)]'=[e(x')a.(x)+e(-x')A, (-x))'
= e(x')[~,(x)]'+e(-x')[A,(-x)]'

—.'[A, (x —y)]'-gA&"(x, y).

From (3.10) and (4.11) we see that A&" diverges.
'„2 diverges for the same reason. Using (4.7) and

(4.11}, we have

(SOS )(2) (Sg(1)S(1)) =2i dpgJ(2)(y. g)A, (x; p, ').
4m2

(4.15)

Now

=--,'[A, ( —y;m')]'. (4.8)

-sse('S, (;p))=(S)'jd'le'''e(l' p'),

(4.9}

and, from (2.26) and (2.7),

22e(S;S„)=(S)'fd'P ''e ed(-p'l.

(4.10)

Combining (4.7) through (4.11), we obtain

32m'J")(p. '}= p(p, ', m')e(p, ' —4m')

=(1 —4m'/p')'"e(. yg —4m. ').

OO 2+ 2
gg(2)( 2)

P2+ 2 i~ ~2 ~2 ~2 ~2

(4.16)

which is identical with (4.12). Thus

—2'[A, (x —y)]' iA,"—(x, y) =(S",,')
which is finite, automatically. Putting (S&")=0,
we obtain

(4.17)

Let us cut off the integrals (3.10) and (4.15) at some
large value Mof p. ', do the cancellation in (4.14),
and then let M —~. Equation (4.14) is then seen to
be the Fourier transform of

(4.11)

Substituting (4.11) into (2.25), we see that {S&2)) is
the renormalized result, and is finite. Its Fourier
transform is

'(2)( 2)

(p' —m')'(p + p' —g&)

(4.12)

AQ = —~ crxoy)h x —y) dxdy.

Finally

S'= d xd y -~.'ax)'ay)':
+ —,'i n, (x —y):a(x)'a(y)'.

+ —,'(S,",):a(x)a(y):],
which is the renormalized result.

(4.18)

(4.19)

The automatic cancellation involving A,"is seen
in calculating the entire S operator to second order,
from (1.1) a.nd (1.2),

S(2) gH(2) 1(H(1)H(1))

=-iAO —i A2 x, y):a x a y:d x d y

0 x 0 y T, :a x)'. :a y)':)d'x d y.
(4.13)

Expanding the last line by Wick's theorem, and
combining coefficients of:a(x)a(y):, we find the
combination

V. THIRD-ORDER PERTURBATION

The third-order S operator is, from (1.1) and

(1.2),

S&»= gH&» (~(»H&») ~ gg(H(»H(»~&») (5 1)

We note that A,')=0 because Jg'(pg) =0. That is,
J ' is obtained from

{S*S)&"={S*&')S&»}+{S*&1)S&») (5.2)

and if we take one operator derivative of (4.19)
combined with (4.2) we see that every term of (5.2)
vanishes because of (4.6). Combining (5.1) and
(1.2), we have

S =-iAO -i A, a x)d x —-'A 0 z):a z '.d z

d xd yd z 0 z A,' x, y T, :a x a y::a z)':) —»~i v x a y)T,(:a x)'. :a y)'::a z)':) . (5.3)

Using Vfick's theorem, and combining coefficients of the same normal products, we find that the combina-
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tion (4.17) occurs three times. We also note that the requirement (S(")=0 gives A("=0. Thus

d xd yd z 6 ~i:a x a y} a z:+~8~, x —y):a x)'a y)'a z ':
--,'i Z1, (x —y)(4(, (y —z):a(x)'a(y)a(z)': —~i(S(,",):a(x)a(y)a(z)':

--,'(S(',))A, (y —z):a(x)a(z)': ——,
' h, (x —y)h, (y —z)h, (z —x):a(x)a(y)a(z): ]

+ d zcr z) e
'. a z): Ao + ' d xd ya'(x)0' y)&, (x —y) -iA,' +2i d xd y Spy 6g(z x)kg z p)

(5.4)

The last two lines of (5.4) vanish, by (4.18), and by (3.4) and (4.12), respectively, giving us the renormal-
ized result.

(s(4)) (sm s )(4)

we can use (2.25). J( )(u') is obtained from

(6.1)

VI. OUTLINE OF FOURTH-ORDER PERTURBATION

Since

where

4'(*)=In* ~ (( —4*) '"(
( ( 4 „,}.1+(1 —4z)'"

The last term in (6.2) is

(6.9)

(s* s )("=g (s*("s"-").

Now

(S*( )s( )) = -j(47f) du dv2
4m2 (m+p) 2

(6.2) (S(3)ms(1)) (S(1)m S(3) ) 4
x y y x

and can be obtained from (6.6) using A,*(x)= -A, (-x).
Applying (4.9) and (4.10) to the resulting expression
in (6.2), we obtain

(4v)'J(')(u') = Re M(u')()(u' —4m'}

where

x J(u2, v')1),(x —y; v'), (6.3)
+ dv2J(v2, u')8(u. ' —(m + v)') .

4m2

J(u', v') = K(u. ', v')+ L(u', v'),
(6n4}

K(u. ', v') = p(u', m')p(v', u')/2(u. ' —m')',

and

The second term in (6.10) can be written as
(p-m) 2

0(u' —9m') dv'J(v', u'),
4m2

(6.10)

(6.11)

1
(u' n

(
2 2)p

(6.5)

since u & m +v&3m. From (6.10) and (6.11) it is
not difficult to verify that

J(4)(u')-(4v) ' dv', ', , as u2-~,, p(v', m')
4m2 (v' —m')'

(6.12)

p(v', u, ') is defined in (4.7). Next

(S',"*S',")= 2i(4(() '-,du'M(u')&, (x- y; u'),
4m

(6.6)

which is finite, so if we substitute (6.10) in (2.25),
the resulting integral for (S(')) will converge. The
details of obtaining (6.1}-(6.9) are discussed inAp-
pendix B.

VII. DISCUSSION

where

f(f(u') p(u', m'=)[N(u')+P(u')],

2 & 2 2 2 p(v', m')
N(u )=-, (u -m ) dv

and

W(1 —u. '/v ')
v2(v2 u2)p(v2 m2)

(6.7)

(6 8)

We admit at once that we have not proven that our
method gives the conventional renormalized re-
sults to all orders of perturbation theory, but only
as far as we have gone. To go further we require
Feynman rules, but the recursive definition of Ay

and A, makes it not obvious how these may be ob-
tained.

In terms of conventional renormalization, we
may say that A,' cancels the second-order vacuum
diagram, A,' cancels the third-order tadpole dia-
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gram, and A", cancels the divergence in the bubble
diagram. In addition, as we see from the finite-
ness of the fourth-order result, the tadpole inser-
tion in (Si4)) is also canceled. The presence of
such a term would violate (6.1) and cause the vacu-
um state to be unstable. As explained in connection
with (4.3), we have not explicitly assumed the full
content of S~ 0) =

( 0), but in the two cases consid-
ered here, our other axioms provide us with more
of that content than was apparent.

We emphasize that A, and A, are given as explic-
it functionals of S. A, is not, but if we had calcu-
lated j(x) first, then solved for S subject to (2.1},
we could have avoided all explicit mention of Ap,
as we see from (2.8). However, the perturbation
calculation is easier as we have done it. In fact,
up to fourth order, it is no more difficult than the
conventional renormalized perturbation calculation.

Since we have not included a vertex counterterm
like (1.3) we may not be able to identify g with the
physical coupling constant in some low-energy lim-
it. We can include such a term in H, and deter-
mine it by defining a vertex function I' by

'(s's„,) cccc„cc fcc.'( =—, )cc.'(.y - ls.'(* - )

xI"(u, v, w)d ud vd w,

(7.1)

Dyson exponential form of S, which in our case is
seen to be an improper form because A, is infinite,
even without perturbation theory. However, even
though the form is improper, the actual values of
the matrix elements of S as we have obtained them
are finite.
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APPENDIX A

and

Q. ( —y) -=-(s*s„,) (A 1)

Here we derive (2.25) from a dispersion relation
[(A5), below] given by Bogoliubov and Shirkov. '
First, we summarize the assumptions needed in
that derivation. Then we list the additional assump-
tions we need, and proceed.

A(x) is not used, but we retain (2.6), (2.11),
(2.15}, and (2.24) as assumptions. The last two
equations a,re required in order that (2.26) should
hold. The two expressions

as is suggested by the form of (S(3),+S p~,), and by
requiring that the Fourier transform of I,

y(Ply P2) P3} 4( l 3 P2 +P3}y

Q„(x- y) i(~j (x)=-/~a(y))

are related by the operator identity

-S*S„=i 5j(x)/5a(y) +j(y)j(x),

(A2)

{AS)

which can be written as y(-p, ')5, (p, +p, + p, ) when

py P2 m ', satisfy the following two require-
ments":

(I) y(-p')-g as p-0, and
(II) The Lehmann-Symanzik-Zimmermann theo-

rem '4
7

( p') '"y( p')--o as -p-'-".

which follows here from (2.8) and (2.7). If Q, n are
tempered distributions, then their Fourier trans-
forms

s, ,,(y)=ps'*e-"'4. ,( )

are analytic continuations of the same function of
a complex va, riable q(z) which is polynomially
bounded for large z,

The result of this program will be reported on in
a sequel.

As we saw in Sec. III, an unrenormalized quan-
tum field theory with a positive-metric Hilbert
space cannot satisfy the conditions {A), (8), {C)
of Sec. II. This is a rather precise expression of
the idea that renormalization is done for physical
reasons, and would be necessary even for a finite
unrenormalized theory.

We began with a synthesis of conventional re-
normalization and those approaches which do not
use the improper exponential form of (1.1}, such as
TSO, and our result is seen to lie somewhere be-
tween theirs. On one hand, our method is far less
strenuous to apply than TSO, and does not share its
ambiguity. On the other hand, we still have the

q.(p) = q(-p +i~)

q, (p) = q(-p'+ (p'+ie)') .

If q(z) is bounded by z" for some n, then

q(z) = -i(z —m')""

)( d~ Z ~ ~ 2)-n-j. 2

where q(m') =0, and q('(m2) is imaginary.

(,)( 2)
d "q(z)

(A4)

(A5)
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with z = re
Now we assume that the operators in (A3) lie in the domain of the convolution-integral operators Ps „,

defined for f (x, y) in that domain by"

~(f( ~ P)~=&x+y ~(+(X P )} +P R X + ~R ~ P V)f u, V d ud V ~ (A6)

This, with the assumptions of strong unitarity and strong causality, implies

P„(t[j(x)/5a(y)) = 0 . (A7)

-S*S„,= -iB(lm(S*S„))+B(Re(S,*S,)) +Ps(s,*s,}+P„(S,*S,), (A8)

where B =-1 —PR- P„. That is,

n(y(*, y[) n dJ-=[d. ( , —y'[d' ( — )d (y — [ d(y' — '[d(y — [d (» — )If(, [d d' (A 9)

We take the vacuum expectation value of (AT), first rearranging the terms of (A5) according to the alge-
braic identity

n+J.
n+If -I P a+Inr( h)r-1-+ (a h)n+Ih-1

(A 10)

with a =P'+ m' and 5 =P'+ p. '. Then

q(-p')=i dp'J(p')[([|' —m') ' —(p'+[(.') ']++ (-p' —m )" —q
"[(m[')+i dp'J(p. ')(g' —m') " '

(A 11)

(A7) and (A2) then give us P„(Qs(x —y)) =0, whose
Fourier transform is

of the term r = 2 is finite, but not zero, so its X-
independent factor must vanish. Therefore, we
have

0 = ( p'+ m'}' . (x - i ~) '[ng p —x')] 'q, ( p —8),
«oo 2 Pl

(A12)

where

&s „(p)=[p'+ m' —( p'+ie}']-',

(.)—,q'"'(m') = ~ dp'd(q')(u' —m'} ' '

for r) 2, and

q(-p') = i(p'+ m'-}'

(A 13)

and

p —z'=(p' —z, p).
(A 14)

x dp'J(p )([(, —m ) (p +[(, )
4m2

-(p'+m )q'(m )
As we shall see, qR vanishes sufficiently strong-

ly at the pole of AR for the product qRAR' to be well
defined. Substituting (A4) and (All) in (A12), we
see that the integrand has poles only in the upper
half-plane of X. Therefore, (A12) is equal to (mi-
nus) an integral over an infinite semicircle in the
lower half-plane of the same integrand. This in-
tegral, of the first line and of the term r =1 in the
sum over r in (All), vanishes as the radius be-
comes infinite, so these terms automatically satis-
fy (A12). The integrals of the terms r) 3 diverge,
and the degree of divergence increases with r, so
the factors in these terms which do not depend on
A. must vanish for each z ~ 3. Finally, the integral

Equation (A14} is also correct for n = 0, because
then there is no sum in (All), so that

e'"(-P') = -~ ~u'&(v') P" +v') '

and setting -p' = m ', we have (A13) with r = 1.
We take the vacuum expectation value of (A8)

using (2.26) and (2.7), and in the same way we ob-
tained (A12), we obtain the Fourier transform of
p,(s,*s,),

-l(y' ')' f d» (» —'
[ '[d„(y+»'[]'

x e(pa+a) J(-(p+ Xo)2) . (A15)
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()&*~ —) f'*&» &, (» ')(» *-**)*

x (p'+p. ' -z z)& (A16)

Similarly, the Fourier transform of B(imp, (x —y)}
ls

*)*f a&((& &)»(()'+&')*+

x [n„(p+X')(X ic) —'

+ Ag p+ X')(a+i&)-'] Imq, ( p+ Xo},

(A17)

because q, (p) is an even function of p. As in (A12)
the fact that q, vanishes at the pole of ~„~ removes
the conflict with the 5 function. Substituting (A14)
and (A4) in (A17), and remembering that qZ')(mz) is
imaginary, we obtain

(A17) = 2i(p'+ m )q ' (m') . (A18)

Similarly,

B(Re(S,*S,)) = 0, (A19)

for the reason given following (A15). Combining
(A8), (A1), (A16), (A18), and (A19), we have

q(-p'+is) = -2(p'+ m')q '(m')

-i(P'+ m')' dp'J (p. ')(p. .
' '—m') '

4 zest

x (p2 + p.
2 —ie)

(A20)

Comparing (A20) with (A14) we see that qiu(mz)
=0, and (2.25) follows.

Equation (2.25) can be written in the usual form
of a dispersion relation by combining (4.10) and
(2.9). This gives

This integral is well defined because we may take

J(p. ') =0 for all lzz&4m', and therefore J vanishes
uniformly in the neighborhood of the pole of hA. If
we change the variable of integration to p.

' accord-
ing to

po ~) (~pz+uz)z/z

and treat P„(S,*S„)similarly, we find that the Fou-
rier transform of Pa(S,*S,) +P„(S„*S,) is

APPENDIX B

(1) Proof of (6. I). The difference between the
two sides of (6.1) is

(S+(~)S(4 ~))
zy y

k= 1
(Bl)

each term of which will be seen to vanish separate-
ly. Using (4.2}, (4.19}, and the second operator
derivatives of (4.19) and (5.4), we construct the
products in (Bl), and delete from the result all
terms of the form (4.6) with men. This wipes out
the term }t= 3 in (Bl). We perform the contractions
using (4.6) with n= m. We will find several terms
with the factor

d u(:a(u)'::a(x)a(y)a(z):)

=6i d u4, u —x 4, u —y 6+ u —z

where

=(2 )
' f&') &'

»'.( p)6:(q)5:(-p —q),
(B2)

(B3)

The surviving terms are contained in (S*i' S~,', ) .
Of these, two will have the factor

(B4)

because of (4.12). Equation (B4) also holds when
x= y. What survives is

~L 0 Ql vkq u —v

x [a,(u —x)'A, (v —y)'

5'.(p) = ()( p')5( p'+ m') .

Now 6 (P )8(q )6(-Po —q') = 0 unless P~ = qo = 0, in
which case p'=p' & 0, and therefore 5(p'+m') =0,
and (B2) vanishes. This conclusion a.iso holds
when x=y, by using (4.7). For the case x= y=z,
we use the limit

and

zzJ(y, ') = Req(p, '+is), + 2A, (u —x)n, (u —y) A, (v —x)A, (v —y)] .

(B5)

q(-p'+is) = ——( p'+ m')'
jr

Req(Z(' +i&)
(y.

' —m')'(p'+iz'-ze) '

(A2i)

a twice-subtracted dispersion relation, whose sub-
traction terms have been determined.

The first term of (B5) vanishes, because after ap-
plying (4.7) to it, we find in the Fourier transform
5„'(P)5',(-P), which vanishes by an argument simi-
lar to the one following (B2). The second term in
(B5) vanishes by a similar but longer argument.

(2) Proof of (t). 3)-(6.5). Take the operator deri-
vative of (4.19) and construct (S,* "S,") . Apply
(4.6) and delete all terms which vanish for any of
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the reasons discussed so far. This leaves

&s *'s'„*')=»f 4' 4' d."t*- )d. (s — )

x [a,(u —v)'i). ,(x —y)

+2a,(x —v)s, (u —y)h, (u —v)] .

(B6)

~e apply (4.7) to the first term of (B6), and obtain

r " y dy dz
&(P, q)=, —5(q. -w —x),

4p, o u(w ——,'p, ) s x

(B8)

where x= [(q —r)'+ m']'I', and q ~ r = qzz. Changing
the variables of integration from y to se, and from
z to x, we find that se is limited by m ~w & q, and

[(q —r)'+ m']'" ~ q-w & [(q+r} + m']'~'. (B&)

After considerable manipulation, we obtain

, , &,(x —y; p )b,(x —y;m ). ., p(p. ', m')
4m2 p, -m m ~ 2qs —2'qp(p. ',—m')-w 2qo+2qp(P m )

A second application of (4.7) gives us the term
(6.4) in (6.3). The second term in (B6) is related
to (4.7), but is rather more complicated. Here is
an outline of its derivation. That term equals

and

~2 q
2 q2) 4m2

where

p(p. ', m') = (1 —4m'/p'}'" . (B10)

(B7)

Equation (B8) may then be written in spectral form
as

where

d(s, dl fd s='.td-'ls.'( )ttd- s
d 25+( )1 q&)

—Po+qp(p &m )

4qp 4m2 "
qo p&) qp(p )m )

(Bl1}
In the reference frame in which p = 0, and setting
w = (r '+ m')"'

We now integrate over q, remembering to keep
p=0:

r
&0 dEd'q 5+(p —q)(q'+ m' —ie)I( p, q)=, , —,5( p, —E —E') 1

4po 4m2 p —m m E (B12)

where E = (q'+ m')'" and E' = (q '+ P')'", and we
have used the Fourier transform of (4.7). The lim-
its on E come from 5+(P —q)5+(q}. Now

(1/2E') 5( p, E-E')-
= 6(p, E}5(p,'+ m—' —p,

' —2P+},
so the integral over E vanishes unless

ps~(ps +m —p, )/2P2~m&0

or, after some manipulation, p' & m+ p, & 0. Trans-
forming back to p ss 0, (B12) may be written in spec-
tral form as

dp, dv I. p. , v )~, P),

which is the contribution of (6.5) to (6.3}.
(3) Proof of (6. 6)-(6.9) Take (4.2) and the oper-

ator derivative of (5.4), and construct (S„* "Si,"),
deleting all terms which vanish for any reason
mentioned so far. Then

s*"&' "s=')f» d"'
~ [(SP)s.(u —v}i),(x —v)'

where

+ T(y, u, v)&, (x —u)a, (x —v)

+ 2(S i„'„))4, (y —u) s,(x —v)a,(x —y)],

(B13)

T(y, u, v) = r, (y —u)a, (u —v)b, (v —y) .

Now the last term of (B13)vanishes, as can be
seen from the Fourier transform, which will have
the factor

(p'+m' ie) '(p'+-m')'5(p'+m')=0.

Using (2.25) and (4.7), we see that the first term
of (B13) is

—', '(4 )
' f ds'd(d')s(d id&-s;d '), ', *
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which gives (6.7). The second term of (B13) in-
volves the triangle graph, which is known to be fi-
nite in the Q' model,

r(e, , )=(q ) fd'qd're"'t" "'e"' "'t(q, —),

where

-(4v) '
dt(, 'p(g', m')P(p')t), ,(x —y;t('), ,

4nt2

(B16)

where

(Bi7)

and

t(qr)= f, d'p,q( p)q( p—qlq(p —,r)

6,( p) = (p'+ m' -ie) '.

(B14)
W(z) is given in (6.9), and z(x) = 1 —p'x(1 —x)/m'.
Equation (B17) is derived from (B14) by using the
Feynman parametrization

(abc) '= dx 2ydy{[ax+b(1 —x)]y+c(1 —y}} '.
0 0

Then

(q ) "-fd'ld'q "' "q:(p —qlq:(e)t(p, q)

(B15)

Since q
' = (p —q)' = -m ', t, being invariant, can

depend only on p'. That is, t(p, q) = t(-p'). Now we
can integrate over q at once, according to (4.7).
Equation (B15) then becomes

The integrand of (B17) has a singularity only at
those values of x that make z(x}= 0. But that sin-
gularity is logarithmic, and therefore the contri-
bution from the neighborhood of it can be made
vanishingly small. This can be seen by changing
the variable of integration from x to z, and noting
that the integrand is symmetric about x= —,'. Thus
P(t(, ') is finite for all t(. ', and it can be shown that
P(t), ')-0 as p'-~. A final change of variable,
from z to v' -=p'/(1 —z), gives us (6.8).
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