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which diagonalize them are connected by unitary
transformations. This feature is fundamental to
both the calculation and the physical interpretation
of the theory. The fact that this is no longer true

in quantum field theory, as we have amply demon-
strated, is a serious difficulty which has yet to be
understood and overcome.

*Work supported by the U. S. Atomic Energy Cornmis-
sion.

~Note that these states are fundamentally different from
the usual Glauber coherent states, which are of the form
~(g (p))le).

2For a discussion of this problem see F. Coester and
R. Haag, Phys . Rev. 117, 1137 (1960). For another pos-
sible approach see K. O. Friedrichs et al. , Integration of
I unctionals (New York University Institute of Mathemati-

cal Sciences, 1957).
'States somewhat like the boson and fermion states con-

structed here have been used before by Schiff and others.
They, however, all work on a lattice space, and to my
knowledge the continuum case has never been treated be-
fore. For examples of this lattice-space treatment, see
L. I. Schiff, Phys. Rev. 92, 766 (1953); D. H. Holland,
ibid. 98, 788 (1955).
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Quantum corrections to the energy-momentum tensors of particles are calculated for these
theories: (1) scalar electrodynamics, (2) spinor electrodynamics, and (3) scalar particles
with A, @4 self-interaction. It is shown that source theory provides a much more satisfactory
approach than conventional means. The primary result of the investigation is the clear es-
tablishment of the favored role of the so-called "conformal" stress tensor —that is, the
stress tensor that in the zero-mass limit transforms covariantly under the action of the con-
formal group. In terms of this tensor, unsubtracted spectral forms for the modifications
are written down. A heuristic '*proof" that this should be generally possible is provided.
It is argued that broken scale invariance does not affect this subtraction-free property, and
this is confirmed by explicit calculation of the order-A~ modifications in the A, @4 theory.

I. INTRODUCTION

The energy-momentum tensor, or stress tensor,
appears in classical and quantum theories as the
local measure of the mechanical properties of a
particle or field system: It represents the flux of
energy and momentum. But this property does not
uniquely serve to define the tensor'; even the re-
quirement of symmetry in the tensor indices leaves
available a wide class of tensors, ' of which the
canonical one of Belinfante' is only one. On the
other hand, the dynamical significance of the stress
tensor emerges when the coupling with gravity is
considered. Einstein's classical theory of gravity
provides, through the variational principle, a
unique coupling of gravity with matter and energy
through the conventional stress tensor ' and the
same form persists when the simplest quantum-
mechanical realization of the gravitational field in
terms of gravitons is made. "' But certainly it is

possible to obtain coupling through a different
stress tensor if one is willing to complicate the
form of the action. "

Our program here is to calculate the lowest-or-
der modifications to the stress tensors of spin-0
and spin--,' particles in three theories: A. y' inter-
action, scalar electrodynamics, and spinor elec-
trodynamics. We will perform the computations
both in terms of the conventional tensor couplings
and in terms of the coupling with the tensor sug-
gested by consideration of conformal invariance. "
The transcendent virtues of the latter will become
quite evident. In this respect this paper may be
considered complementary to the recent one of
Callan, Coleman, and Jackiw (CCJ).' However, the
method of computation adopted here differs from
that used in their paper, and is, we feel, more
convenient and satisfactory: That is, we will base
our calculation upon the foundation of Schwinger's
source theory. ' " To compare the two methods,
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II. STRESS TENSORS AND CONFORMAL
IN VARIANCE

In line with the comments above, we begin by
studying the primitive coupling of scalar particles
to gravity. By itself, the gravitational action is"

tO

W = (dx)[T" '(x)h„, (x) + g(h, r}(x)], (2.1)

for the simple example of the A.y modification we
shall indicate how the calculation is performed both
in source theory and in conventional operator field
theory. In doing so, as well as in the electro-
dynamic calculations, we will see that the situation
is rather more pleasing than was envisaged by CCJ.
Moreover, by explicit computation of the A' effects
in the case of the A.q' interaction we will study the
consequences (or more properly the lack thereof)
of broken scale invariance on the improvement
brought about by using the "eonformal" coupling,
and we will indicate why we suspect this breakdown
is irrelevant to the contact-term considerations
central to this paper. But if these theoretical de-
lights do not satisfy a reader's palate, we advise
him to turn elsewhere for sustenance, for we can
only echo the masters in saying that there is no

hope of ever finding experimental tests for the re-
sults herein discussed. '"

the graviton demands the conservation statement

(2.2)

Now, outside the particle source the (symmetrical)
stress tensor of the spin-0 particle obeys the same
equation; thus we introduce the primitive interac-
tion in (2.1) by the replacement in that equation of

T T (2.2)

For a noninteracting particle of zero spin the can-
onical stress tensor is

~(0) = ~ (J('~ 0'+A &(0)

with

(2.4)

~(0) = —2(a~Pa v™y}. (2.6)

To construct the modifications to this primitive
interaction, it is necessary to consider multipar-
ticle exchange mechanisms. " Since the free prop-
gation of particles presents no mysteries, this
problem can be easily solved once the effective
sources for the possible intermediate multiparticle
states are obtained. An extended gravition source
can, in its most simple aspect, produce particle-
antiparticle pairs. From (2.1) and (2.4) it is an
easy matter to identify the effective two-particle
source. The interaction term in the action is

valid for weak fields. Here A„, is the gravitational
field, I""

&
the corresponding Christoffel variable,

and T"' the graviton source. The masslessness of

( (dx) [a "(pa'p+g"' ( —a, (pAp m'y')]h—„„,
which implies the effective pair source

(2.6)

—,iK(x')K(x") i,«= '

(dx) h„.(x)(a "6(x x')a'6(—x —x") ——,g""[m'6(x —x') 5(x —x")+ a~6(x —x')a 5(x —x")J}.
(2.7)

This possesses the Fourier transform

iK(P)K(P')idf f (dx')(dx")e '~* e '~* iK(x'}K(x")i6ff= -h&, (P+P')[(m' —PP')g("+P" P"+P'"P']. (2.6)

Since we will want to compute electrodynamic corrections, it is necessary to remember that photons also
couple to gravity through

~p v +]1k+v 1 ]1 v+ ae+

The explicit coupling terms in the action are

W = (dx)(dx')(dx")h„„(x)([a "6(x —x')A'(x') -a'6(x -x')A"(x') J[a"6(x-x")A,(x") -a,6(x-x")A"(x")]

(2.9)

—,'g&"([a 6(x x')A'(x') a'6(x —x'}A (x')][a 6(x —x")Aa(x") —aa6(x-x")A (x")J}),

(2.1O)

from which the two-photon effective source can be immediately inferred,

ad„(*')),( ")(„J(d )6 ()(6,5(*—**')„6„"5( —'")d„, -a'6( — ')a„5(*- ")5,"-a,5( )a'6( ")6,
+ a 6(x —x')a 6(x —x")6(„"6'——,

' g""[a 6{x—x')a 6(x —x")g„—af(6(» —x')a 6(x —x")]},
(2.11)or in Fourier space

~a~ (k)de(k )I ff= h„„(k+k')[ —k" k "g a+k%'„6()+ k))k "6~—kk'6~6'f) ——,'g "'( —kk'g~f)+ka kn)]. (2.12)
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It is evident that these effective photon sources are
conserved,

k J (k)j~(k')i, ((=0, (2.13)

k„,—k„„+(9„t'„+9„$„), (2.15)

and this is maintained by the particle and photon
couplings since in source-free regions

and further (2.12) is symmetric under the inter-
change

(2.14)

The quantity in square brackets in (2.12) should be
symmetrized in p. and v, but the symmetrical
field h„, projects out the appropriate part anyway.

Now 8', possesses invariance under the gravita. -
tional gauge transformation

i()(x)(((x')y'~ „,= —,'[k„,(x) +h„,(x')Jy" —. 6 "6(x —x')

(2.21)
(since Py y"g is antisymmetric) or

&(((p)(((p')r'I, ((= -'k„.(p+ p')ly" (p —p')'+y'(p —p')" J

(2.22)
In the following sections, we will discover, as

CCJ did, that there are certain advantages in us-
ing a different stress tensor for scalar particles,
one that is suggested by considerations of the con-
formal group. So we turn to the consideration of
this group. It is a 15 parameter SO(4, 2) group
which contains the Poincard group as a subgroup.
The remaining transformations are the isotropic
dilations, or conformal transformations in the
narrow sense: Their infinitesimal action on the
coordinates is

e t""=0. (2.16) ox"= ba x" + bb, (2x"x' -g"'x'). (2.23)

Explicitly it is trivial to verify that (2.8) and (2.12)
are left unchanged by (2.15). [Note that, effective-
ly, terms in J„(k)J&(k') (,(( proportional to k or
kI( are zero, since ek=e'k'=O. J All these prop-
erties could be made manifest by use of the pro-
jection factors employed by Radkowski, ' who has
presented these scalar and vector couplings in
great detail, but all that machinery seems hardly
necessary for our limited considerations. Pro-
jection factors would seem useful only when one
has more than one of them.

For spin we have the usual symmetric stress
tensor

Scale transformations [the oax" terms in (2.23)]
are included as a special case. For a reasonable
class of theories, it can be shown that any Poin-
car6-invariant theory that also possesses scale
invariance is invariant under the full conformal
group (see Ref. 2, p. 226 and Ref. 5}. But it is
hardly our intention here to enter into a discus-
sion of these abstruse matters. We merely point
out that when scale invariance implies conformal
invariance, it is possible to find a traceless
stress tensor, in source-free regions, to which
we as always restrict our attention. Then the re-
sponse of the action to a conformal transformation
ls

with the free electronic Lagrangian

„1g(„,)
———~ (I)y y" —a +m

(2.17)

(2.18)

((fx) I"'k(~„bx, + &„bx„)= — (dx) ib(p(x),

(2.24)

where by(x) =2ba+45b„x', which vanishes as
claimed. But now if we allow 5a and 5b, to be
functions of position, the action responds as

We recognize that outside the source for the elec-
trons

(2.19)

And so t&","») is an appropriate effective source for
gravitons, and generates the primitive electronic-
gravitational interaction through its introduction
in W, [Eq. (2.1}].Since for real electrons,
numerically vanishes, we can read off the effective
pair source from the interaction term in the action

c"= t~ "x, , c"'= I."~(2x x" -g""x'), (2.26)

in which conservation is again only made possible
because

t= t" =0. (2.27)

QV= — dx t""x,a„5a x +t" 2x"x'-g~'x' 8„5b„
(2.25)

in which we see the appearance and conservation
of the scale and conformal currents

That is,

(dx) q y'y~ —. a"yh„.(x)
2

(dx) {dx')—,
' P(x)y'y "h„„(x)—. O'6(x —x') q(x').

(2.20)

Such a traceless t"', although very nice for such
considerations, is by no means the only stress
tensor associated with the particle of interest. It
does, however, have the additional attractive fea-
ture of transforming covariantly under conformal
transf or mations, '
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5, j""(0)=o. (2.28) K,

Let us now specialize to the spin-0 example.
The theory discussed in the beginning of this sec-
tion becomes scale-invariant in the limit as rn2

-0. The stress tensor we used there [Eq. (2.4)],
which we will now denote with a tilde, is neither
traceless as m'-0,

]( j') — a "ye y —2w'fjf}', (2.29)
2

i(o) i(0) 6(a a g ) p ~

we find using the equation of motion,

t( p) PZ (P
2 2

and

5, t("p") =0 at m' =0.

(2.32)

(2.33)

(2.34)

nor does it transform in a covariant manner when
the field is varied according to [Ref. 2, Eq.(3-7.71)]

b, y = bb„(2x"x" g"-"x')a „(()+ 2bb„x"q). (2.30)

For when m' = 0,

5, ((",) 2[bb"—(a "q))(p+ 5»(a'(())q) —g "q)bb)a'q)].'
(2.31)

But if we define a new stress tensor by adding to
t("p') a suitable identically conserved term,

FIG. 1. Causal diagram giving particle contribution to
stress-tensor modification in electrodynamics.

and illuminating way to calculate the modification
of this tensor.

In this section, we will perform the calculation
with the "conformal" stress tensor (2.32) provid-
ing the coupling to gravity. We begin by consider-
ing the amplitude for the causal process illustrated
in Fig. l. The picture corresponds to a process in
which an extended graviton source T,"' produces two
real charged scalar particles, which subsequently
scatter electromagnetically before they are de-
tected by their sources Ky (Annihilation is impos-
sible by angular momentum conservation, of
course. ) The scattering is described by the vacu-
um-amplitude term

To use this tensor in practice we need, as before,
the effective particle-pair source: In place of
(2.8),

(K(P)K(p') I„«= —»„„(P+P') [-'(~' PP')g""—
i (dx—.)(dx') j,", ( v)D, (x —x')j „„(x.'),

where

(3.1)

+ '(p"p'" p'p- '") . '(p"p" p'-"p-")]
{2.35)

III. THE CONFORMAL SCALAR

THEORY —ELECTRODYNAMICS

We will now use the effective sources presented
in Sec. III to calculate, to lowest nontrivial order,
the graviton-particle vertex functions. A general
schematic formulation of this problem has been
presented by the author elsewhere, " but our work
here will be completely self-contained. Since the
primitive interaction is through the stress tensor,
this computation provides a particularly simple

j),', (x) =ia "q),(x)eqq), (x) —((),(x)eqia" y, (x), (3.2)

q being the charge matrix

(o (3.3)

and the fields being now corresponding two-com-
ponent objects. We relate y2 to its source:

(j),(x) =i (dx')S('(x —x')K, (x'). (3.4)

Putting the pieces together and using the labeling of
Fig. 1, the vacuum amplitude (3.1) is

—i , 2, —,((),(- q'} d&u, d(d;eqK, (p')K, (p)(- eq)(2n)'6(p+ p' —q —q') }, ((),(—q).
(dq) (dq') , (p+q)(p'+q')

4
(3.5)

To obtain the desired process, we merely express the source product by its effective realization in (2.35}.
Thus the vacuum amplitude of interest is

(dq) (dq') 1—'

I (2,}.(2,). 2
q)( q)q( q') "' „.-(q+q'-),

where

(3.6)
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11
' = - ' d ,d , (2 )'S(P + P' - q —q') ', I l( ' pp-'}g"' + l(p"p" +p'p'" } l -(p"p" +p'"p" )] .

(3.7)

As we (implicitly) observed in Sec. II,

(q+ q')'ll„, = 0,

so the only possible tensor form for II"', symmetric in q and q', is

11"' = II,(q —q') "(q —q')'+ II,(Q"Q' -g "'Q'),

(3.8)

(3 9)

where Q =q+q is the injected momentum. To determine the two invariants Il, and II, it is merely neces-
sary to evaluate (3.7) in the rest frame of Q, where if

Q'= -M'

11""=fe't, 1 —— (-'M' "'+-'(P"P"+PP'") '(P"P'-+-P'"P"}], f' dfI 2m ' '"2 g'+ I+cos&
32v2 M 1 —cos&+y

(3.10)

(3.11)

where

M' —(2m)'
2(-,'M' —m') (3.12}

1 22 —2m2) p
2

4 M' tl —4m'/M')'" M' 4 ')
(s.is)

A small photon mass p. has been introduced here
to control the infrared problem in the usual way.
A simple evaluation of (3.11}provides us with the
results (as p-0),

terms. In addition, in generalizing, we want to
realize gauge invariance of the modified action
(3.8), so that the original action correctly expres-
ses the gauge variance of the various fields; to
which end, we can try making a gauge transforma-
tion thusly,

qP,
@~.(Q)- M2[ —Q) ~„.(Q)+Q, ~„~(Q)+Q„~,g(Q)1

= —,Q'ir„„,(Q),

(3.17)

2M M —2m
3 3 M2 4m2 M2 4m 2

(3.14)

which posses singularities, but not nonintegrable
ones, at M'=4m'.

It remains only to effect the space-time general-
ization. The essential observation is that in (3.6),

= S(x- ')
~~ (dX) ~

' e~'"- '11(M')h (X)
(dQ. (2v)4 pv

(s.is)
where the causal restriction x'&X' is removed as
usual,

eiQ(r-X) II 2 QdM kQ(r-X)ll (M2)
2

(2&) „27T

but even this is gauge-invariant only up to second
derivatives; when

Apv Agv+ Bp (v+ ~v

I'„„~(x)—I'„,~(x) + 2a„a „$~(x).

But we can add a further gauge term,

(3.18)

&„.(Q)- —,(Q'r„.,(Q) —Q(„r„)(Q)]=

(3.19)
where I'„= I'» =a„h transforms according to

I'„(x)- r„(x)+2a„a~&~(x), (3.20)

so the resulting structure is completely invariant
under gravitational gauge transformations, which
is signaled by the appearance of the Riemann-
Christoffel tensor.

So we write in place of (3.9)

11"'= m (M') -,'( - -,'Q'g "'+k(q+ q')" (q+ q')"

- (q - q')" (q -q')" ]
2

A+(x —X, M )11(M )
2vTz

(s.ls) with

+ iA(M2)( @2g )'v+ Qu Qv) (3.21)

where the last form, by space-time uniformity,
can be taken to apply generally, apart from contact

iII = —2II„

iA = II2+ 3II
(3.22)
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We can express our generalized result as a modi-
fication of the action,

K)

(dx)(dt)k„, (x)F,"'„,(x —g) t(,') ($ }

+Jt
(dx)(d&)h„„(x)G,(x —()z(",')($).

(3.23)

Here

z(";)(t') = (s's -K" ~')zV' (&) (3.24) FIG. 2. Causal diagrams for photon contribution in
scalar electrodynamics.

which is identically conserved. The two form
factors have the representations

+i'~.@)= (-Q'g ~g."+@A'g(+Q~Q"g".-Q.Q~g"')
[o) ko) +

z (o)

where

(3.28)

1 "" dM' Il(M')
2m„(2 )2 M Q +M

I~

5,t(",")(x)= (d&)+, (x —$)tI'o')(&)+
~

(d&)Gi(x —&)zt'o)(&))

G, (Q) = — dM'1 " A(M')
~ g'{2m)2 2+M2 gg

'

(3.25)
where now

F )=
-q' " dMo fl (M'}
2v, ( ) M (I) +M -ie

(3.29)

(3.30)

where explicitly now from (3.13) and (3.14)

and

2

x tM' —2 ') (3 ~1, ,) (3.26)

(3.2V)

The threshold factors assure us that the lower
limit of the integrals is indeed 4m2. Note the high-
ly amusing feature that G„ the form factor for the
identically conserved z(p) does not possess an in-
frared divergence as p. -0; like the electric form
factor of spin- quantum electrodynamics (QED),
only F", "& depends on p.. Of course, only the term
proportional to Q' survives in F","„when we em-
ploy the gravitational Lorentz gauge, where

e (e~" -'g ~'I ) = a2~'=O.

For notational simplicity we restrict ourselves to
such a gauge in all the following. Then our results
may be expressed as a modification of the particle
stress tensor,

It does not hurt to reemphasize that, properly
considered, our results involve no contact terms,
for the leading Q' in F, is demanded by the condi-
tion that the normalization of the primitive inter-
action through t(p) not be disturbed when more
elaborate processes are considered. However, as
a new kind of term, G,z~{p') is not so restricted a
priori, and indeed is manifestly independent of
gauge. Observe finally that the existence of the
two spectral forms (3.25) is not in doubt.

Now we turn to those processes where the pho-
tons couple to the graviton. The two specific pro-
cesses are illustrated in Fig. 2, and correspond
to the causal exchange of photons. The particle
pair creation by the photons is described by the
action [Ref. 2, E(l. (3-12.134)]

10

(dx)(dx')q), (x)eq2 pA, (x)t),,(x —x')eq2 pA, (x') q), (x'}

——,
'

ll (dx)q), (x)e'[A, (x)J'q), (x).
4

(3.31)
The photon fields are related back to their sources,
which in this context are given by (2.12). Again the
resulting amplitude has the form (3.6) but this time
(with tensors and invariants distinguished from the
previous ones by primes)

II'"'=ie' do)odo)o, (2v)'6(k+k' q —q')
(q —k}'+yg'

x[ —k" k"qq'+k" k'qq" +k" kq' q" —kk' q" q" ——,g "'[-(kk')(qq')+ (k'q}(kq')J)

+ie' d od)o)(2 }'6(vk k' +—q —q')(-2k" k" + —,
' kk'g" '}+(t( —v).

4 (3.32}
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Since again (q+q')" ll„'„=0, which can also be easily
directly verified, the form (3.9) holds here also,

li'"' = ll,'(q -q)" (q —q')'+ ll,' (Q"Q' -g "'Q'}.
(3.33)

It is convenient to express the results in terms of
the variable defined in (3.12),

5, fI',"&(z)=l~ ($$)Gz(~ ()zg)(~)+
~

(d$)P, (x t)t(",')(t),

(3.43)

where again z&~& is given by (3.24), and t~«& by
(2.32). In (3.43),

g=(1-4 '/M')'". (3.34)
(Q, )

Q
l~

M' '(M')
2z o M Q+M -ie' ('

Then a simple calculation in the rest frame of Q
yields

while

and

III 3 5go ( K ) t~~j(4g' (3.35)
In all, the complete modified stress tensor to first
order in & is given by (3.29) and (3.43),

II'-ia —as g-0 (M -4m ),
2 2 2

1 (3.37)

II,'- ——as &-1 (M -~),ZQ 2 (3.38)

3ia 1 3p . M——i,a —as &- s~ (M'-0},
8 fg 8 2m

(3 39)
on the one hand, and

II,'-O as g-0,
&QII' -—as2 6

(3.40)

(3.41)

m im 2m——~K- ——a —as g i(M-'-0)
8 8 M y

(3.42)

on the other.
These considerations are essential for properly

performing the space-time generalizations, follow-
ing the scheme of (3.16). Equation (3.38) tells us
that a factor of —Q'/Mz will be required when the
generalization is performed on that term-this is
just the factor required by gauge invariance as we
saw above. Then, as far as II,' is concerned,
(3.39) tells us that there is nothing to stop us from
letting the M' integration range all the way down to
zero, where there is an integrable singularity.
This is the expected threshold behavior. The same
cannot be done with II,', but rather we must con-
struct the combination that appears in Eq. (3.22),
namely, II,'+-,' II,', and that is very convenient: It
requires no contact term for convergence, and
hence from (3.42) the limit of the M' integration
may also be extended down to zero. Then the cor-
rections found here for the particle stress tensor
are

2 2& . (1 —C')'
II,'= ——+ —,—1+2''+ tanh-'g .

12 4K' ~ (3.36)
The various asymptotic limits are

t (O)
—t("O) + 5,t(0) + G~t(0) . (3.46)

lilt';) +Az(",') . (3.47)

This must become traceless as m' goes to zero;
if II then grows no worse than logarithmically,
which is satisfied if the minimal use of contact
terms is sufficient -that is, if I', requires no more
than the one subtraction required by gauge invari-
ance [compare (3.30)], then A must tend to zero.
But the spectral weight function A is a function
only of m'/M' so it must vanish as M'- ~. There-
fore, the unsubtracted single spectral form will
exist. This, in our view, is the CCJ theorem.
(Of course, one must proceed with caution when
the photon mass also appears, but as long as it
occurs only inside logarithms it will not affect the
argument. ) [Naturally, this argument may be
based equally well upon the covariance require-
ment, Eq. (2.28}.]

These results turned out even better than one
might have hoped. It had been suggested that per-
haps the CCJ theorem was satisfied only because
of a cancellation between the electronic and pho-
tonic parts, but instead both parts individually re-
quire nothing other than the contact terms neces-
sary for gauge invariance. Each contribution is

All of this is an eminently satisfactory result,
particularly when it is noted that the conformal-
invariance requirement remains satisfied: The
trace of t&0'& is zero, 6, tI'o'& ——0, and A(Mz) and
A'(M'} vanish when m' =0, according to (3.27),
(3.38), and (3.41). So indeed we see that the claims
of Callan, Coleman, and Jackiw' have been veri-
fied. As Sec. IV will emphasize, and the reader
will anticipate, the conformal tensor does play a
privileged role, and it is really not hard to see
why. For suppose we have a scalar conformally
invariant theory, as the mass tends to zero. Then
in terms of the conformal tI'o'&, the corrections to
this tensor can always be written as (before space-
time generalization)
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individually conformally invariant, and so the
"proof" of the CCJ theorem sketched above applies
to each alone.

IV. CONVENTIONAL COUPLING: SCALAR
ELECTRODYNAMICS

2m '
A(M ) = —'n -1— I

4 M'-m' 3(M'-2m')
3 M M' —(2m)

(4.4)

To see clearly the virtue of the eonformal the-
ory presented in Sec. III, it is necessary to con-
trast it with the conventional theory. Indeed, when

the same calculation is performed there, it is
found that things are much less satisfactory. The
change is in the effective particle pair source: In
place of (2.35) we are to use (2.8), which makes
an obvious change in (3.7). With reference to Eqs.
(3.6) and (3.9), the results of the integration are
now

in terms of which

Q' " dM' lI (M')
& M' Q'+M' —ie '

G( 2) Q
" dM A(M)

2&.(2 )2 M Q +M —ie

(4.5)

(4.6)

i 2m'
II,=, 1 —— 2(M' —2m') 3+In M'-4m' '

(4.1)

a 2m'n(M')=- —,1 ——
M M

2
x (M' —2 ')(3 ~ 1 M' -4m' (4.3)

and

2M'(M' —2m')
x —,

' M'-m' +
M2 4m2 M2 4 2

(4.2}
Note that II, is precisely the same as (3.13). Again,
we want to group the terms so as to form the form
factors for the stress tensor and the identically
conserved tensor; this time of course the stress
tensor is (2.4). With this in mind the result is
(3.29), with

Now it has been necessary to insert a contact term
into Qy in order to make it converge, but this is
hardly a very pleasing state of affairs. As before,
6, does not possess an infrared divergence as p,

-0; but this now seems less significant, since
both form factors require contact terms, so that
any number of equivalent groupings of 5,t"' is
possible.

Perhaps even worse is the situation with regard
to the photonic contributions now. For that calcula-
tion does not depend upon how the particles couple
to gravity; and yet we have seen that the expres-
sion of the results seems to demand the introduc-
tion of the conformal tensor [cf. Eqs. (3.45)j. Ac-
cording to (3.38) and (3.41), any other grouping of
the invariants II,' and II,' would require the intro-
duction of a factor of —Q2/M' to ensure conver-
gence when space-time generalization was per-
formed; but then it would be impossible to extra-
polate the spectral mass down to zero [cf. (3.42) j.
There is really no question but that (3.45) is cor-
rect. But this means, surely, that the conventional
theory is completely inadequate.

V. SPIN- g ELECTRODYNAMICS

The same sort of modifications occur for the electronic stress tensor, and the calculation proceeds in
exactly similar fashion, but is, of course, somewhat more complicated. The aim is first to calculate the
process shown in Fig. 1, for this case. The vacuum amplitude is still given by (3.1), but now the current
is the electronic one,

~ 1 0|I'y eqyq|II'

The causal relation of the incident electrons to their sources is

(5.1)

p, (x}=i d(u, e"*(m-yp)q, (p) (5.2)

and

$2(x)y =i d&u~. e'~ *pa(p')y (m+yp') (5 3)
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The separation into initial and final sources can be done in two ways for each current, so (3.1) corresponds
to the term in the vacuum amplitude (V.A.),

, d&u2d&e, , (2w)'5(p+p' —q —q')p1(-q)y eqy„(m-yp), (m+yp')eqy &)1(-q'), (5. )
(dq) (dq'), , 2 )I2(p)2I2(p')y', „, 4'

~ (2w)' (2w)' ' ' ' —" (q —p)'

in which we are now to insert the effective sources (2.22). Thus

(d ')
V.A. = +-'

I
. .q, ( q)y-'ll"'t, ( q'-)k. „.(q+q'), (s.s)

where

II""=ie' d&u d&u, (2w)'5(p+p' —q —q')y (m-yp), (m+yp )y' .pv - 2I 4 y"(p p')"—+ y'(p p')"—
(q p'- (5.6)

Note that (q+q')„II""=0, as was necessary by con-
struction, and is required by gauge invariance,
because of the projection factors m - yp and m+yp'.
Thus since the final electronic states are also real
(so that yq on the left can be replaced by -m, yq'
on the right by m), II""can be composed of only
three tensors, compatible with the fact that y Il""
is completely antisymmetric, in q and q, and in
the spinor indices,

e(1/2) (a d g a )2)t'y 4' (5.12)

and t,",'„)being (2.17}, of course, the resulting
stress-tensor modification is

tO

+ li(dt)F2(x t)z(~, /2)(t), (5.13)

5,t&,"„)=
J (d$)F, (x —$}t&",'„)(h) + (d&)F,(x —$)y&","„)(()

fi""= II,[y "(q —q')" + y" (q —q')" J

+ 11,(q —q') "(q —q')"

+ II,(Q"Q'- g "'Q (S.v)

where

q2 "" dM' rl, (M')
2~i.

~
2 M Q'+M' —ie ' (5.14)

In the rest frame of Q= q+q' one has only to per-
form an angular integration as in the spin-0 case
[cf. (3.11)J, and after some straightforward if
slightly tedious algebra one finds the invariants

II (M')
~~" (2m)2

F,(Q') = ——. dM'
27TZ (2 )2 +M —Z6

(5.15)

(5.16)

—ie 34 88 m'l~ 4(1 4 2/M2)1/2 3 3 Iif2

M2 M2 4 2

(5.8)
m 1 22+ } M2 (I 4m2/M2)1/2 3

11,(M ) = —2io —,(1 —4m'/M'}'" 2 . (5.10)

and

y&2,'„)—', 4y'a & a'0 a-2A 'a'q) (s.x i)

Observe this time that only II, requires a contact
term, so as in Sec. III our naive suppositions are
satisfied. We will say more about this below. For
now we merely perform a space-time generaliza-
tion without hesitation. With z(yg2) and y~&,'/2J de-
fined by

It is quite remarkable that the photon mass appears
in but one of the terms, that of the stress-tensor
form factor. In fact, note that the dependence up-
on (2 is the same in (5.14) and (3.30) and is the
same as that of the electrodynamic form factor'.
This is hardly surprising, since the same soft-
photon processes are involved.

Now again we must turn to those processes
where photons are exchanged. The one relevant
to our contemplation is shown in Fig. 3 and has
the same significance as the corresponding proces-
ses in the scalar "electron" case. The appropriate
action term is [Ref. 2, Eq. (3-13.66)]

(dx)(dx')$, (x)y eq yA, (x) G,(x- x')eqyA, (x') &J),(x').
(5.17)

The effective photon source is still given by (2.12).
The resulting vacuum amplitude can still find its
expression in (5.5) but now

II'"'=4ie
J

d&1)„d&//„. (2w) 5(k+k' —q —q'}~~™
(q -k)'+m'

x[- k" k"g~w+k" k'„5&)+k8k"52 —kk' 62~5'2 ——,'g"'(- kk'g 2+kak')J+ (tt —(/), (5.18)
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which, since it is conserved, necessarily has the form of (5.7),

(5.19)

The computation is even simpler than that for the
invariants of Eq. (5.7). One finds, using the g

variable of (3.34),

(5.20)

which takes on the limiting forms

Ily in —', as g- 0 (M'- 4m'),

II,' —i,a~4 as g- 1 (M'- ),

(5.21)

(5.22)

@TED . n&M 2II,'- ———-z —— as g-~~ (M -0};
g2 4m (5.23)

while

Equations (5.21), (5.25), and (5.29) tell us that
none of the weight functions have singularities or
zeros at 4m', so we would expect the spectral in-
tegrals to begin at M'=0. Indeed, only II,' will re-
quire a contact term for gauge invariance and con-
vergence, and it is sufficiently well behaved at
M' = 0 [Eq. (5.23)] that a nonintegrable singularity
will not result in this way. We are fortunate that

II,' does not require a contact term, for (5.31)
shows then that disaster would befall at M'=0.
Everything works out here as well as it did in the
conformal scalar case.

Thus our efforts are crowned with success: The
complete order-a electronic-stress-tensor modi-
fication is

2

[10 ——", 0 —(2/l)(I —l')(5 —6') tanh '&]

has the limits

—Pu )Iv P I/ }I V
~ (i./a) (X/2) +

I. (i/2) + "2~(Z/Z) ~ (5.32)

2Q 32II'- — as (- 0,
4m 105

(5.25)

where 5, t&,"») was given by (5.13) and 5, t~(,"/2) is

II' ——(I -g') as (- I,2 3m
(5.26)

1 inn MII' ——i 7r —— as M —0~
4m g 8 m

and finally

(5.27)

in which

(5.33)

i 1 2

II,'= 4— [—2+ —', & + (2/g)(1 —g') tanh 'g]
(5.28)

corresponding to which

G (Q2)
Q' ""dM' II,'(M')

M' Q'+M'-Ie ' (5.34)

iQ| 4II'- ——as g- 0,
m 15

(5.29)
27TL „0

II;(M')
Q +M' —ie' (5.35)

II'- —(1 —g ) as g- 1,
3m

(5.30) and

I E(M . 2+——im( ——m — as M'- 0.
4m 2

(5.31) (5.36)

K)

FIG. 3. Causal diagram for photonic contribution in
spinor electrodynamics.

Finally we consider the sealing limit of the spin-
& theory. The canonical tensor is already the one
appropriate for studying conformal invariance, for
with m'=0, (2.27) and (2.28) hold. [The demonstra-
tion of the latter point merely involves the con-
trast of the symmetry of y'y" with the antisym-
metry of gg. A general formula for the conformal
transformation of fields of arbitrary spin appears
in Ref. 5.] Since I{„,"~„ is zero, only II, and II,
can contribute in the zero-m limit, but (5.9) shows
that these weight functions vanish there. Inciden-
tally, note that if a factor of —Q'/M' had been in-
serted in either F, or F, [Eqs. (5.15), (5.16)], these
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functions would not have gone to zero with m as
mlnm, but would have increased without bound as
1/m. This provides potent evidence concerning

the correctness of our subtraction procedure. The
same remarks apply to the photonic contributions
[see (5.26) and (5.30)].

Vl. STRESS-TENSOR MODIFICATION IN )y THEORY

This example is discussed in Ref. 5: Our purpose here, however, is to demonstrate how much more
simple and transparent things are in source theory than in operator field theory where it is necessary to
employ regulator masses and fields which themselves must couple to gravity. The system we are consider-
ing has the primitive Lagrangian

Veri%'@ m 0' )

so scattering is described by the purely local action term

(6.1)

dx Egg x

We relate the incoming fields to their sources; the net effect is to replace in (3.5)

(6.2)

(6.3)

If we use the conformal stress tensor for the interaction with gravity, (3.11) applies with the above re-
placement, or

1
11"'= — d(cose)(I —4m'/M')' '[(M'/6)g" '+ -'(p" p" + p"p'") —'( p"p'+ p'"-p'")]

4n

which leads to the conclusions for the invariants (3.9),

(6.4)

(6.5)

According to (3.22) there is only the form-factor term corresponding to the identically conserved z&,&, and
since conformal invariance is maintained, no contact term is required for convergence.

If, on the other hand, the conventional tensor is used, in place of (6.4) we have

dgII""=-il2X, 1 — (-,'M'g~'+ p'&p" + p'"pt'),
M

which implies

(6.6)

(6.7)

Here again we are confronted with the unhappy necessity of inserting a contact term for the sole reason of
making the resulting spectral integral convergent.

All of this is quite simple and unsurprising in view of the above. But we want now to use the great sim-
plicity of this interaction to see what the situation is in operator field theory. We recover that case if we
perform the space-time generalization process at an earlier stage: That is, if directly in (3.7) we make
the formal substitution

(dp) (dp')
(2w)' (2w)' p'+m' —ie p" +m' —ie (6.8)

But of course this is invalid, for the amplitude then ceases to exist. However, operator field theory has
well-known methods of dealing with these divergence difficulties, which make use of counterterms and reg-
ulator masses. If we introduce corresponding regulator fields into the theory then, we will obtain for the
conformal result here

II""=-12ig,h [p(q-p) m']+p (q p)'+p"(q p}~+-',(q~q g~ q )j(2w)'

x [(p'+m')[(p- q)'+m']) '+R.T., (6 9)
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which is precisely Eq. (4.13) of Ref. 5. (The R.T. are regulator terms. )
Superficially it would not appear that this result is conserved, for the internal particles are not real any

longer, but in fact one can verify that it is proportional to Qj"Q' —g j"Q' by virtue of the regulator terms.
In fact, one finds by using the parametric method of Schwinger and Feynman,

1

II""=-24iA(Q"Q" —g'"Q') dx[ —,
' —x(1 —x)],[P'+m'+Q'x(1 —x)] '+R.T. ,

(2v
' (6.10)

a formula which appears in part in the CCJ paper. It is an elementary matter to perform the momentum
integration,

Cg C2

(2 )']. * [«*+ * ~ Q* ((-d]' [~*~ &,* ~ (t**O- )]* [e* ~.*~ 0* ((- )]*)

,{1n[Q 'x(1 —x) + m'] —c,' 1n [Q 'x(1 —«) + M,'] —c,' ln[Q 'x(1 —x}+M, '] I .

(6.11)
As M, ', ~,'-, the last two terms do not contribute due to the x integration, and we have

(1 —2«)'
dx

4[[ 0 Q + m /«(1 —«)

or if we let

(6.12)

I]f
'

= m'« '(1 —x) ',
ypg d~ 2 4 ppg

/2 ]
~4 (6.13)

which differs from the result we found above only in that an additional factor of -Q'/)]f ' is inserted in the
spectral form; that is, the source-theoretical answer would agree with the operator-field-theory one if a
simple contact term were inserted,

1 1 1
Q'+m' Q'+m' I' (6.14)

But surely the unsubtracted form is the proper one to use, since a contact term is required by neither
gauge nor convergence considerations. But we become sure that (6.13) is wrong when we observe that con-
formal invariance is lost. Here II, -m'/m'-const as m'-0 instead of going to zero as m'lnm for the un-
subtracted form, and so the trace of the stress tensor no longer vanishes in the conformal limit.

Why has operator field theory confused a situation that seemed so simple in source theory? Doubtless,
it is better to proceed in a way that is always meaningful, rather than trying to attach meaning to divergent
integrals. But, of course, the day can be saved for the operator field theorist, for it is only necessary to
insert a correct counterterm at the vertex, namely,

count
oo

dM m m2 2 4 2 1/2

( )2 27T M M
(6.15)

which just undoes the extra subtraction. But this is not very satisfying.
CCJ's form (6.13) unnecessarily weakens the impact of the improvement offered by the conformal tensor

in another respect. If one proceeds in just the above manner, but with the conventional stress-tensor cou-
pling, it is indeed necessary to employ a third regulator mass, but the result is just what one would expect;
in (6.12}—,

' —x(1 —x) is replaced by -x(1 —x) only. But then it is evident that in place of (6.13) we have

(6.16)

which involves just the weight factor of (6.7) and the required contact term Why (6.1.3) should be preferred
to this result is not entirely clear.

Because of these apparent inadequacies in operator field theory, we shall not attempt to apply it to the
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other examples treated in this paper. It would appear that source theory provides a result more quickly
and in a more perspicuous form, and hence should enable us to more quickly approach the physics of the
problem. Perhaps, however, this discussion sheds some light on the sense in which operator field theory
is related to source theory, which infelicitous relation has been considered in passing elsewhere. ' "

VII. IMPLICATIONS OF BROKEN SCALE INVARIANCE

Recently, various authors" "have noted that in conventional operator perturbation theory, scale invari-
ance is broken in higher orders, in particular, in second order for q theory. This would mean that as
m'-0, tg0 [see (2.24)] and consequently there would be no reason to suspect the "conformal" tensor cou-
pling would still lead to subtraction-free spectral forms. Here we will in fact confirm that for the y4 the-
ory, to order ~, the improved situation does in fact still hold, and we will indicate why the general argu-
ments are misleading.

For this simple theory, even the second-order modifications are quite easy to calculate. The causal
processes still involve two-particle exchange, but the vertex and scattering amplitudes must be used to
greater accuracy. And to avoid the problem of overlap, all that is necessary is to use the complex conju-
gate of the latter amplitude. " We will consider only the coupling with gravity through the "conformal"
stress tensor, (2.32).

Of the three terms that arise in this manner, the one (a) involving the vertex correction at the graviton
vertex is trivial: It arises merely from the coupling [see (3.23)]

dx)t'„". x ~&' x =~ d~ d~)a„. x G"' x- ~)~&'-' ~, (7.1)

in a slightly simplified notation (the superscript represents the order in A.), where G~" has the form (3.25)
with weight function [cf. (6.5)]

4 2 1/2 2
A(1) (M2)—

M M

Thus, replacing (2.35) we have the effective sources

(7.2)

'&(P)&(p') I. =- &„„(P P')G"'(Q)(Q" Q" g""Q')-
Therefore, from the form of (6.4), we deduce

II("]=0

3g2 4~2 1/2 dMP 2 4 2 1/2 1

(7.3)

(7.4)

For the other processes we need the order-A2 scattering amplitude. Under causal circumstances this in-
volves two-particle exchange between the effective sources [see (6.2)],

IIC(x)Z(x') ~,«=-I2~9'(x)5(x- x').
This leads to the V.A. expression

4~»&2 (d/) 9 y~ (d/)
(2,)4 Vi'(-»V 2'(» - —

2
—

(2 )4 V"(-»V'(»(-&')
4m

(7.5)

(7.6)
where space-time generalization was performed with the aid of a factor ( P'/M') to ensure norm-alization
of the charge a. Now the graviton effective particle source (2.35) is employed in (7.6) with the sign of e re-
versed (this is the complex conjugation referred to above)" in order to deduce the remaining two contribu-
tions to II"'j".

The first employs (7.6) with P' being the injec-ted mass, so simply

(2, b) 4 2 1/2II""~"=~—— d(cose) I — M'
16 p' M

d~ r2 4 2 l/2 1
, 2

—
Mg2 M, 2 M2+,.e[8 M'g"' ~ (P"p"+P P'") —3 (P"p +P'"P"))

(7.7)
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which gives

I-I (2, b) 0 t

3z2 4 2 1/2 dl p2 4 2 1/2 1A(2, b) 1 2 1— (7 8)

which is precisely the complex conjugate of (7.4). Thus we see [using (3.34)]

(7.9)

Evidently this vanishes with m'/M'; so there will be no question but that the unsubtraeted spectral form of
(3.25) will exist, with (7.9) as the weight function.

The final term (c) involves (7.6) again, but in the crossed channel. Thus [ef. (3.11)] we have

9 y2 1 4 /
II""=-i- — d(cos 0) 1-

Jl lJ 8 3 M

dM" 4 1 —cos 6)

Md 2 s2 1 8 1M d 2dlM 2 2)-1 [8 M ÃP t d(PgP& P& PP& 3(PPPu PPPvl]M'
(7.10)

It is most convenient to carry out the M" integration first, using

U'=1 —4m'/M' and g =1 —4m'/M

Then we find

(7.11)

1 —x (gJ+ 1 2

4 2 IVI M

where

(u'= I+2(g ' —1)(1—x) '.
The asymptotic form of this function is

f(x, g') --ln, g- 1, or -in[(1 —x)M'/2m'],1 —g'

(7.12)

(7.13)

(7.14)

The combinations that appear in (3.22) are the following:

(2 c) -1 2II" =
4

—,g 'M ' dxf(x, (')(—,'M' —m')(1 —3x'),
(7.15)

so
2 1d'=31 ', d 1 ——,dl ——' d fId')). ,

Ir""--'.~' ~-' as ('7.16)
(7.20)

and

so

1
—'X'v 'gM ' dxf(x t')-'m' (7.17)

-1

(7.18)-0 as

Our complete results in order A.
' are then

1

II = —X'v '& dxf (x, t')(I —3x')
-1

(7.19)

Evidently subtractions will be necessary only with
II ' and there only insofar as required by gauge
invariance. The z"' form factor requires no con-
tact term. And, consequently, t-0 with m2.
Everything is just as satisfactory as in the lowest-
order cases considered previously.

How can this be reconciled with the arguments
of Wilson" and Callan"? The point to recognize
is that we are not really considering a conformally
invariant theory; only after forming the trace do
we take the zero-mass limit. This was all that
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was required for the general arguments in Sec.
III. The actual zero-mass case is, of course, in-
frared singular, and all our spectral functions in-
volving II [cf. (3.25) and (3.26)] diverge in the m'
-0 limit. Presumably, it is because these diver-
gences are only logarithmic that our demand that
the trace have a smooth conformal limit is satis-
fied: t - m'.

What these other authors set out to do, in effect,
is to construct a consistent theory of massless
particles interacting with themselves, which at
least requires great care if one is to avoid replac-
ing ultraviolet divergences with infrared ones.
They accomplish this by introducing a parameter
K having dimensions of a mass, which in effect
means that subtractions are to be performed at a
rather than at zero (although, in source theory, at
least, this would not seem to be possible for the
propagation function). Naturally this destroys
scale invariance; but it will not affect our ultra-
violet-convergence considerations, which are the
point of this paper. But it is worth emphasizing
that those subtractions required by gauge invari-
ance can only be made at zero. And, as far as we
have seen, no other contract terms are necessary
or can be inserted.

Certainly, from our viewpoint there is consider-
able artificiality associated with the introduction
of ~. Possibly, source theory provides an alter-
native, if trivial, way of making a massless theory
consistent. For the m = 0 case, II = const. Then
[cf. (3.30)]

dM2 1F-Q dM'
M M+Q M 1Lf + Q

(1.21)

Since there is no threshold singularity, it is sug-
gested that the generalization results in letting ~'
range from -~ to +~, whence, if the singularities
have the same structure, E=O. This "dynamical"
result seems most sensible, for in the absence of
dimensiona'I parameters, the form factor F can be
a function only of A. (and not of Q') and so by charge
normalization is unity. (An identical argument
applies to the propagator, only that mass normal-
ization is the guiding principle there. ) Such an
interpretation of the zero-mass case is consistent
with scale invariance, naturally, but is hardly use-
ful or illuminating. It seems that however a mass-
less theory is constructed, it is discontinuously
related to the massive one, and hence irrelevant
to the considerations of this paper.
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