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With the intuitive new ideas that (1) in classical electrodynamics, radiation reaction should
be expressible by the external field and the charge's kinematics, (2) a charge experiences,
in addition to the Lorentz forces, another "small" external force e&F" u& proportional to its
acceleration, and (3) inertia plus radiation is balanced by these two external forces, we pro-
pose the new equation of motion,

Plu —( e /3')Fext uyu~u = eFe~t uy + e(F ext uy

where mass conservation requires e&
——2e3/3m. (The particle's spin is not considered in this

work. ) This equation for a classical charge is free from all the well-known difficulties of the
Lorentz-Dirac equation. It conserves energy and momentum in a modified form in which the
energy-momentum tensor contains a part tl"'(x) made of a new field-charge interaction Q"(x),
in addition to the conventional "local" part made of F",et(x) and F",«(x) only, and therefore it
no longer satisfies the conventional "local" conservation laws. It predicts correct radiation
damping, as demonstrated here by applying it to various cases of basic physical importance.
Also, it implies that a massless particle follows a null geodesic and cannot interact with
the electromagnetic field whether it be charged or not; this implication may add a new de-
gree of freedom to the charge-conservation law.

I. INTRODUCTION

The equation of motion of a charged particle has
been a subject of interest for many years. ' The
equation now generally accepted was obtained by
Dirac by decomposing the energy-momentum ten-
sor of the retarded self-field into a sum that re-
normalizes mass and a difference that gives reac-
tion. ' An explanation and rederivation based on
an absorber mechanism was provided by Wheeler
and Feynman. ' However, as is well recognized,
the Lorentz-Dirac equation has certain inherent
difficulties. First, it involves the derivative of
the acceleration and hence needs one extra condi-
tion, in addition to the Newtonian initial conditions,
to determine the motion. Second, it gives runaway
solutions which can be avoided only by artificially
presenting a preacceleration. 4 Third, in certain
cases it implies that the external energy supplied
to the particle goes only into kinetic energy, and

radiation is created from an "acceleration self-
energy" which becomes more and more negative
and is unphysical. It is the purpose of this work to
obtain a new equation that is free from these dif-
ficulties, agrees with existing laboratory results,
and predicts new phenomena that can distinguish
the new equation from the old one and test its va-
lidity.

II. THE NEW EQUATION

By following the old idea of expressing the radi-
ation reaction of a charged particle only by its
kinematical quantities, it is not possible to con-
struct an equation that includes reaction in a form
simpler and more satisfactory than the Lorentz-
Dirac one. However, in classical electrodynamics
in an inertial frame' the only field that can accel-
erate a charged particle and make it radiate is the
external electromagnetic field Fl,'„'t . Accordingly,
radiation reaction should be expressible by F"„",
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FIG. 1. The physical interpretation of the new equation.

and the particle kinematics. On the other hand,
since a charge e at rest experiences only an elec-
tric force eE and in motion experiences an addi-
tional magnetic force eve B, which together make
up eF"„,u~, it is natural to assume that when accel-
erating, a charge experiences still another aspect
of the same external electromagnetic field —a new
force etF",„tux with e, a small constant (i.er t

'X
e,F",„",~~«eF",„,u~ in most physical cases) and u
—= du /ds. e We use geometrized units, c= 1, G = 1,
k = 1, with signature tt„„=(1, —1, -1, -1),

(x, x ', x', x't = (t—, x, y, x), s the proper time and u"
the four -velocity.

Now, given the motion u"(s) of a. charge, the rate
of radiated energy-momentum (-2e'/3)u)u u" is
obtained by integrating Poynting's vector over the
far-zone retarded sphere. ' By using the radia-
tion-neglected equation mw"= eF",„,u~, this rate
can be expressed as (-2e'/3m)F„, utu u", which is
roughly the expression for radiation in terms of
F"„',. Equating the inertia and radiation to the
forces the charge sees through F",„"„wehave the
new equation of motion (see Fig. 1)

mu" —(2e'/3m)Fextutueu~= eF,"„,ux+ erF,"„,ux,
(1)

where the requirement that (1) be an identity after
scalar multiplication by u„ implies that e, —:2e'/3m
is indeed a small constant. For a system of
charges, in (1) for the ith charge F,"„',(,) becomes
p, ; F"„"«,), where F"„',(,)is the r.etarded field of
the jth charge.

Also, just for reference, the MKS 3-vector form
of (1) reads

d v e V

(1 pe) r 6ve ce (1 pe)e dt (ft

v
6)ime c' dt (1 —(3')'" dt (1 —P')"'

(1')

where P =—v/c.

III. GENERAL PROPERTIES OF
THE NEW EQUATION

force as obtained from an effective field, '

f"' —= (2 e'/3m)u), (F,v„, u
"tt —F',„,u"), (2)

(a) Mass conservation. Scalar multiplication by
u„gives an identity and hence m is constant.

(b) Self-evident radiation term. Scalar multi-
plication by u„gives

(-2e'/3m)F, „",u uxnu= (- 2e'/3)upi u",

which always represents radiation. This justifies
the second term on the left-hand side of (1) as
radiation reaction with u" determined by (1).

(c) Newtonian motion. No more than the first
derivative of velocity is involved and, accordingly,
motion is determined by the initial velocity and
position and by F"„',.

(d) No runaway solutions (see below).
(e) No preacceleration.
(f) Additional "effective" external field. Taking

the radiation term in (1) to the right-hand side and
combining it with e,F u~, we can interpret the
total acceleration-and -external-field -dependent

in addition to F"„'„which the charge feels through
the Lorentz force.

(g) Energy-momentum conservation. Since en-
ergy-momentum conservation and Maxwell's equa-
tions imply the equation of motion, (1) causes
changes in at least one of them. For radiation to
be of the Larmor form as in (b), the conventional
Maxwell's equations must be retained. Thus the
electromagnetic energy-momentum tensor T,
should be modified as

Tem rot 2 Tret(i) + t
5

where t"' is defined to satisfy (see Appendix)

2 2

r v 3 Z v(i)(Fext (i) Fext (i))~)t(i)= ~m (~)

(3)

(4)

and the symmetry requirement. Here T"„', and
T,",', (;) have just the familiar form of F" F'z
—eg""Frx()F r but with F tnt: Fine( detnw ev+eZi Fret(i)
and F,","«,.) inserted in them, respectively. The sig-
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nificance of (3) and (4) is that by integrating T,"",
+ T"'„,, =0 over the 3-space of the ith charge,
then'

which really demonstrates another defect of Eq.
(6), arises. ~

(c) Incident rectangular pulse E = e„E for 0& s
& s, . Equation (1) gives

(T~'+T"'„,)„d'x=0 ~ Eq. (1)," (t)
(6)

where Maxwell's equations and T"'„,—= p, u"u' with

proper mass density p, have been used, and no

mass renormalization was involved. '

(coshC„sinhC„O, 0), s &0

u&» = (cosh/, sinhg, 0, 0), 0 & s & s,

(cosh), sinhg, 0, 0), s, & s,

(7)

IV. SPECIAL CASES AND COMPARISON KITH

THE LORENTZ-DIRAC EQUATION

Now we shall examine the implication of the new
equation (1}for certain basic physical situations
and compare the results with those" of the Lor-
entz-Dirac equation

(coshn, sinhn, 0, 0), s &0

ut'„o~ = (cosha, sinhcr, 0, 0), 0 & s & s,

(cosh', sinhg, 0, 0), s, & s,

where

(8)

where (-:eEs/m+C, and g =eEs,/m+C, . But (6),
with the requirement u'(~) =0, gives

mu" = eF",„",u~+ ,'e'(u"—+uu ~u "} (6) a —= C, + (eEr/m)(1 —e '&") e'"
(a) No external field, F",„',=0. Equation (1) di-

rectly gives &"=const, but for (6) this solution has
to be "physically" singled out from the infinity of
runaway solutions.

(b) Constant uniform electric field, E =e„E.
The new equation (1) gives u"=(cosh7i, sinhq, 0, 0),
where q=—C, +eEs/m, for initial velocity
v=e„tanhC„' the Lorentz-Dirac equation (6} gives
u~=(cosh(, sinht, 0, 0}, where $ —=K, +K,e't'+eEs/m
and r = 2e'/3m, which with the "physical" require-
ment u"=0 when E =0 implies K, —= 0. Thus (1)
yields the same solution as (6), but (1) works all
by itself. Also, in this case, from (1) the radiation
(- 2e'/3}u~u u" = (2e E /3m')u" is equal to the new
external force e,F"„,u~; but from the Lorentz-
Dirac equation, (6), it is supplied by the negative
"self-acceleration energy" term (2e'/3)u" and the
"puzzle" of radiating without radiation reaction,

and

o =- C, + (eET/m)(1 —e ' ""')+eEs/m

Thus (8) represents preacceleration, whereas (7)
shows that the electron does not respond until the
pulse hits it. The limiting case of a 6 pulse' is
easily obtained by letting s, -0 and keeping Es,
constant. For this limit (7) gives simply a step
jump in velocity which is due only to idealizing the
incident wave as a 6 function, whereas (8) gives a
purely preaccelerational motion (see Fig. 2).
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FIG. 2. Responses of the new equation and the Lorentz-
Dirac equation to rectangular and 6 incident electric
field.

FIG. 3. Motions in perpendicular magnetic field and
their deviations.
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(d) Motion perpendicular to uniform magnetic field B=e„B. In this case exact analytic solutions cannot

be found for (1) and (6), but a perturbation method can be used to obtain and compare their total correc-
tional forces which spiral the circular orbit inward (see Fig. 3} as a result of synchrotron radiation. "
Now the first-order corrections,

f(~i)- —) (1)~Fext+ ext &(i) (1)~ ~ 2 I. 2xl/2 11 n2xl/2 (y)

2

(1) + ul) (1) (1)} f ( LD1) L

are equal. Here mu&» =- eF tug') and u(y) represent circular motion without radiation perturbation. The
second-order corrections a,re

3
p q

' Xcx/f (N2) =
L a(2)(Fexl+Fexlua(1)u(1)/+ u&(1)Fexl(ue/(1) (2) + u/x(2)u(1))l

3m '

2e' 4 e'B' P eBs 2P eBs eBs m . eBs
3m F«tu~(&)u (y)u(2) + n 4 /i ~2x3/2 „,/, u(, ) + 0, 0, sin, cos + sin

m m eBs m
(10a)

2 2 "p II ~ ~ }L Pf (LD2) = —xe (u&2) + 2u), (,)u(2)u&, ) +ux&, )u&, )u(2))

4 e'B' p eBs 2p m . 2eBs
l(1) (1) (2) 9 n24 (1 p2)3/2 n( (1 px)1/2 2eBs )n (1)

eBs 2m eBs eBs m ~ eBs
c

+ 0, 0, sin — cos, cos + sin
m eBs m ' m eBs m

(lob)

Here the second-order total solution u~(„) =-u~(»+u~(» which satisfies mu („)= eF,"„,u),(2f)+f(y]) is the same
for (1) and (6). comparing the difference of second-order forces t), f'&»=-f&'LD» f'&N» a—nd the first-order
correction force f (» to the main force mu', we get

P r,
(1 p2)1/2

p
p2)3/2

mu( )

for

for

p2

1 P2

Here ~, is the radius of the circular orbit for u(", )

and r, is the classical radius of the charged par-
ticle. Thus the new equation (1) predicts a faster
inward spiraling than does Eq. (6} by the deviation
txf I2)/muI» compared to the main unperturbed orbit
(Fig. 3). For a typical electron synchrotron of
5 BeV, r, —5 m, r, =2.8& 10 "m, this deviation is
10 ' -far below the quantum fluctuation of synchro-
tron photon emission. " However, for highly en-
ergetic charged particles in a very strong electro-
magnetic field, as in astrophysical applications, "
where (1 —p') '(e'/meec*)(mc/eB) 'a 1 (e.g. , b+2n
~ 10 for electrons of energy 10" BeV in a B= 10'
G field) the deviation is large. In such strong fields
the new equation (1) predicts orbits quite different
than Eq. (6).

(e) Motion in Coulomb field E = (q/r2)e„. By a
perturbation method as above, the first-order cor-
rections are

J (Nl) 3 2 (1 P2)2/2 1 & & & /
(1 Px)1/2 (1)

2m' P'
fI'LDl) 3q2 (I P2)3/2

0, -sinQs, cosQs 0) — u~
(I P2)l/2 (1)

(12)

where II = —mp'/eq(1 —p2). It follows that f&'LD» has
more backward tangential correction than f (gy) and
thus the Lorentz-Dirac orbit collapses faster than
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the new orbit by (Fig. 4)

t&fI, &
(2e'/3m)F ',„,u &,&, &

e l}'

muI, & muI,
&

q (1 —P )
' (13)

shifts the oscillation phase forward and decreases
the amplitude" which deviates the motion from
u&"„& when &uTa 1 (r 10-" sec-for e ) But th.is can-
not be checked by classical experimental methods
because such highly energetic Compton scattering
must be treated quantum electrodynamically.

There are no experimental data on this deviation.
Oscillating electric field, E =e„cosu&t. (See

Ref. 16.) For initial velocity zero, the new equa-
tion (1) gives exactly

u~ „&
—-((1+[(eE/m &u) sin&et] ') '", (eE/m &u) sinu&t, 0,0),

(14)

which shows no damping because of the continuous
supply of energy from the oscillating fields. Also
the motion (14) is the same as that obtained from
the radiation-neglected Newton's equation mu"
= eE,„,u), because in this special case the radiation
(2e'E'/3m') cos'&utu&' is again equal to the additional
external power-force e,F",„,u~. This result agrees
with the usual Thomson scattering" and says the
latter is exact up to the order of neglecting the
magnetic force from the incident wave. For Eq.
(6), a perturbation force

28 E p y pf(gD, )
= — 3»n»(g)(&(y) y M(y), 0, 0)

3m

V. CONCLUSION

The fact that (1) overcomes all former difficul-
ties and predicts results not experimentally dis-
tinguishable from the Lorentz-Dirac equation in
all laboratory cases of basic importance and the
intuitive simplicity and soundness of the new ideas
on which it is based lead us to suggest that the new

equation (1}correctly accounts for radiation reac-
tion in the motion of classical charged particles
and should replace the celebrated Lorentz-Dirac
equation of motion (6).

The new equation can manifest itself by predict-
ing different motions and thus different radiation
rates and patterns for highly energetic charges in
very strong electromagnetic fields, e.g. , as in
astrophysical cases for electrons with 10" BeV in
10' -G fields such that b+ 2n~ 10. At present it
does not seem trivial to find an action integral for
(1). However, there is no valid action integral"
that leads to (6}.

Also it can be shown that for m=0, Eq. (1) gives
u"=0 and u~u =-0 independent of F",x, . Thus a
massless particle follows a null geodesic and can-
not interact with the electromagnetic field whether
it be charged or not. This might add a new degree
of freedom to the charge-conservation law. The
additional force appearing in (1) alters the conven-
tional interaction -J„A",„,. Thus this work is a
first step of a new way toward including radiation
reaction in curved space-time" and may possibly
lead to changes in quantum theory.
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APPENDIX

We investigate here the possibility of defining at"' by (4), the construction of such a t~', and the
indeterminacy of it. Now, if

2e Fix
3

ext )&(1) e P
rnu ' Q (&-pz}

FIG. 4. Motions in a Coulomb field and their deviations. (A2)

where V"(x) is an arbitrary vector field, then a
nontrivial symmetric tensor field solution t"' al-
ways exists (of course not unique) without any in-
tegrability condition, and its particular integral is

( Pv 2y(fl, v) ~P vga
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where the parenthesis means symmetrization and
(I)" satisfies the familiar equation

(A3)

tj 2~( Jf &P) ~P 1J

where

(A5)

The radiation and retardation conditions are in-
cluded in the Q". Equation (Al) in three dimen-
sions is exactly the well-known stress equilibrium
equation in continuum mechanics.

Thus, the general solution of (Al) is
t"'= t "'+a~'(t) (A4)

where 6"" is any symmetric tensor satisfying 6"'„,
=0. One way of choosing such b"' harmonics is by
using (A2) with a Q that satisfies (A3) with V"=0.
Also the six degrees of indeterminacy of t""are ac-
counted for by these indeterminacies in b,"".

For the purpose of energy-momentum conserva-
tion (5), it is sufficient to let b,"'=0 and choose
t "' as the particular integral of (4), i.e. ,

4'�„ I x —x'
I

(A6)

with V (x) defined in (4). Thus the additional en-
ergy-momentum change t "" in (3), which is de-
fined by (4) and enters energy-momentum conser-
vation as (5), indeed exists and is explicitly ex-
pressed by the field and currents as (A5) and (A6).
Of course, the modified conservation law (5) in-
cludes this new t"'(x), thus differs from the con-
ventional conservation law which involves only

F,"„",(x) and F,",',(x), and therefore it no longer sat-
isfies the conventional "local" conservation laws.
But the modified new conservation law is still a
local one in the sense that it is a. pointwise differ-
ential relation.
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