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The velocity-potential version of the hydrodynamics of a relativistic perfect fluid is put in-
to Hamiltonian form by applying Dirac' method to the version% degenerate Lagrangian.
There is only one independent momentum, and the Hamiltonian density is -To (—g )- ~ . The
Einstein equations for a perfect fluid are then put into Hamiltonian form by analog with Arno-
witt, Deser, and Misner's vacuum Einstein equations. The Hamiltonian density splits into
two pieces, which are the coordinate densities of energy and momentum of the fluid relative
to an observer at rest on the hypersurface of constant coordinate time.

INTRODUCTION

P =P(p, S), (3)

all thermodynamic quantities are expressed in
terms of S (one of the velocity potentials) and p.
In its turn, p, is a function of all the velocity po-
tentials through the equation

= -g '(P, +nP, + 8S ~)(P „+nP, + HS „),
(4)

The velocity-potential version of perfect-fluid
hydrodynamics as formulated by Seliger and
Whitham, ' generalized to relativity by Schutz, ' and
independently discovered by Schmid, ' can be re-
garded as a nonlinear relativistic field theory for
five coupled scalar fields, whose Lagrangian den-
sity is simply the pressure of the fluid. The the-
ory is degenerate: Not all the generalized momen-
ta are independent, so they cannot be solved for
the generalized velocities. In this paper we use
Dirac's4 algorithm for degenerate theories to cast
the equations of perfect-fluid hydrodynamics into
Hamiltonian form, whose Hamiltonian density is
the energy density of the fluid. We then match the
theory to the Arnowitt-Deser-Misner'6 (hereafter
referred to as ADM) canonical theory for the vac-
uum gravitational field.

The independent variables of the theory are the
velocity potentials: five scalar fields (It), a, P, 6,
and S. Here $ is the entropy per baryon, while the
others have less obvious interpretations. ' ~') The
fluid's four-velocity is a combination of the poten-
tials and their gradients, '

U„=p '(p„+np, + 8S„),
where p. is the specific enthalpy of the fluid,

p =(p+p)&p. .
(Here p, is the rest-mass density, p is the density
of total mass-energy, and p is the pressure. )
Through the equation of state,

which is just the normalization constraint on the
four -velocity.

The dynamical field equations are five coupled
nonlinear first-order equations,

U'Q, = -p,
Uv~ 0

U'P, =0,

U'0, =T,
U'S, =0,

(5a)

(Sb)

(5c)

(5d)

(5e)

(where T is the temperature) plus one nonlinear
second-order equation,

( p,U').„=0.

There are really only two independent equations
among the three Eqs. (5a), (5c), and (5e) because
of Eq. (4), so that there are five independent equa-
tions altogether.

These equations follow from extremizing the ac-
tion,

I= PV-g d4x. (7)

First-order changes in p are computed from the
equation

5P = p, 5p —p, TOS,

which expresses the first law of thermodynamics.
Equation (4) is used to obtain 5p in terms of the
independent variations of P, n, P, 6, and S.

When one formulates these equations in terms of
a Hamiltonian, one singles out the time coordinate
for special attention, thereby destroying the equa-
tions' four-dimensional symmetry. In what follows
we will therefore use the ADM notation appropriate
to such a (3+1)-dimensional split of spacetime:
The four-dimensional metric 4g

&
is replaced by

the three-dimensional metric g, , =~g, , (whose
inverse is g"e4g"), by the lapse function N
=(-'g o) '~', and by the shift functions N, = g„.
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Derivatives covariant with respect to g, , are de-
noted by V, or by a subscripted slash (e.g. , h„.a).
Dots (e.g. , h, ,) denote partial derivatives in time.

The action (7}becomes

I= pN ~ d'xdt,

so the Lagrangian density of the fluid is L = pNg'~'

In all but the last section of this paper, we will
treat the metric 4g 8 as a constant, not as part of
the dynamics of the fluid. It will suffice until then
to take as the fluid Lagrangian density

L =pN,

so that the action can be written in the standard
way,

I= Ld three-volume dt.

CONSTRAINTS ON THE MOMENTA

Let q, stand for the five fields p, n, P, 8, and
S. The momenta conjugate to q, are

'd L ~pN

Bq Bq

They are explicitly

p@ = -poU N,
po'. pe 0

P'= nP~

P'= @

(10)

Since only one momentum is independent, there
are four constraints on the momenta (the Dirac
rp equations),

cp =P =0,

~3=p -&p = 0,

y =p' —ep~=p

There are no arbitrary functions of time in vel-
ocity-potential hydrodynamics: What gauge free-
dom exists lies only in the choice of initial values
for the potentials. Consequently, we do not expect
any of these cp's to be first-class: None of them
has a vanishing Poisson bra, cket [see Eq. (16)]
with all the others.

That there is only one independent momentum is
surprising. One might expect at least three (for
the spatial components of velocity), if not more.
The mathematical reason seems to be that, of all
the field equations, only Eq. (6) is second order in
time derivatives. Equation (6) is obtained by vary-
ing fII} in the Lagrangian, and p@ is the only inde-
pendent momentum.

The physical reason (if one exists) that there is

THE HAMILTONIAN AND THE EQUATIONS
OF MOTION

The Hamiltonian density is defined in the conven-
tional way,

H =Qp'q, —L (12a)

=p~(p+ap+ GS) -pN

=-T ON.

(12b)

(12c)

Although p, p, and S appear explicitly in H, we
still have (8H/aq, )~, = 0, so that we can differenti-
ate H with respect to p' and q, while holding q,
constant.

Because of the cp equations one cannot solve for
all the q, 's in terms of p''s. Instead, one intro-
duces additional variables A, (which Dirac' calls

only one independent momentum is not clear. It
would be a mistake to conclude that a perfect fluid
has only one dynamical "degree of freedom": that
such constraints as zero viscosity and conserva-
tion of entropy have wiped out the other degrees
of freedom. The relationship between independent
momenta and degrees of freedom is not well under-
stood. In the velocity-potential representation one
must specify six independent functions on an initial
Cauchy hypersurface in order to determine the
future evolution of the perfect fluid. ' This indi-
cates the existence of three dynamical degrees of
freedom.

What seems to be the case here is that two of the
three second-order dynamical equations (one for
each component of velocity} have been replaced by
four first-order equations [the four independent
equations among Eqs. (5}]. Hidden among the four
potentials o., P, 8, and S are two dynamical vari-
ables and their momenta. Since all four are treat-
ed as coordinates here, they appear to have no
independent momenta among them.

There are some tantalizing suggestions that this
may be just the hint of a deeper canonical relation-
ship among the potentials. Seliger and Whitham'
show that one can modify the formalism slightly
and introduce a function X such that da/d7 = 83C/BP

and dP/d7= -MC/Sn. Moreover, Schmid3&'~ points
out that P obeys the relativistic Hamilton-Jacobi
equation

A, +%8+A =, p

where

e' =g a(oP „+BS„)(nP 8 + 6S 8)

is positive definite because the vector nP „+8S„
is spacelike (it is orthogonal to U ). We have
nothing more to add to these considerations here,
so we return to the Dirac method.
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~H
qa

gapa
m

gapa
+A. (13)

~L H
+X

Bq Bq Bq
(14)

(A sum on m from 1 to 4 is implied here and
throughout. ) For the perfect fluid, Eqs. (13) can
be solved for the A. 's to give

u, } in place of the q, 's. If one varies Eq. (12a) with

respect to q. and p', the A.,'s serve as Lagrange
multipliers which ensure that variations in the

q, 's and p"s maintain the y equations. Then one
gets

tonian variables now are p Xy A2 X3 AQ p 0 p,
(9, S.

The power of the Dirac approach is that the
Poisson-bracket version of Hamilton's equations,

q=[q, H],

j=[P,H],
can easily be generalized to the degenerate case.
Before applying this to fluids, however, we must
define a Poisson bracket for fields in a curved
three-dimensional space. The conventional defin-
ition from particle dynamics,

A. , = (j) A.2
= 9, ~3= p, &~=S. (15)

Thus in this case the A. 's are self-consistent:
Equation (14) implies nothing new. So the Hamil-

is not sufficient when A and B are functions of the
spatial derivatives of the fields q, and p'. In the
Appendix we generalize this definition to fields.
For the perfect fluid (five scalar fields} the result
1s

&A 5B BA 5B eA & 5B BA & 5B BA & 5B BA 8 5B
.",.",. ..'" "-"„,'",.' )

(16)

where A and B are any functions of q„p', and
their spatial derivatives (of any order), and where
5B/6q, is the spatial variational derivative f =[f,H')+— (19)

y brackets. Equation (18) can be stated concisely
as

5B aB 8B aB
+V V; ~ ~ ~

In the Poisson bracket all q's and p's are treated
as if they were independent: The y equations are
used only after the Poisson bracket has been com-
puted.

Dirac' shows that the time derivative of any func-
tion f of the q's, p's, and their spatial derivatives
(and possibly explicitly of time) can be expressed
in the form

by defining a generalized Hamiltonian,

O'=H+A. (p

Because the y's are all zero, H' is numerically
equal to H.

The equations of motion are a special case of
Eq. (19),

P =(p.»')„,

(20)

f =[f,H]+[f, A. y ]+-
P,q

(18)

In the second term, one is to regard A. as inde-
pendent of q, and p', but dependent upon position.
For example, one contribution to that term will be
from a term like

p = -poU'p, N,

p = ( poU'oN)u,

p' = -p,U"S,N,
p' = (poU'~&}i~ po&& -~

(21)

a~ ~ 8~ @
gapa gapa

~a
gapa

+' ' '

8 8m ~~ Pm
m

gapa
5 m g a

p ]c

In Eq. (18) one must treat H a,s a function only of
the independent momenta [cf. Eq. (12b)]. Contribu-
tions to f from the other momenta come from the [y, H') =0. (22}

The first is the continuity equation, Eq. (6). Upon
application of the y equations and the continuity
equation, we see that the remaining four equations
are the four independent velocity-potential equa-
tions among Eqs. (5}.

One must also demand that the y equations be
maintained in time, i.e., that
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These equations are just the four independent vel-
ocity-potential equations, Eqs. (5): There are no

Dirac g equations; i.e., there are no equations
from Eq. (22) that involve p's and q's without X's

or q's, which would thus be constraints like the

cp equations. For example, y, —the constraint on
P" —is preserved at zero by the equation U'p „=0,
which is obtained from the original variational
principle by varying n. This equation can be re-
arranged to read

~2=N'ii, ;+ '
O, g"i3,;(4., +oP, , + eS,).P0N (23}

COUPLING TO GRAVITY

Until now we have treated the metric tensor g„z
as a constant because we were interested in the
canonical theory of the fluid. The fluid is, how-
ever, coupled to the gravitational field, and one
ought to treat the full dynamical system, fluid
plus field.

The Hamiltonian density of the free gravitational
field is"

Hc ——NR +NiR

with'

R' = -2m"
Ij &

R' = g'/ [ R2+2g '(-2'-4/' —ii"ii;,)],
Rnd

&11 Ng1/2(4+0 g 4PO gmn)gik i 1

(24)

(25)

(26)

(27}

Here 'R is the scalar curvature of the hypersur-
face, Rnd g'J ls the momentum canonical to gcj
Since the Lagrangian density of the fluid, pNg' ',
does not depend upon time derivatives of the met-
ric, the full Hamiltonian is

Hc + 16''g'i (28)

Note that Hc splits into two pieces, with R0 and

This is not really solved for A, in terms of p~ and

q, because p0 and p on the right-hand side implicit-
ly depend on all the A.'s. Nevertheless, all the A. 's

do have unique solutions (through the velocity-po-
tential equations) in terms of p0 and q, . This
means that there are no first-class y equations
(as we guessed earlier) and no arbitrary functions
of time in the solutions.

R' independent of N and N, . Dirac' shows that this
will also be true of the Hamiltonian density for
any field. In our case, we split up H'g /' in two

steps: (i) Differentiate with respect to 4g„, while
holding p, and q, constant,

aP( ~g } 1
TOv( 4 )1/2

gP Ij gtf I/

and (ii) convert derivatives with respect to g„,
to derivatives with respect to N, ¹,g j with the
formulas given by Schutz. ' We obtain

gH I+/2
g1/2N(T oi +Ni T 00)

BN;
gll2N giJ To

=g p g"( p ii+np, +&S,),
Rnd

gH i~/2
1/2N 2T 00

&N

g1/2N 2 4+0T 0

H l(2 N; BH'g i
N N aN,.

Equation (32) implies

aH' aH'H'=N +¹ +A. y$

(28)

(3o)

(31)

(32)

(33)

They are, respectively, the coordinate densities
of energy and momentum measured by an observer
at rest in the hypersurface.

By analogy with Eq. (16) we may define a general
Poisson bracket for any two functions of m", g; j,
q„P', and their spatial derivatives (but not of N
or N;, which are arbitrary functions that contain
coordinate information but have no dynamical
content),

Since s(H'g'/')/BN; is manifestly independent of N
and N, , differentiation of Eq. (33) shows that
&(H'g'/ )/SN is also independent of N and N,

The two pieces of H' have straightforward physi-
cal interpretations, as is shown by Schutz. ' Let
g = -N'go™be the unit normal to the spacelike
hypersurface. Then the two pieces of H'g'i' are

aH'g'i2
(34)

Rnd

gH r l//2

J~ ~ =g
BN; aj

sg /i2
' 6&" »"i2

~A. 6B aA 5B aA a gB aA e

q. &p' &p' &q, q, , &x' Op' ep', ax' Oq.
+ (36)
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g„=g,, (vac),

v" = ir"(vac) +8m , Ng't'(T" N'N-'T")

(39)

(40)

where (vac) indicates the terms that are there in
the vacuum case (see ADM). These must be sup-
plemented by the constraint equations that come
from varying the Lagrangian density (2 = -3C
+ v"g;, + Q,p'j, ) with respect to N and N, (which
are not Hamiltonian variables),

g'+16m@ =0,
g'+ 16m 6"= 0.

(41)

(42)

Equations (39)-(42) are identical to those derived
by Schutz' for a general stress-energy tensor.

The constraints, Eqs. (41) and (42), must be
maintained in time; i.e., we must have

and

[Ro+ 16vg, 3C] = 0

[R'+16v6", K] =0.

(43)

(44)

In the vacuum case these are the Bianchi identities.
In our case the Bianchi identities reduce these to
the equations of motion, T"'., =0. These four
equations can be used to replace the four indepen-
dent velocity-potential equations among Eqs. (5), 'o

which themselves guaranteed the maintenance of
the y equations. Therefore, the full canonical set
of equations is

(45a.)

(45b)

(45c)

(45d)

Then the time derivative of any such function that
does not depend explicitly on time is

A =[A, X] (37)

=[A, NR +16vNh]+[A, NR +16vN;6"]+[A, X (p ].
(38)

In particular, the ADM form of the Einstein field
equations follows by using g„.and z" for A,

the fluid variables Q and p @, but the coordinate
conditions would be unaltered (as was pointed out

by ADM).
Methods very similar to these have been used by

the author to derive the Hamiltonian density and
from it a conserved energy density for the pulsa-
tions of and gravitational radiation from a differ-
entially rotating relativistic star. These results
will be published elsewhere.
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APPENDIX: POISSON BRACKETS FOR
FIELDS IN CURVED SPACES

For a system with n degrees of freedom, the
Poisson bracket (P.b.) of two functions of p' and

q, is

(46)

[q, (x), q, (x')] =[p'(x), p'(x')] =0, (47a)

A classical field has an infinite number of degrees
of freedom, one (or more} for each point in space.
Functions like A and B may be functions not only
of the fields p' and q., but also of their spatial
derivatives. In this case, a simple definition like
Eq. (46) above is not sufficient.

Let us suppose that the field variable is a vec-
tor field q; with canonical momentum p' —= BL/8 j,.
Our results can be extended in a straightforward
manner to cases where the field is a higher-rank
tensor or a scalar.

Because the field variables at different points
are independent, we wish the P.b. of two functions
to be nonzero only if they are evaluated at the
same point. Accordingly we define the canonical
P.b. 's,

with either the constraints (41) and (42) (main-
tained in time) or the y equations (11) (also main-
tained in time).

[q, (x), p'(x'}] = -[p'(x'}, q, (x}]
= -0';6'(x —x') . (47b)

CONCLUDING REMARKS

The direction of any further analysis of these
equations must depend upon the application they
are intended for. It would in principle be possible
to reduce the 12 gravitational variables (w" and

g;, ) to four in exactly the same manner as ADM.
Solving the constraint equations would then involve

Here 0', is the derivative of Synge's world func-
tion" Q(x, x'} with respect to x' and x", with the
index j' raised by the metric at x'. Because of
the 5 function the only properties of 0',. that we
will need are" (1) its limit as x' approaches x,

(48a)

and (2) the same limit of its covariant derivatives,
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lim Vk Q', = —lim Vk Q';, (48b)

where Vk. is a covariant derivative at x' and acts
only on primed indices, and vice versa for Vk.

The 5 function is normalized to proper volume,

to covariant differentiation,

V,[n',.5'(x —x')] = -V, ,[n',.5'(x —x')] .
We define the differentiated canonical P.b. 's,

(50)

5' y 'd'y=1, (49a)
[q;(x},V), p'(x')] = -V~, [n', 53(x —x')],

[V,q,.(x},p'(x'}] = -V [n",.5'(x —x'}],
(51a)

(51b)

and has the usual property

5'(x —x') = — . 5'(x —x') .&x'
(49b)

Equation (48b) permits us to generalize Eq. (49b}

and so on for higher derivatives. The Poisson
bracket [, ]is the bilinear antisymmetric tu)o-

point differential operator whose domain is all
C' functions of p', q;, and their covariant deriva
tives and which obeys relations (47) and (51).

By application of the chain rule we find

[A(x), B(x')]= (x)[q, (x),p'(x')], . (x')BA, , ~B

i

+,(x)[p'(I), q, (x')] (x') + (x)[q,.(, (X),p'(x')],. (x') + ~ ~ ~,&A ; , dB , &A , , dB
(52)

(x), (x')V, [n', 5'(x -X')]+, (x) (x')V, [n', 53(x -x')]

~A dB, , 3, A 'dB(x), (x')V, .[n';5'(x —x')]+, (x) (x')V, [n', .5'(x —x')]+ ~ ~

eq,. ap']k ' ' ep' eq„, (52)

;[A, B]=f (A(it), B(x')](g')'~'d'x' (54)

This is the usual definition of a Poisson bracket
in classical field theories. But for the purpose of
practical calculations it is useful to obtain a one-
point P.b. by integrating. The left- (right-) inte-
grated P. b. is the integral of the P. b. over all x'
(x). We denote these by «f, ] and [, ]„, respec-
tively. Integrating Eq. (53) on x' and using Eq.
(50}gives

neither A nor B depends upon derivatives of q,.

and p'. When such derivatives are involved, the
left-integrated P.b. is the P.b. of A at the point x
with the entire field B: Values of B at other points
influence the bracket through the spatial deriva-
tives of B at x. Note also that the integrated
P.b. 's are independent of any coordinate system.

The following interesting properties follow di-
rectly from the definition of the integrated brack-
ets:

aA gB aA gB
p p qi

1. -„[A,B]= [B,A]„-. -
2. «[A, B]= -«[B,A]

(57a)

(57b)
~A 5B &A 5B

k~ i ~ i kgqi]k P P (k qi
(55)

if and only if both A and B are independent of de-
rivatives of q; and P'.

where 5B/bq, is the variational . derivative

6B BB BB &B—V), + Vi V)) —' . (56)
&q ~q ~q ]k

' ~q. (k[

Although one cannot generally integrate a tensor
over a curved space, as we have done in Eq. (54),
in this case the 5 function limits the integration to
only one point, so that the integral is unambiguous.

This integrated P.b. is the generalization of the
simple P.b. , Eq. (46), to which it reduces when

4. V, -„[A,B]=„-[V,.A, B],
v, [A, B]„-=[A,v,B]„.

(57d)

(57e)

The integrated brackets fit into the Hamiltonian

3. „A,B g'~ dx= A, B„~dx
(57c)

if «[A, B] is a scalar (if not, the integrals are un-
defined) .
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theory because the canonical equations are (for a
system whose momenta are all independent)

q; = 5Hj6p',
p'= 6H/6q; .

(58a)

(58b)

They translate to (from now on we will use only
the left-integrated brackets)

q, = „-[q,, H],
p'= -„[p',H].

By property 4 above these imply

q;)„="„[q;)„H],

P Ik x[p Ik ~ H] ~

which in turn imply

A = )[A, H]

(59a)

(59b)

(60a)

(60b)

(61)

J
H g'i'cPx=0,

all space
(62)

which is true because of properties 3 and 1. Thus,
in general, there exists a canonical Poynting vec-
tor S' such that

H+V;S'=0.

for any function A (not necessarily a scalar) of

q;, P', and their spatial derivatives that does not
explicitly depend on time.

Property 2 implies that in general H+ 0. This
is to be expected: Energy can be transferred from
point to point. We should only expect that

For a degenerate field theory these become

q, = „[q,, H]+ „[q;,X y ],
p' =:[p*,H]+;[p', &.q.].

(65a)

(65b)

(66)

Conservation laws for the Hamiltonian can be
derived here too. They are especially simple in
the case where H depends on no derivatives of p'
and only first derivatives of q;, and where cp is
independent of any derivatives. The equation
maintaining the (It) equations is

q. =;[q. H]+;[q. &.q'.1

= „-[(p„,H]+X „-[(p„, (p ]=0.
The time derivative of H is

H = r[H, H) + „[H, z y ] .

(67)

Using the properties of the integrated bracket, our
assumptions about H and y„, a.nd Eq. (67), we cs.n
show that this becomes

In these equations A. appears inside the inte-
grated bracket because it is generally a function
of position. To compute a bracket that has A.„in-
side, one treats A. as a function of x independent
of p' and q;. For example, the variational deriva-
tive of Eq. (56) is

~~m'Pm a Xm(j('m ~mV'm
li7 + ~ ~ ~

&q.

For the simple case where H depends on no deriva-
tives of q; and p' higher than first order (which in-
cludes almost all physical systems), the Poynting
vector is

H+V; S'=0,

with
BH ~P BHS'=—,. +x

~P' ~P

(68)

(69)

eH eH eH aHS'=
qg ~P Ia ~P quota

(63) But by Eq. (65a) this is just

'dH
Ss

q, = [q;, H] + A [q;, (p ],
p'=[p', H]+~4p', q.].

(64a)

(64b)

For a degenerate system (momenta not all inde-
pendent) the equations of motion are almost as
simple. Dirac4 shows that for a system with a
finite number of degrees of freedom,

which is the canonical flux in the nondegenerate
case as well.

In the body of this paper we will consistently use
the left-integrated Poisson bracket, which we re-
fer to simply as the Poisson bracket, denoted by
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Actually, Diracs proof (Ref. 4) is for a system with

finitely many degrees of freedom. We have generalized
it' to fields using the results of the Appendix.

~B. F. Schutz, Jr. , in Proceedings of the Pittsburgh
Conference on Relativity (Springer, Berlin, to be pub-
lished) .

See Appendix B of Schutz, Ref. 2.
~~J. L. Synge, Relativity: The General Theory (North-

Ho11and, Amsterdam, 1966).
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With the intuitive new ideas that (1) in classical electrodynamics, radiation reaction should
be expressible by the external field and the charge's kinematics, (2) a charge experiences,
in addition to the Lorentz forces, another "small" external force e&F" u& proportional to its
acceleration, and (3) inertia plus radiation is balanced by these two external forces, we pro-
pose the new equation of motion,

Plu —( e /3')Fext uyu~u = eFe~t uy + e(F ext uy

where mass conservation requires e&
——2e3/3m. (The particle's spin is not considered in this

work. ) This equation for a classical charge is free from all the well-known difficulties of the
Lorentz-Dirac equation. It conserves energy and momentum in a modified form in which the
energy-momentum tensor contains a part tl"'(x) made of a new field-charge interaction Q"(x),
in addition to the conventional "local" part made of F",et(x) and F",«(x) only, and therefore it
no longer satisfies the conventional "local" conservation laws. It predicts correct radiation
damping, as demonstrated here by applying it to various cases of basic physical importance.
Also, it implies that a massless particle follows a null geodesic and cannot interact with
the electromagnetic field whether it be charged or not; this implication may add a new de-
gree of freedom to the charge-conservation law.

I. INTRODUCTION

The equation of motion of a charged particle has
been a subject of interest for many years. ' The
equation now generally accepted was obtained by
Dirac by decomposing the energy-momentum ten-
sor of the retarded self-field into a sum that re-
normalizes mass and a difference that gives reac-
tion. ' An explanation and rederivation based on
an absorber mechanism was provided by Wheeler
and Feynman. ' However, as is well recognized,
the Lorentz-Dirac equation has certain inherent
difficulties. First, it involves the derivative of
the acceleration and hence needs one extra condi-
tion, in addition to the Newtonian initial conditions,
to determine the motion. Second, it gives runaway
solutions which can be avoided only by artificially
presenting a preacceleration. 4 Third, in certain
cases it implies that the external energy supplied
to the particle goes only into kinetic energy, and

radiation is created from an "acceleration self-
energy" which becomes more and more negative
and is unphysical. It is the purpose of this work to
obtain a new equation that is free from these dif-
ficulties, agrees with existing laboratory results,
and predicts new phenomena that can distinguish
the new equation from the old one and test its va-
lidity.

II. THE NEW EQUATION

By following the old idea of expressing the radi-
ation reaction of a charged particle only by its
kinematical quantities, it is not possible to con-
struct an equation that includes reaction in a form
simpler and more satisfactory than the Lorentz-
Dirac one. However, in classical electrodynamics
in an inertial frame' the only field that can accel-
erate a charged particle and make it radiate is the
external electromagnetic field Fl,'„'t . Accordingly,
radiation reaction should be expressible by F"„",


