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Nat. Acad. Sci. U. S. 25, 391 (1939)] considered two
such test shells at rest in an inertial frame. An observ-
er orbiting this system detects no electromagnetic field,
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A formula is derived for the mass of a black hole as a function of its "irreducible mass, "
its angular momentum, and its charge. It is shown that 50% of the mass of an extreme charged
black hole can be converted into energy as contrasted with 29% for an extreme rotating black
hole.

The mass m of a rotating black hole can be in-
creased and (Penrose') decreased by the addition
of a particle and so can its angular momentum I.;
but (Christodoulou') there is no way whatsoever to
decrease the irreducible mass m;, in the equation

F.' —P' = m = m„+L /4 m;,

for the mass of a black hole. The concept of re-
versible (m;, unchanged} and irreversible trans-
formations (m;, increases}, which was introduced
and exploited by one of us to obtain this result, is
extended here to the case where the object also
has charge, to yield the following four conclusions:

(1) The rest mass of a black hole is given in
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terms of its irreducible mass and its angular mo-
mentum L and charge e by the formulas

1.0

m'= (m;, +e'/4m;, ) +L /4m;, '. (2)

(2) Reversibility implies and demands zero sepa-
ration between the "negative-root states" and "pos-
itive-root states" of the particle defined by a qua-
dratic equation of the form

nF —2PE+y =0,

a requirement which is met and can only be met at
the horizon itself.

(2) There exists a one-to-one connection between
(a) the irreducible mass (as defined here and pre-
viously exclusively through the theory of revers-
ible and irreversible transformations), and (b) the
proper surface area S of the horizon (shown by
Hawking' never to decrease),

0.

S=16wm; '. (4)

(4) The innermost stable circular orbit is the
simplest place for a black hole to hold a particle
bound and ready for capture. This orbit lies just
outside the horizon only when the black hole is an
extreme Kerr-Newman' black hole in the sense

(L'/m')+e (=a'+e' in the notation of Kerr) =m'
-0.6 -0.5 -0.4 -0.3 -0.2 -0.)

or parametrically

L = 2m;, ' ocsy, e =+2m;, (sing) ",
m = 2" m;, (1+sing) "

(y has any value from 0 to —,'v). The binding ener-
gies of a particle in this most-bound stable orbit
are given by the formula

E (2a —m )A+a(X mm+4a —m )
~

4a' —m'

where A. =re/p, m (cf. Fig 1). The .transformation
on the black hole affected by capture of a particle
from such an orbit becomes reversible only when
the charge-to-mass ratios of the particle ( /pe) and
the black hole (e/m) attain the limits

~ e/p ~- ~ and
parameter y-0 (e/m-0, L —mm) such that ee/mp

The binding of the particle in this orbit is
100%%ug of its rest mass.

In black-hole physics one has reversibility with-
out reversibility. As compared to such frictional
processes as a brick sliding on a pavement, or an
accelerated charged particle radiating, or a freely
falling deformed droplet of molasses reverting to
sphericity, it is difficult to name an act more im-
pressively lacking in reversibility than capture of
a particle by a black hole. Lost beyond recall is
not a part of the mass-energy of the moving sys-

FIG. 1. Energy of a test particle of specified charge
e, corresponding to the circular orbit touching the one-
way membrane of a black hole of specified charge e of
the limiting configurations a +e =m, versus & and e.
Such orbits will be stable and will be the orbits of lowest
energy if E ~e(p/m) for ee &0. The crossed curve is the
boundary between stable and unstable orbits. The num-
bers on the energy minima correspond to the values of
the angular momentum for the most-bound orbit.

tern but all of it; and not only mass-energy but al-
so identity. The resulting black hole, like the
original black hole, is characterized by three "in-
dependent determinants, "mass, charge, and an-
gular momentum, and by nothing else; all partic-
ularities (anomalies in higher multipole moments;
also baryon number, lepton number, and strange-
ness) are erased, according to all available indica-
tions. ' " To reverse the change in a black hole
brought about by the addition of a particle with a
given rest mass, charge, and angular momentum
(p. , e, p~) one does not and cannot cause the black
hole to reexpel the particle. Nor is there any such
thing as a particle with a negative rest mass that
one can add to cancel the first addition. Add in-
stead (B in Fig. 1) a particle of the original rest
mass p. but of charge -e and angular momentum
-P~. This addition restores the determinants m,
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e, L of the black hole to their original value when
and only when positive- and negative-root states
have zero separation, a condition that is fulfilled
only at the horizon itself, r = r„,„„„=r, = m
+(m' —a' —e')'". At the horizon the positive- and
negative-root surfaces E =E,(p ve) meet at a
"knife edge" (cf. Fig. 18 in Ruffini and Wheeler" )
and the two "hyperbolas" of Fig. 2 degenerate to
the "straight line" (acquires one more dimension
and becomes a plane when the charge as well as
the angular momentum of the test particle is taken
into account),

The Hamilton- Jacobi equation

a =r'+a (r'+2mr —e ),

p = (2mr —e')ap~+eer(r'+a'),

y= (r-—2mr+e )p~'+2eearp~+e'e r (10)

for the motion of the particle, separated and
solved by Carter, "leads to the quadratic equation
(3) for the energy with

aP~+ ear,
a +7'

Details follow.

(8) -(r2-2mr+a +e )(p.'r' +Q)

—[(r ' —2 m r + a + e )p„]',

POSITIVE-
ROOT

STATES

NEGATIVE-
ROOT

STATES

—I'y ~my.
(or ~/p. )

see Fig. 1. Here Q is a constant of the motion
(generalization of the usual expression for the
square of the angular momentum) related to the
polar momentum pe at any angle 8 by the equation

Q = cos'8 [a'(g' —E2) +P~2(sin8) ']+Pe' . (ll)
The positive- and negative-root solutions of (a}
coincide only when the discriminant of this equa-
tion vanishes. This condition is satisfied only at
the horizon where the energy is given by Eq. (8).
The derivation of formula (1) assumes and de-
mands that the in-falling particles make an effec-
tively infinitesimal change in the properties of the
black hole. Applying the laws of conservation of
the three determinants and writing F. = dm, P~ = dL,
e = de, we obtain the partial differential equation

(L/m)dL+r, ede
r '+L'/m' (12}

FIG. 2. Reversing the effect of having added to the
black hole one particle (A) by the Penrose process of
adding another particle (B) of the same rest mass but of
opposite angular momentum and charge in a 'Qositive-
root negative-energy state. " The diagram shows sche-
matically the energy E of the particle (measured in the
Lorentz frame tangent at r- ) as a function of the
charge e of the particle and its angular momentum p&
about the axis of the black hole (for simplicity one of
these two dimensions has been suppressed in the frame).
The particle under examination is in the equatorial plane
of the black hole (8 = 27r) at a specified value of r. The
energy lies on the indicated "positive-root" curve when

g and pe are zero, otherwise in the dotted region above
the curve. Addition of B is equivalent to subtraction of
B. Thus the combined effect of the capture of particles
A and B is an increase in the mass of the black hole given
by the vector BA. This vector vanishes and reversibility
is achieved when and only when the separation between
positive-root states and negative-root states is zero [in
this case the hyperbolas coalesce to the straight line
given by Eq. (8)j.

Integration gives Eq. (1), provided that the follow-
ing condition is satisfied:

L2 4

4m;, ' 16m;, (13)

For it to be possible to reverse the transformation,
both the original particle (positive energy) and the
added particle (negative energy) must arrive at
the horizon with zero radial momentum. Other-
wise there is a nonzero kinetic energy that is irre-
trievably lost.

When one turns from reversibility as a criterion
for an interesting transformation to merely the
ability to extract energy, it becomes important to
specify under what conditions a positive-root state
has negative energy. From Eq. (10) it follows that
the region (outside the one-way membrane} where
positive-root states of negative energy are avail-
able to a particle of specified rest mass p, , charge
~, and angular momentum P~ extends to the sur-
face



REVERSIBLE TRANSFORMATIONS OF A CHARGED BLACK HOLE 3555

(r '- 2 m r + e' + a')[p~' + sin'8 (r 2 + a' c os'8)p ' j

= sin'8(e er + ap ~)'.

(14)

When the transformation is reversible, the energy-
extraction process has its maximum possible ef-
ficiency. Repetition of an energy-extraction pro-
cess with maximum possible efficiency results
in conversion into energy of 50%%up of the mass of an

extreme charged black hole and 29 jo of that of an
extreme rotating black hole. Thus, black holes
appear to be the "largest storehouse of energy in
the universe. "'
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In two earlier papers the author developed an approximation procedure for finding the
Lorentz-covariant equations of structure and motion of interacting particles (represented by
singularities) in Einstein's theory of the nonsymmetric field and in Einstein's theory of the
gravitational field. In the earlier papers the author worked exclusively in a specific set of
coordinate systems, the harmonic coordinate systems. In this paper the author shows that
the procedure developed in the earlier papers can be used without imposing any conditions
on the coordinates except that the fundamental field be the Minkowski metric in the absence
of particles. The author also shows that up to any finite order of approximation the use of
harmonic coordinates does not reduce the set of invariantly distinct solutions to Einstein's
field equations.

I. INTRODUCTION

In two earlier papers' the author developed an
approximation procedure for finding the Lorentz-
covariant equations of structure' and motion of
interacting particles (represented by singularities)
in Einstein's theory of the nonsymmetric field and,
because it is a special case of that theory, in
Einstein's theory of the gravitational field. The
procedure was developed for the most general

particles which could be represented by singu-
larities in a perfectly isolated region of the space-
time continuum. Such particles were called ideal
particles. The terms "ideal particle" and "per-
fectly isolated region of the continuum" were de-
fined in the earlier papers.

The approximation procedure developed by the
author allows one to find the equations of structure
and motion step by step with respect to the powers
of a parameter ~ which measures the "strength"




