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A neutral rotating mass shell surrounds a concentric stationary electrically charged in-
sulating shell. The dipole-like magnetic field induced by (and proportional to) the rotation
of the neutral shell is calculated on the basis of the coupled linearized Einstein-Maxwell
field equations of general relativity. This field is apparently at variance with a conjecture
made on Machian grounds, for which a possible explanation is suggested. The corresponding
induced quadrupolar electric field is calculated for the region within the charged shell, and
the potential is given for this field everywhere. Though understandable on mutually inconsis-
tent elementary grounds, we regard this field as a useful example of a solution of linearized

general relativity.

I. INTRODUCTION

Thirring! was the first to investigate on the basis
of general relativity an effect which has since be-
come known as the “dragging of inertial frames”
by rotating massive bodies. There is, of course,
no such effect in Newton’s gravitational theory.
Though minute for all conceivable laboratory sit-
uations, the dragging of inertial frames is by no
means negligible, for example, in the neighborhood
of fast-rotating neutron stars. Indeed, according
to the theory, some of these stars could drag the
inertial frame near their surface around several
times per second.?

Thirring’s particular investigation concerned the
gravitational field inside a massive rotating shell
placed in an otherwise empty and asymptotically
flat space-time. Part of the motivation stemmed
from what Einstein had termed “Mach’s principle,”
according to which a gravitational theory should be
so constructed that the same consequences result
from assuming, for example, that a certain me-
chanical system is rotating within a fixed universe,
or that the universe is rotating and the system is
at rest. In other words, all that should matter
are the masses and relative motions of all the
bodies in the universe, and no extraneous entities
like “absolute space” should enter any problem.
(Such statements, of course, assume the a priori
existence of a Galilean space-time metric and ig-
nore the independent existence of fields and the
difficulties of defining relative motion at a distance
in general relativity®; yet although Mach’s princi-
ple was originally a proposal to modify classical
mechanics, its basic idea has nevertheless proved
a source of fruitful and often true conjectures in
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general relativity.) According to this principle,
the rotation of the universe relative to the earth
would gravitationally cause the Coriolis and cen-
trifugal fields experienced on earth. By fraction-
ization, one might expect the field inside a rotat-
ing mass shell to have weak Coriolis and centrif-
ugal features. And this, indeed, was Thirring’s
finding.*

Analogously, one of us conjectured® that an elec-
trically charged stationary shell inside the large
rotating shell would be surrounded by a dipole-
like magnetic field. Quite apart from Mach’s prin-
ciple, to which one may subscribe or not, this con-
jecture poses a well-definable problem in general
relativity which we call an “electromagnetic
Thirring problem”: to find the coupled gravita-
tional and electromagnetic fields in an asymptot-
ically flat space-time whose only content is a
charged spherical shell surrounded by a concentric
neutral massive shell, the first at rest and the
second in uniform rotation relative to infinity. In
the present paper we solve this problem to first
order in the gravitational constant k2, and to second
order in the angular velocity w. The magnetic field
has already been reported by us without proof.®

We have since then learned of the work of Cohen,”
who treated a related problem by a different meth-
od. Using the full nonlinear Einstein gravitational-
field equations, but restricting himself to lowest
order in the rotation rates, Cohen computes the
electromagnetic test field due to a rotating charged
shell of negligible mass and a concentric rotating
neutral shell of arbitrary mass. His main concern
is the confirmation of the Machian expectation that,
when the radius of the outer shell approximates its
Schwarzschild radius, the electromagnetic field in-
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side that shell depends only on the relative angular
velocity of the two shells.

Whereas our method is inferior to that of Cohen
in that we cannot treat arbitrarily strong gravita-
tional fields, it nevertheless has the following ad-
vantages. Our flat-space form of the Maxwell
equations for the perturbed fields® exhibits ficti-
tious currents and charges which allow one to rec-
ognize at once the structure of the gravitationally
induced electromagnetic fields in lowest order and
to compute these fields by the standard methods of
electrodynamics. Thus for our particular problem
one verifies immediately the essentially dipolar
structure of the magnetic field and gets the mag-
netic moment expected on Machian grounds via
Thirring’s dragging-velocity formula. (However,
as we shall point out and discuss below, the dipolar
field occurs in a “wrong” frame.) In addition, our
form of the fictitious source terms shows that the
apparent curvents arise from the space-time com-
ponents g, of the metric and hence their leading
terms are proportional to w, whereas the apparent
(“vacuum-polarization”) ckarges are due to the re-
maining metric components. The current poten-
tials g, are independent of the reaction of the met-
ric to the Maxwell field. The deviations of the
charge potentials (g, £,4) from their flat-space
values consist of terms independent of w but due to
reaction with the Maxwell field, and of other terms
proportional to w? all of which are therefore ab-
sent in Cohen’s work. We find that the w®-depen-
dent gravitationally induced electric field appears
only in conjunction with a mass quadrupole moment
of the outer shell, and accordingly has a quadru-
pole angular dependence; in particular, this field
extends into the interior of the charged shell. Fi-
nally, in our method we need not restrict the rela-
tive magnitudes of the two shell masses and of the
charge.

The following is an outline of our procedure. If
the electromagnetic units are Gaussian and the
speed of light is taken to be unity, as it will be
throughout this paper, the coupled Einstein-Max-
well field equations are

G =k(T;;+S;;)  (k=8mk) (1.1)
and

Fik:,,=417J", (1.2a)

Fijm=0, (1.2p)

where G;; = Einstein tensor; k=Newton’s constant
of gravitation; T,; =material-energy tensor; S;;
=electromagnetic-energy tensor defined by

Si;=(1/4m)[Fy; F*; - 58,(F 4 F"M)]; (1.3)

F;; = electromagnetic-field tensor; and J' =current-
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density vector. We use “, k” and “; &’ to denote
partial and covariant differentiation, respectively,
with respect to the coordinate x*, and [ ] to denote
skew-symmetrization; Latin indices run from one
to four and the Greek indices in the sequel run
from one to three.

To find the coupled fields of a given distribution
of matter and charge, according to general rela-
tivity, it is therefore necessary to find functions
g;; and F,; satisfying (1.1) and (1.2) and possibly
certain boundary conditions, so that the corre-
sponding T;; and J* describe that distribution of
matter and charge. One well-known solution of
these equations is the Reissner-Nordstréom metric
and field, characteristic of the vacuum outside any
spherically symmetric distribution of matter and
charge.’

If one considers the reaction of the metric to the
electromagnetic field as negligible, one omits S;;
from Eq. (1.1); the electromagnetic field is then a
“test” field. This is the curved-space equivalent
of the way in which electromagnetic problems are
solved as a matter of course in special relativity.

In order to linearize (1.1) and (1.2) in k, one as-
sumes'® the existence of a one-parameter family
of solutions of these equations, depending smoothly
on the gravitational constant k# as parameter. When
k=0 (no gravity), the solution is assumed to be
g;; =n;; =diag(1, 1, 1, -1) (flat space), and F;;=E;;,
where E;; is an appropriate flat-space solution of
the Maxwell equations (1.2). One then decomposes
gi; and F;; as follows:

8ij =Mij +khy; + O(R?), (1.4)

Fi=E;;+kH;; +O(k?), (1.5)
h;; and H;; being defined by these equations. Sim-
ilarly, and in an obvious notation, one has

T, =TQ+kT{ +0(k?),

(1.6)
Si; =S§‘,?) + kSE}) +0(R?) .

In the linear approximation one works to first or-
der in k only. It is convenient to introduce the new
coefficients

Yii =hi; =304k, (1.7)
where
h=n”hi,-, 77”=7hj; (1.8)

and, if necessary, to make a transformation x!—~x
+ k£ to new coordinates which satisfy the coordi-
nate conditions

Y i=0 (Y =nitnity,,). (1.9)
If, in particular, the solution is stationary, then,

in virtue of (1.1), the y;; satisfy the Poisson-type
equations
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Ay = -167(T? +S$?)) s

1]

(1.10)

which one can solve in the familiar way, using
boundary and jump conditions.

In applying this method to the electromagnetic
Thirring problem at hand we first consider the en-
ergy tensors of the outer and inner shells (the lat-
ter to include the electromagnetic field), each in
the absence of the other shell. Since a modifica-
tion of either tensor, due to the distribution de-
scribed by the other, can occur only if gravity is
present, such a modification can only affect the
k-dependent terms in (1.6). Thus in (1.10) we sim-
ply insert the sum of the undisturbed energy ten-
sors of the two shells. Consequently, the y’s we
seek are the sums of the y’s corresponding to the
pure Thirring problem and the Reissner-Nord-
stréom problem, respectively. The availability of
the exact Reissner-Nordstrom solution is a piece
of good fortune in the present problem, but in other
problems of a similar nature the y’s can be worked
out ab initio. After the y’s are found, the per-
turbed electromagnetic field is obtained by solving
Maxwell’s equations (1.2) in their linearized form.

II. SUMMARY OF RESULTS OF THE
THIRRING PROBLEM

Consider a thin rigidly rotating neutral mass
shell in an otherwise empty and asymptotically flat
space-time. Let the shell be spherical with radius
R in the zeroth approximation, and let its angular
speed as judged by an observer at infinity be w
=const. Idealizing the shell as being infinitely thin,
assuming the proper surface density of proper
mass p to be constant on the shell, and neglecting
terms of higher than second order in w, one ob-
tains a unique solution of the linearized Einstein
field equations, as shown in varying degrees of
completeness by Thirring,’ Bass and Pirani,!* Honl
and Maue,'? and Ehlers.!®

The relevant metric can be written, in linear-
ized harmonic coordinates (F, £) =(x*, #), as

0=(1-2U)dF+2dtV-dT - (1+2U)dt?, (2.1)

where the gravitational potentials U, V are defined
as follows: If the shell has total mass

M =4mR%p[1+ 2(wR)?], (2.2)
angular momentum vector

L=2MR*3 (2.3)
and quadrupole-moment tensor'*

D=t MR} -33), (2.4)

and if u is related to the radial coordinate by
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._%1/12 if <R

= 2.5
1/v if ¥ >R (2.5

(where convenient, we use := and =: for “is defined
by” and “defines,” respectively), then

U=~kMu—3k(¥-D-Pud, (2.6)
V=2kFXL)u. (2.7)

Further details of the solution, which we do not
need in the sequel, are described in Ref. 13.

Since wR <1, it is seen from the above formulas
that the linear approximation is reasonable pro-
vided

rM
—«1 .8
R «1, (2.8)

this being the condition for U and V to be small
compared to unity. Hence, in the domain of valid-
ity of this solution, the Thirring angular velocity
with which the inertial frame in the interior of the

shell rotates relative to that at infinity,
-1 s

’ (2.9)

is small compared to the rotation rate of the shell.

III. SUPPLEMENTS TO THE
REISSNER-NORDSTROM PROBLEM

The Reissner-Nordstréom metric has the form®

N Q\™! N @
<I>=<1——+—> dp? + 2dw2—(1———+—>dt2,
pp?) TP p P

(3.1)

where
dw® = d6* + sin®6d¢p?, (3.2)
N=2km, Q=kq®, (3.3)

and m and g are the mass and charge, respectively,
of the central object. If that is a spherical skell,
the argument leading to the exterior metric (3.1)
can be applied without modification to the empty
interior, except for the final identification (3.3) of
the constants N and . These must be taken to be
zero if we seek an everywhere-regular interior
solution. We conclude that the interior is flat.
However, the form of the metric (3.1) has to be
modified by a coordinate transformation before it
can be joined continuously to a suitable flat interior
metric, so as to provide a satisfactory solution to
the complete shell problem.

Since we are interested in the linearized metric
of the charged shell, we first reexpress & in har-
monic coordinates’® so that its linearization will
automatically satisfy the coordinate conditions
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(1.9). Consequently we seek a new radial coordi-
nate

r=flp)p, (3.4)

where f is to be determined such that our ultimate
three coordinates

x =y sinfcos¢, y=vsindsingp, z=rcosd
(3.5)

are harmonic with respect to ®. The condition for
a function V to be harmonic with respect to a met-
ric g;; is

OV =gl™/%,(| gl ?g2,v) =0, (3.6)

where 3, =3/8x'. One can easily check that the
time coordinate ¢ of ¢ is already harmonic. The
condition for the harmonicity of x can be reduced
to

[(f'e*+ fp)X] - 2fp=0, (3.7

where X is the coefficient of —dt? in (3.1) and the
prime denotes d/dp. It is clear that this condition
will at the same time assure the harmonicity of y
and z, because Eq. (3.6) is preserved under “rota-
tions” (x, y, 2) = (¥, 2, x) = (2, x, ). Explicitly, Eq.
(3.7) reads

F(p® = Np®+Qp)+ f'(4p*-=3Np+2Q) - fN=0.

(3.8)
Considering f as a power series in p~!,
f=2C.p7", (3.9)
and substituting this into Eq. (3.8), we find
. (n-1) 7 |
G = G Dl —2) VT g WG (3.10)

provided n >2. By equating to zero the three high-
est-order terms, we find

Co Cy=arbitrary, C,=0, C,=-iNC,. (3.11)

Since for large values of » we wish 7 to have its
usual metric significance, we choose C,=1, which
implies C,=-3N. The choice C, =0 implies,
through Eq. (3.10), that C,=0 for » >3. Thus f =1
- 3N/p is an exact solution of Eq. (3.8), and so the
simplest harmonic form of ¢ is

&={1- N +—Q’—_1d7'2+(r+lN)2d<.«.>2
v+3N  (r+iN)? 2

N Q
—(1- —_ 2
( y+§N+(y+l2N)2>dt . (3.12)
If here we set @ =0, we recover a well-known har-
monic form of the Schwarzschild metric.
For our purpose of continuing the metric into the
interior of the shell, however, we need the free-

dom afforded by choosing C, =C, not necessarily
zero.'” Since N and @ contain k as a factor, and
since the same will turn out to be true of C, it is
clear from Eq. (3.10) that all C, with » >3 will con-
tain a factor k%. Consequently they drop out in the
linearization. With this cutoff, Eq. (3.4) becomes

r=(1-3Np~t+Cp~3)p, (3.13)
and its inverse,
p=(1+3Nr"1=Cr %r. (3.14)

The substitution of Eq. (3.14) into the original
metric (3.1) leads to a form of that metric which
is, of course, exact, but harmonic only to first
order in k. A slightly tedious calculation then
shows that this exact metric can be joined contin-
uously (i.e., with all g;; continuous) to an interior
flat-space metric

U= 2(dv? + v2dw?) - A2dt? (3.15)

across the sphere » =a (>0) by taking

2\1/2
Czﬂ{(“%-%;) _1}, (3.16a)
N N2 1/2
p=2+%-<1+3%3-3—2?> , (3.16b)
x2=1-%+a—§)ﬁ. (3.16¢)

We observe that C is indeed a multiple of £ when
expanded in powers of k, as anticipated.

The form (3.1) has no horizons®® if N2—4@ <0. In
that case C and p are automatically real and A%>0;
moreover, u#0 if

3a>VQ -N. (3.17)

If the form (3.1) has horizons, a must evidently be
chosen outside of them. The condition for C and p
to be real is then 12a% = N*> - 4Q, which also en-
sures u #0; but to ensure A%2>0 it must be
strengthened to

9a®>N?%-4Q . (3.18)
Another condition on @, namely,
a>Q/N, (3.19)

will be seen to follow from energy considerations.

We can now calculate the linear harmonic form
of the metric of the charged shell. Discarding the
nonlinear powers of k from the metric (3.1) under
the harmonizing condition (3.14) yields

, N Q@ 4 N 2C
d>=< —;—-p+7)d72+<1+7—7>72dw2
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The linearized junction conditions (3.16) read

C=32aQ, (3.21a)
N_Q
2 _ =~ .21
wi=1+ P 342’ (3.21b)
A2:1_5+_(\_)2. (3.21c)
a a

The relevant coordinates for the linear theory,
however, are those defined in Egs. (3.5). If } de-
notes summation of three analogous terms in x, v,
z, we have

r2=33x% vdv=),xdx, dr®+vidw?=},dx®,
(3.22)

whence (3.20) becomes, by reference also to
(3.21a),

N dx)?
<IJ':<1+7 - i—%)zdxza— (i;Qa - %)—(EAZX)

v v
_<1_—N+—2>d12.
v v

From the continuity of the transformation equa-
tions it is clear that, under the conditions (3.21b)
and (3.21c), @’ as given by (3.23) is now continu-
ously joined to the interior metric,

U=y dx® - A2di>.

(3.23)

(3.24)

The appearance of the non-unit factors A%, y? in
the interior metric tells us something about the
meaning of the coordinates that cover the space-
time continuously, and thus also something about
the physics. For example, there will be a red
shift x: 1 for photons traveling from the interior to
infinity.

It remains to find the linearized electromagnetic
field F;; of the shell in the linearized metric con-
sisting of (3.23) for » = a and (3.24) for v <a. It is
clear that there can be no such field in the flat in-
terior, since every nonzero field produces a posi-
tive electromagnetic-energy density, but that must
vanish in flat space-time. In the exterior metric
(3.1) the electromagnetic field is known® to be of

exact Coulomb form in the coordinate p,
F'9'=0 (i',j'#1, 4), F*Y=q/p?. (3.25)

Applying to F''/' the tensor transformation corre-
sponding to the coordinate transformation (p, 6, ¢, )
-~ (x,v, 2, ), and then lowering indices, we find, to
first order in k&,

A
. X N 2a
Fi; =0 (i,j#4), FM:‘17—3<1—7+ BTE’).

(3.26)

The 4-current associated with this field is, to

first order in &,
Ji=(4nV=g )" (/=g FY)
=(@m ™ (1 =N/7)(gx"/r)H(r - a)] 0}
=(q/41a®)(1 -=N/a)b} d(r - a) . (3.27)

The stress-energy-momentum tensor of the shell,
which is determined by reading Einstein’s field
equations ‘“backwards,” is, in zeroth order in %,
given by

TY =74 8(y —a), (3.28)
with energy density
2
m q
L T we (3.29)
and tangential stress
Too_ __Tso __q°
T a® T a®sin®0 167143’ (3.30)

all other components being zero.!® The physically

required positive character of the shell density 7%

imposes the condition (3.19) on the shell radius. In
the limit 7**=0, we have x=1 and thus no red shift
between the interior and infinity.

IV. THE PERTURBED
ELECTROMAGNETIC FIELD

In this section we first derive the general equa-
tions which the linear perturbations H;;, Ji,, of an
electromagnetic field and its current have to satis-
fy. The unperturbed quantities E;;, J}O} , and the
linear perturbation of the metric, given by y;;, en-
ter these equations as known functions. We then
specialize these equations to stationary states in
which the unperturbed field E; is electrostatic,
obtaining decoupled equations for the electric and
magnetic components of H;; which are such that the
qualitative nature of the solutions can readily be
recognized. After these preliminaries, we solve
these equations for the electromagnetic Thirring
problem and describe briefly the resulting fields.

It is obvious from Egs. (1.2) and (1.5) that

H[,-,-'M:O. (41)

The perturbed version of Eq. (1.2a) is obtained
conveniently be rewriting that equation as

(AN -g /=g g"g" F;)) x=4nJ",
which simplifies in harmonic coordinates [see Eq.
(3.6)] to

gkl(giisz),k:4"Ji .

Differentiating with respect to the perturbation pa-
rameter k at k=0 and using the definitions (1.4),
(1.5), and (1.7), we obtain
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H* =4n(J(y) =iy + 7o) = 2E" 7
(y: :nij')’ij) . (4.2)

Similarly one derives from the law of conservation
of charge [or from (4.2)] the relation

J(kn.k:%?’.kJ(kow (4.3)

+,yii‘kEjk+,yjkEii‘k

In these and similar equations, indices are shifted
by means of the flat-space metric 7;;. (Note that,
since H;; is defined as the perturbation of F;; and
HY:=qnitp/tH, . HY is not the perturbation of F%.)

The perturbed curved-space Maxwell equations
(4.1) and (4.2) have the form of the ordinary Max-
well equations in flat space, expressed in inertial
coordinates; their curved-space origin shows up
in the fictitious y,;-dependent current on the right-
hand side of Eq. (4.2), which should only be re-
garded as a device for computing H;;.

Let us now consider stationary fields and assume
that J}O) =0, E»,=0. If we then put

By :=(Ery), O =d%y, (4.4)
By:=k(H,), B:=k(H,, Hy,, Hy), (4.5)
Joi=k@N), o0n):=kdty, (4.6)
T:=k(yy,), 4.7

and use U and V as in Eq. (2.1), we can write Egs.
(4.1), (4.2), and (4.3) in 3-dimensional vector no-
tation as follows:

V~_I§:0, VXE:47T(3(1)+0(0)v)+[ﬁ(0),vl,
(4.8)

Vx_é( ):0)
' (4.9)
A% ‘—E.(l) :477(0(1) —O'(o)trr) +2E(O) VU+T: VE(O),

v-J,=0. (4.10)

[The last term in Eq. (4.8) is the Lie commutator
(E(* VIV =(V-9)E, of E¢y and V, and the last
term in the second Eq. (4.9) is the trace of the ma-
trix product of I' and VE,.| These decoupled
equations for B and E(, exhibit the influence of the
gravitational potentials U, T/, and I" upon the mag-
netic and electric fields, respectively, as de-
scribed in the Introduction.

We now apply these equations to the electromag-
netic Thirring problem, in which 3(1) =0.

The Magnetic Field

Since V vanishes in the linearized Reissner-
Nordstrém metric, V in Eq. (4.8) has to be taken
from the Thirring metric alone. With o, =(g/4ma?)
X 8(r —a) and V from Eq. (2.7), we find immediate-
ly that the first effective current in Eq. (4.8) is
nothing but the convection current which would
arise if the charged sphere were rotating, relative

to the stationary frame of reference used so far,
with the angular velocity © defined in Eq. (2.9).
The corresponding magnetic field is well known; it
is given by

= { %qa"ﬁ (r<a)

R . (4.11)
qa’[(Q Ty F - 1r3Q] (r>a).

Outside the shell it is a dipole field of moment
14a°Q and inside it is homogeneous.

The second effective-current term in Eq. (4.8)
vanishes inside the rotating shell, and outside it is

[E(p, V]==gR}»°F, (FxQ)u?]
=3qR*r S (T x Q).

This represents circular currents flowing in the
sense of the shell’s rotation, and rapidly decreas-
ing with increasing distance from the shell. The
corresponding magnetic field,

Bl {—éqR"ﬁ (r <R)
| -3(R/a)*B' + 3qR% (- P)r2F - 10| (r>R),
(4.12)

is homogeneous inside the rotating shell, and out-
side of it the leading (»~°) terms constitute a dipole
field of moment —gR%? (see Fig. 1).

Inside and near the charged shell B! dominates
B'! by a factor ~R/a, and well outside the rotating
shell B'' dominates B' by a factor ~-3(R/a)®. The
total dipole moment of B! + B!! at infinity is —g&

x (R? - %a?).

In the limiting case of a point charge (a - 0), B!
vanishes, so that B!! describes the whole field.
This field was already obtained by Hofmann.?

FIG. 1. Field lines of the components B! (full) and

Bl (stippled) of the magnetic field induced by the rotat-
ing mass shell.
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The Electric Field

The perturbed electric field _E(O) +E(1) of the elec-
tromagnetic Thirring problem may be considered
as the superposition of the linearized Reissner-
Nordstrém field E, + Ef,, given by Eq. (3.26) and
the additional perturbation —E’)‘(ll) due to (a) those ef-
fective charges in Eq. (4.9) which arise from the
Thirring gravitational potentials and (b) that con-
tribution ¢/}, to the first-order perturbation o(,, of
the charge density which is not contained in Eq.
(3.27).

In order to determine ¢/}, we assume that each
element of the inner shell, identified by a range of
angular coordinates 6, ¢, carries a fixed charge
which does not change if the shell is surrounded by
the outer shell and if this outer shell is made to
rotate; in other words, we take the inner shell to
be an insulator and 6, ¢ to be material (Lagran-
gian) coordinates of that shell. Since the charge
element contained in the cell dxdydz at {=0 is dqg
=J%/ =g )dxdydz, or, with J*=:G6(r —a), dq
=6(V=g), .,a’sin6d6d¢, the above condition means
that 6(V—g ),-, must not change in the transition
from the linearized Reissner-Nordstrém solution
to the full solution with the outer rotating shell.

In the Reissner-Nordstrém solution we found
[see Eq. (3.27)] that

(V=8 )=
In the presence of the rotating shell we have
V- =( -£ ) Reissner-Nordstrom T % (6gu) Thirring
=1+N/y-2U,

=q/4ma®.

and therefore

N
(=)=t o+ 2 L) = 1y,

where

Vyi=7"2(x%+ y2 - 22) (4.13)

is a surface harmonic of second degree. Thus G
in the presence of the outer shell is determined by
6(1+x)=q/4rd? i.e.,

. _q N 2rM 2 2
o= 41ra (l—x)—4ﬂ(12[1—a R (L+55a%0Yy) | -

If we omit from this expression the Reissner-
Nordstrom contribution, we finally get the desired
charge density

O ==y (1+ s@°W?Y,) . (4.14)

Since in the Thirring metric (2.1) I'=0, the ef-

fective charge density in Eq. (4.9) is simply (1/27)
XE(O) VU [with U taken from Eq. (2.6)]. Adding to
it !}, we get the total charge density which gener-
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—-

ates E{}); it is given by
0 (0Os7r<a)

—qu
2na® R

(1+-—a w?Y,)6(r —a) (“at” r=a)

(2a®w?/157)Y, (a<rv <R)

(@R /r)[1+3(w®R*/¥))Y,] R<7).
(4.15)

The determination of the electrostatic field corre-
sponding to this charge distribution is a standard
potential problem. Using the identity

A=Y=+ D ~1-1)r~""%Y,,

valid for any surface harmonic of degree I/, one ob-
tains immediately one particular integral of Pois-
son’s equation for the source (4.15) in each of the
regions a<v <R and R <v. Since these, like the
source functions, contain only monopole and quad-
rupole terms, one is led to the followmg ansatz

for the potential ¢ belonging to the field E(l)'

(A+Br?Y, (0<v<a)
o= < C+r 'D+(rE+7v?F+7r™3G)Y, (a<v<R)
yPH+(r*K+7 L)Y, R<v).
(4.16)

Here A, B, C, D, F, G, H, K, L are constants to
be determined from the boundary conditions which
require ¢ to be continuous everywhere and 8¢/o67
to be continuous at » =R and to have a jump discon-
tinuity at » =a corresponding to the surface charge
distribution ¢/},. The constants

Hw? 2H

-k L =22
H=-kMq, E=35p, D="%

, K=LHw’R*
(4.17)
occur in the two particular integrals mentioned

above. Straightforward computation yields the
others,

We could now write down the field E{},=-v¢
everywhere, but we restrict our attention to its
values in the interior of the charged shell as per-
haps the most interesting. There the Reissner-
Nordstrém field vanishes and we obtain, from Egs.
(4.16), (4.17), and (4.18),
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4kM 2 _5£> )=
55a 1% (1— R (x,v,-22) (r<a).

-

B
E=Eq)=

(4.19)

This gravitationally induced quadrupole field is

sketched, together with the effective charge dis-
J

| o>

tribution (4.15) for the field Ei}, everywhere, in
Fig. 2.

The two invariants of the total field F;; (with dual
*F;,;) inside the charged shell can be obtained from
Egs. (3.26), (4.11), (4.12), and (4.19); they are, to
second order in &,

2 2
Lp (’%4 ia‘£> [g_‘; <1 , %) - %wz(l - g—@ (x2+_v2+4z2)], (4.20)
. 2 5 3a
-3Fy; *F”=%<E}g—4 g—;—)> wZ(l——§><1—E\) (r<a). (4.21)

This field is therefore neither purely electric nor
purely magnetic for any observer (the bivector F;;
is not simple), except at z=0; and for any ob-
server |B|>|E|.

The physical meaning of F;; everywhere can, of
course, be elucidated in a coordinate-independent
manner by studying the motion of test charges, but
we shall not enter into this.

V. DISCUSSION

We now discuss briefly the fact that, whereas at
first sight our magnetic field B! seems to be in ac-
cordance with Machian expectation (“Mach-posi-
tive”), it is in fact Mach-negative or, at best,
Mach-neutral. However, we also show how a
Mach-positive result can be extracted from our
results. Finally, we make some remarks on the
perturbation of the electric field.

The Magnetic Field

We know from the solution of the Thirring prob-
lem that the inertial frame S’ inside the large
shell rotates, relative to infinity and in first or-
der, with the Thirring angular velocity —Q. Rela-
tive to S’, therefore, the inner shell rotates with
angular velocity +§2, and we thus expect to find in
S’ a magnetic dipole field of moment %qazﬁ and an
electric Coulomb field of strength g»~%. But when
one transforms such a field, by a rotation of co-
ordinates, to the frame S which is at rest relative
to infinity and in which all our calculations are
made, one does not even approximately get the
field which we found. This is most easily seen on
transforming the expected field in S’ at a typical
point of the equatorial plane by a local Lorentz
transformation to S.

It is possible that our Machian expectation was
too indirect. A version of Mach’s principle applic-
able to situationsinvolving electromagnetic charges
should perhaps be formulated without mention
of fields and only in terms of directly observable
entities like mass, charge, and motion. One rea-

sonable formulation might be as follows: ‘““All that
should matter in the determination of the motion of
a charged particle are the masses, charges, and
relative motions of all the bodies in the universe.”
But even in this sense our solution of the electro-
magnetic Thirring problem appears to be Mach-
negative. Consider a charged shell rotating at an-
gular velocity —® within a stationary shell repre-
senting the whole universe. Then there will be, at
least locally, a magnetic dipole field of moment
-1qd*® and an electric Coulomb field of strength
qr~?, relative to the stationary universe. The ini-
tial motion of any test magnetic monopole released
from rest will be entirely determined by the mag-
netic field. A Mach-equivalent situation would be
one with the central shell at rest, the “universe”
rotating around it at velocity @, and the test mono-
pole released from vest with vespect to the uni-

+

+

FIG. 2. Effective charge distribution for the electric
field EI&) induced by the rotating mass shell, and field
lines of EI(II) within the small shell. The rotation-inde-
pendent Coulomb-like field is not included here.
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verse. If the outer shell is, in fact, just a shell
and not the whole universe, and if the remaining
universe is, in fact, at rest beyond it, we expect
from Thirring’s solution that the gravitationally
effective angular speed of the universe relative to
the inner shell is £. Thus test monopoles released
from rest relative to a frame rotating with angular
velocity § around the charged sphere in the elec-
tromagnetic Thirring problem should experience
the same accelerations relative to this frame as
they would when released from rest at correspond-
ing points in an inertial frame in the field of the
same charged shell rotating at angular speed -Q.

But this expectation turns out to be true only for
particles released (a) on the rotation axis or (b)
anywhere inside the inner shell. Consider a typical
point befween the shells, say on the equatorial
plane at distance » from the center, and let a mag-
netic monopole be released there with equatorial
velocity -7 in the sense of the rotation of the
inner shell. At the point in question, the predomi-
nant magnetic field B! is —¢a®Q/3»® in the direction
of the rotation axis and the predominant electric
field E, is ¢/7? in the radial direction. A magnet-
ic monopole released at equatorial velocity -Q»
therefore experiences an acceleration —(q2/v)
x[(a®/3v?) — 1] in the axial direction, and this is not
even close to the acceleration —gQ2a®/3r® expected
on Machian grounds.

The question remains why the exact magnetic di-
pole field, as expected on Machian grounds for the
dragged frame S’, should in fact arise in the
“wrong” frame, S. It is possible that in order to
obtain a true Mach equivalent of the system con-
sisting of a small rotating charged shell and a con-
centric spherical fraction of the universe, it is
necessary to represent that fractional universe by
a mass shell rotating around the charged shell and,
in addition, by a sink at infinity®! (for the electric
field lines) which rotates at the Thirring fractional
angular velocity corresponding to the mass shell.
Still, even if it may lack true Machian interest
(i.e., be “Mach-neutral”), the situation discussed
by us is the one relevant to possible experimental
checks of the general-relativistic influence of ro-
tating matter on the field of a charged shell. One
could, however, compromise with a realistic ex-
periment consisting of a pair of concentric spheres
of unequal radii, carrying equal and opposite elec-
tric charges,?? and then the need for a sink at in-
finity would not arise. Furthermore, without ad-
ditional labor we can deduce from our results that
in the double-shell experiment the right dipolar

magnetic field would arise in the 7igh! reference
frame S’. For in the linear approximation electro-
magnetic solutions can be superimposed, and thus
the magnetic field due to the two charged shells in
the frame S is the resultant of their two separate
magnetic fields, while the electric field lacks a
zeroth-order component except between the shells;
however, as is clear from the standard Lorentz
transformation of the electromagnetic field, only
a zeroth-order electric field in S can cause the
first-order magnetic field in S’ to differ from that
in S, and thus our assertion is established.

The Electric Field

It is clear from our derivation that the field
(4.19) is due to the quadrupolar gravitational field
inside the rotating shell. This field can be under -
stood as the Newtonian gravitational field due to
the mass-quadrupole moment which the rotating
shell possesses by virtue of the special-relativistic
mass increase of its moving parts, as indicated
already by Thirring! and elaborated by Bass and
Pirani.!' In fact, it is easy to see that if, follow-
ing Bass and Pirani, we modify the rest-mass
distribution of the rotating shell so that its rela-
tive mass (with respect to the inertial frame at
infinity) is independent of position, then the elec-
tric field inside the charged shell vanishes. Also,
it is clear that the charged shell will be intrinsi-
cally spherical, as judged by the total metric to
first order in &, if the rotating shell has no mass-
quadrupole moment; otherwise it will be an oblate
spheroid and therefore would have an electric-
quadrupole field in its interior according to ordi-
nary electrostatics. Should one, therefore, con-
clude that the field (4.19) is of no real interest
since it can be understood without general rela-
tivity? We think not, for the combination of spe-
cial relativity (mass increase), Newtonian gravi-
tation theory, and Maxwellian electrodynamics
used in the above argument, though plausible, is
not a consistent theory, whereas the Einstein-
Maxwell theory is consistent; it is therefore use-
ful to have one more (physically interpretable)
solution of the latter theory, irrespective of
whether or not some of its features can be made
plausible in an apparently elementary way.

In conclusion, we remark that the fields B' and
B! are unchanged if, instead of allowing the inner
shell to affect the metric, one treats it as a test
shell. The field fil(l), however, arises only from
the non-test character of the inner shell, and the
field El!) is affected by it.
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A formula is derived for the mass of a black hole as a function of its “irreducible mass,”
its angular momentum, and its charge. It is shown that 50% of the mass of an extreme charged
black hole can be converted into energy as contrasted with 29% for an extreme rotating black

hole.

The mass m of a rotating black hole can be in-
creased and (Penrose!) decreased by the addition
of a particle and so can its angular momentum L;
but (Christodoulou?) there is no way whatsoever to
decrease the irreducible mass m;, in the equation

E:—pP=m®=m, 2 +L%/4m; ? (1)

for the mass of a black hole. The concept of re-

versible (m;, unchanged) and irreversible trans-

formations (m;, increases), which was introduced

and exploited by one of us to obtain this result, is

extended here to the case where the object also

has charge, to yield the following four conclusions:
(1) The rest mass of a black hole is given jn



