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A nonperturbative method presented earlier for the interaction of electromagnetic radi-
ation with bound quantum systems is refined and extended. A general T matrix is derived
which is valid for arbitrarily high field intensity, subject to certain conditions on the fre-
quency of the electromagnetic field. An example is done in detail for a ls-2s transition in a
hydrogen atom. It is shown that after a perturbative low-intensity region, the transition am-
plitude experiences oscillations which pass through zero as the field intensity increases.
Qualitative arguments are also given to show why this is to be expected, and why it is inex-
plicable in perturbation theory. It is found that high-order processes are more important
than low-order processes when the intensity is high, and in the hydrogen-atom example it
is shown that the transition amplitude has peaks as a function of the order of the process.
However, for sufficiently high orders, it is shown that there is an eventual exponential de-
cline in the transition amplitude as the order of the process gets very large. Simple results
are obtained for the low-intensity limit with any number of photons and for the high-intensity,
large-photon-number limit. The last result should be useful, for example, in calculating
optical transitions caused by intense microwave radiation.

I. INTRODUCTION

The purpose of this paper is to refine and extend
considerably a general, nonperturbative, analyti-
cal method in electrodynamics. " The principal
aim of the method is to provide a means of calcu-
lating transitions in quantum systems subjected to
electromagnetic fields of arbitrarily high intensity.
Within certain constraints involving the frequency
of the field, this aim can be accomplished. The
formalism is developed in this paper and applied
to a simple example of a hydrogen-atom transition.
Further applications will be presented in later pa-
pers.

The justification for the method is given in I.'
In essence, it involves a unitary transformation
(a momentum translation) which approximately re-
moves the electromagnetic field from the problem
when the energy of a single photon of the field is
small as compared to characteristic transition en-
ergies of the bound system under consideration.

The transformation is simply

4 (x, t) = exp(ieA .x)C (x, t),
where A is the vector potential of the electromag-
netic field, taken to be an external plane-wave
field. We set 8 = c= 1 in this paper, and use a
gauge with A'=0 and V A =0. If, in Eq. (I), 4 is
the wave function for the system with no external
electromagnetic field, then 4' is the approximate
solution with the field present. Conditions for va-
lidity of the approximation are

and

cu/E« I

eaa (&u/E) « I,

(2a)

(2b)

where co is the frequency of the electromagnetic
field, a is the amplitude of A, F. is a characteris-
tic energy of the bound system, and ao is the "size"
(e.g. , the Bohr radius in the case of an atom) of
the bound system.
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One can also view the "momentum translation"
approximation as a gauge transformation of the
second kind, given by

A"-A" =A" +S~W, e -e =e-"'e,
with

A=A x=-A„x" .

The index notation of these expressions is relativ-
istic, with a time-favoring real metric. In the
new gauge we have

A=-(VA, )x, , A'=(a, A, )z, = S.x, (3)

where S is the electric field vector. Thus the
transformed A" involves only derivatives of the
original A" potential. Throughout this paper we
shall take the electromagnetic field to be a plane-
wave field of wavelength long as compared to the
size of the bound system. We shall use explicitly

A =a& cos(k x —~l) =ac cos~l

with 7 the polarization vector and k the propaga-
tion vector of the field, where ~kj =&a. Derivatives
of A are of the order of magnitude of ~ times A.
Thus, from Eq. (3), the order of magnitude of the
components of A" is given by ~ap times the magni-
tude of A. The condition soap«1 is very well satis-
fied even when ~/E = l. When ~/8 «1, a.s we re-
quire here, then map is extremely small. Thus the
effect of the gauge transformation is to replace the
field A by a transformed field of much smaller am-
plitude, albeit at the expense of introducing A'10.

The dimensionless product eaap constitutes an
intensity parameter for the electromagnetic field
with respect to the bound system of radius ap. The
square of this parameter has a simple physical in-
terpretation, since'

(4)

(-,'eaa, )'= pn, a, -=z,

where p is the density of photons; a is the photon
wavelength; and X., is the electron Compton wave-
length, X, = 1/m. Thus, the parameter z gives the
number of photons contained within an interaction
volume XX,ap, characteristic of the radiation, the
interaction length of the electron, and the size of
the bound system. The parameter z is such that
z «1 for most situations. However, z &1 is pos-
sible in certain environments, such as the focus
of the output of a large mode-locked laser. It will
be seen below that when z «1, only lowest-order
photon processes need be considered, whereas
when z =1, higher-order processes can be compet-
itive with the lowest-order process. When z» 1,
the lowest-order process can become relatively
unimportant.

It is desired to apply the momentum-translation
approximation of I to electromagnetic environments

with arbitrarily large values of eaap. From Eq.
(2b), it can be seen that this is possible if &u/E is
sufficiently small -thus satisfying (2a) as well.
Subject to the restrictions (2a) and (2b), the mo-
mentum-translation approximation is applicable to
the case of arbitrary intensity, but the results giv-
en in I for the example of 1s-2s transitions in hy-
drogen were in the form of an infinite series in z
with radius of convergence z & (-,')'. Hence, an in-
finite-series result of this sort is useless for the
case of arbitrarily high intensity unless an analyt-
ic continuation can be found. The results of such
an analytic continuation for the 1s-2s problem in
hydrogen were given in II.'

In this paper the momentum-translation method
of I is recast in such a way that closed-form ana-
lytical results can be achieved without the appear-
ance of a power series in the intensity parameter.
The formalism is established in Sec. II. Section
III contains the application of this formalism to the
1s-2s transition in hydrogen. An examination of
the behavior of the transition amplitude in the hy-
drogen-atom example for a wide range of values of
field intensity, and analytical approximations for
the limiting cases of small intensity and of large
photon number combined with high intensity, are
given in Sec. IV. Finally, Sec. V is a discussion
of some of the more interesting qualitative features
which emerge. For instance, it is possible to ex-
plain qualitatively why peaks appear in the transi-
tion amplitude as a function of intensity. That is,
although it is obvious that the transition probability
should increase as field intensity increases from
zero, it is also possible to understand why, after
a certain intensity is reached, further increase of
intensity causes the transition probability to de-
cline.

II. T MATRIX

The S matrix which gives the probability ampli-
tude for a transition from a state 4,. at l= -~ to a
state 4& at t=+~ is

Is-&),, =- I stcs„s s, I,

where H' is the interaction Hamiltonian which
causes the transition, the 4 wave functions are
solutions for the case where H' =0, and the 4 wave
functions are solutions in the presence of the full
Hamiltonian H=H, +H'. The 4', which appears in
Eq. (6) will be replaced by the approximation of
Eq. (1).

A crucial stage in the calculation is the introduc-
tion of the approximation

(C„H'e"" "C,) =(Z, -E,')(4„e""'"C,)
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which is developed in I. The presumption is made
throughout that H, is time-independent, so that the
4 functions represent stationary states with well-
defined energy eigenvalues. The approximation in

(7) follows from neglecting the second term on the
right-hand side in the commutator expression

[ H et'eA x j ygeieA ~ x+ei Azx[ H e(8 A) . x]

where H, is given by Eq. (12) of I. The condition
required in I to justify the neglect of the last term
in Eq. (8) above is not the most straightforward
and not always appropriate [see Eq. (32) of I]. A

more appropriate condition is simply to require
that the magnitude of Hz —e(8,A) ~ x be small a.s
compared to the magnitude of H'. The dominant
term in H, -e(B,A} ~ x is em '(8, A,.)x,p, . First we

will compare this with the usual em 'A ~ p term of

H'. The order-of-magnitude effect of taking a de-
rivative of A is to multiply it by v. In a bound sys-
tem, the coordinate x is confined to a region of the
magnitude of ap. The ratio of the order of magni-
tude of em '(8, A,.)x,P, to that of em 'A p is sim-
ply nap. As before, we know that ~ap «1. Hence,
the second term on the right-hand side of (8) is ex-
tremely small as compared to the first term. The
only possibility we have not accounted for here is
when em 'A p is not the dominant term of H'; that
is, when

I
e'A'/2mI -

I
eA P/ml.

This will happen when eaap ~ 1. In these circum-
stances, Eq. {32)of I is the appropriate constraint
to use, and it gives a condition even less stringent
than map«1. Hence Eq. (7) is an excellent approx-
imation in all circumstances.

Equation (6) can now be written

(s —r}„=-(x,— )x( zf zte pI (zp ix)& o

where Eq. (4) and 4 (x, t) = p(x)e 'e' have been used.
The integral over time in Eq. (9) will yield an en-
ergy -conserving 6 function immediately if the rela-
tion

eiz role P iN eius d (e)
N= -~

is used. The time integral then becomes

= 2v Q i "J„(e xa~ e)5(E& —E, +N~) . .
N=-~

(11)
With the replacement N- -1V, and the relations
& „=(-)"d„, (-i) "=i, the right-hand side of
Eq. (11) can equally well be written as

the potential A. However, in most situations the
energy difference between initial and final states
of the bound system cannot be matched by any in-
tegral number of photons of energy co. The 5 func-
tion in (12) would then cause the transition proba-
bility to vanish. Under these circumstances, tran-
sitions can occur only if another electromagnetic
field appears in an emission process, or is pres-
ent in an absorption process. We will take this
field to be a low-intensity, plane-wave field of fre-
quency ~, described by the vector potential X.
This additional field can be accommodated in the
formalism by the substitution

eA ~ x- eA x+ eA ~ x

in Eq. (7), where we take

cog(eax ' E) 5(Et —E, —N(d) .

We shall simply select that form of Eq. (11) which
leads to a positive value of N upon application of
the 5 function. For a process corresponding to
emission or absorption of N photons of energy ~,
we have

X = ae cos(~t+ o),
and a is a displacement in phase between the A
and A fields. A is to be retained to first order
only, and so instead of employing Eq. (10) for the
A field we use instead the expansion

exp[i eax ~ e cos(et+ a) j = 1+ —,'tea% ~ e e't"'+ ~'

(S —1)~",. ' = -2~i'(E~ -E, +N(u}i" (E, E~}-
&&(Q&, J„{eax~ &)p&) . (12)

P

+-,'ieax ee-' '+ '

As conventionally defined, the T matrix is then
given by

Tz; =i"(E; —Ez)(pf, j„(eax ~ Z}&j&,) .

The above results hold when the only electromag-
netic field present is the intense field, defined by

(14)

The first term on the right-hand side of Eq. (14)
leads to the same result as if no A were present,
and has thus already been considered. We address
ourselves only to the remaining two terms. The
analog of Eq (11) is now.
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J
Oo

dtexp[i(E& —E,)t+ieax ~ e cos&ut+ieax ~ e cos(ut+tn)]

=nieax ~ re' g i "J„(eax~ Z)5(E& —E, +Nv+&i))+nieax e~e ' Q i" J„(eax ~ e)5(E —E,. yN~- ~).

Hence for a process involving absorption or emis-
sion of N photons of energy co, and absorption or
emission of one photon of energy ~,

(S —1)f",. ' ' = 2ns-5(E& —E, +N&u+ &u) ~
i"' '(E, —Ez)

x e""(ea)()t)f, x ~ e J„(eax e))t), ), (15)

which yields the T matrix

T', ", "=-,i"''(E, -E~) e" (ea)(Qi, x e J„(eax Z))t),).
(16)

III. APPLICATION TO HYDROGEN ATOM

The object now is to calculate the T matrices of
Eqs. (13) and (16) when )t), , 4)z are solutions of the
hydrogen-atom problem. A constraint on the ma-
trix elements follows immediately from parity con-
siderations. With P as the parity operator, we
have PQ = (-)')t) and PJ„(eax ~ e)P '=(-)"J„(eax ~ e),
so that

even integer, we see that N and the index l always
have the same parity.

If either l,. =0 or lf =0, the sum over l in (20) re-
duces to a single term. We shall calculate the
special case of transitions between the 1s and 2s
states in hydrogen, so that l, = l~= 0. Equation (20)
simplifies to

)),, ' ""')-) J"*,d=s„) )R„) )j,)e ~ e).
0

This integral can be evaluated to give

()t)z, e'"""" )t);) =&W2(z)'y' sin'8(1+y' sin'6) ',
where we have introduced the definition

=2
y = —, eaa0. (21)

The energy difference between the 1s and 2s levels
1s

3 1
E; —E~=+—

8 ma02 '

and

(y„J.y, ) = (-)""i"'(y„J.y, ) (17) where the ambiguous sign arises from the fact
that we have not specified which state is initial
and which final. The T matrix of Eq. (13) is now

()t)q, x e J„)t),. ) = (-) '"'f")
()t)q, x ~ e J„)t),.), (18)

where l is the angular momentum quantum number.

A. Problem with Intense Field Only

2 3 2
T(N) + P ~2 y

m Q0'

2r
x d8e 'nesin'8(1+y'sin'6) '.

0
(22)

First we consider the single-field problem given
by Eq. (13). The integral representation

2'F

J„(eax ~ e) = — d8 exp(-iN8+i eax e sm8)
27T 0

(»)
gives rise to a matrix element whose angular and
radial parts can be separated conveniently. The
matrix element is ()t)z, e'"r' ""e)t),.), which from
Eq. (38) of I is

()t)~, e"'"' ""e)t);)=P (2l+ l)i' [(2l;+1)(2l~+1)]'"
1=0

000 Om, -m,

x r'dr R~(r)R, (r)j)(ear sin8) .
0

(20)

The properties of the Wigner 3-j coefficients give

l+ l, + lz-—even integer, i l, —i&i - l - l, + lz.

Since, from Eq. (17), N+ l, + l~ must also be an

The integral in (22) can be rewritten in a conve-
nient fashion as

I
27r

d6e 'n y'sin'6(1+y'sin'8) '
0

2 fr

d6e '" (1+y'sin'8) '
0

~

~

27r

d8 e ' (1+y' sin'8) ' .
0

(23)

Integrals of the type on the right-hand side of (23}
are evaluated in Appendix A. The integrals vanish
unless N is even, which is consistent with Eq. (17}
with l, = lz = 0. With Eqs. (A7) and (A8) from Appen-
dix A inserted in Eq. (23), and (23) substituted into
(22), the T matrix is found to be

(„) .„W2 1 1 y
3' ma ' B'" B'"+10

x[B +NB'" -(N2 —2)B —3NB'" -3],
(24)
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with B defined as B=1+y'. This result corre-
sponds to Eq. (46) of I with the observations that

y = 3eaa0 and that the N used here was denoted 2n
in I. The T matrix in I is given as a power series
in y' with a radius of convergence y'(1. Equation
(24) makes clear the reason for this radius of con-
vergence. It arises from the essential singularity
at B=o, i.e., at y = -1. Because y = -1 is in an

unphysical region, Eq. (24) gives the analytical
continuation of the results of I to arbitrary real,
positive values of y' —i.e. , Eq. (24} holds for any
intensity, no matter how large, as long as the con-
ditions (2a), id/E «1, and (2b), y a)/E«1, are
satisfied.

The fact that (24) does exactly correspond to Eq.
(46}of I can be verified either by development of
Eq. (24) in a power series in y', or by performing
the analytical sum of the result of I. The latter
procedure is accomplished in Appendix B.

B. Combined Intense and Weak Fields

In most physical problems an integral number
of photons from the intense field will not be reso-
nant with the transition energy of the bound system,
so an evaluation of Eq. (16) for hydrogen is more
interesting than (13). For the l; = lf =0 case, we
note that Eq. (18) requires N to be odd. We again
employ Eq. (19) and find that

(st)zy x ~ eJ„(eax ~ e)s)), )

dge-i (&))& x. e eseax ~ esines() )
0

(25)
where the matrix element on the right-hand side
can be written

(~ X &
eieax e sin6~ )

=ie ~ e r'drR~(r)R„(r)j, (ear sing)
0

as shown in the Appendix of I and in Eq. (49) of I.
With hydrogenic wave functions substituted, the
result is

(QXeeseaxe sine&)
= i e ~ eanl6&2 (-', )'y sing

x [-, (I+y'sin'8) ' —(1+y' sin'8) e].

(26)

Equation (16) together with Eqs. (25) and (26) gives
3

Tys "=+e" i""(Ei E~)e ~ e y16v 2—
3 4m

q ~g 2 y slQ6) y s1Il6
s is+y's' 's)' is+y' ' 'e)')

(27)

with y defined in a fashion analogous to y as y

3e aa 0 ~ The integrals of Appendix A can be em-
ployed again. The combinations which occur fol-
low from the fact that

e-ss)e sing= (2i) s(e i" s)e —e ' "+s)

along with the knowledge that N is odd here. Ap-
pendix A gives results where the exponents in the
integrals are of the form e"" . Equation (27) to-
gether with (A8) and (A9) yields the result

AWA N
T(pr, y) ~tn g+y

Z23 ma B' B' + 1

X[NB ~ +NnB N(Nx 7)Bx~n

—6(N' —2)B —15NBs)x —15] . (28)

This is the result that was employed in II. It cor-
responds to Eq. (54) of I in the sense of being an
analytical continuation of that earlier result. This
can be demonstrated either by an expansion of (28)
in a power series in y' or by performing a closed-
form sum of Eq. (54) of I following the method de-
veloped in Appendix B.

In discussing the physical implications of Eq.
(28), we shall consider small values of N (like 1,
3, 5, etc. ) as well as large N. Since we must have
&a)/(E„—E„)«1, a small value of N implies either
that we are considering induced emission from the
2s state with most of the energy carried off by a
photon of energy M E2 Ey -Ncu, or else we are
considering excitation of the 1s level in the pres-
ence of an A field as well as an A field, where the
energy of an A photon is as stated above. If N is
large then we can consider as well processes
where, for instance, Hw exceeds E~ -E„, and an
~ photon is emitted into the final state of a 1s-2s
excitation.

IV. GENERAL BEHAVIOR AND LIMITING CASES
FOR THE HYDROGEN PROBLEM

A. Intensity Dependence in ¹1Case

Some of the general properties we wish to em-
phasize can be illustrated in simple fashion by the
N = 1 case of Eq. (28). We shall deal only with that
part of (28) which refers to the intense field. For
this purpose, we introduce a "reduced" transition
amplitude:

1 N

+ 6(N' —2)B+ 15NB' '+ 15]

(29)

The coefficient and the sign of (29) are chosen to
be consistent with the notation of II. With N=1,
Eq. (29) reduces to
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='(y/8B7~2)( —B2 —QB+ 15) . (30)

„(2B'+21B —120B+ 105) = 0.d 1

The cubic in Eq. (31) has one negative (unphysical)
real root and two positive real roots in B corre-
sponding to y =0.341 and y =1.475. Since V', clearly
approaches zero as B approaches infinity, the qual-
itative picture is now complete. ~, increases from
zero at y = 0, reaches a maximum at y = 0.341,
passes through a zero at y=0.948, has a minimum
at y= 1.475, and then approaches zero asymptoti-
cally as y- ~. All this is illustrated by the X=1
curve in Fig. 1, which gives the results of a nu-
merical computation of Eq. (30). Figure 1 also
shows results for other N values derived from
Eq. (29).

The over-all conclusion to be drawn from the
foregoing is that the transition amplitude obtained
here is profoundly different from anything that per-
turbation theory would predict. A perturbative
transition amplitude would start at zero for y = 0,
but would have no extremum and certainly no other
zero values as intensity increased. Perturbation
theory predicts what seems intuitively reasonable
-as intensity increases, so does the transition
probability. Yet we see here that there are inten-
sity regions beyond each of the extrema where an
increase in intensity actually leads to a decrease
of transition probability. At this point we limit
ourselves to pointing out that higher-order pro-
cesses become important in those regions where

0.2

O. I

Equation (30) has a. zero at y = 0 and at two other
values of y which follow from the solution of the
quadratic in Eq. (30). One solution gives a nega-
tive (unphysical) result. The other solution corre-
sponds to a zero in V', at

v = 2[(-')'" —1]'"= 0.948 .

Extrema can be found from

the N = 1 process is declining, so that other chan-
nels compete in the transition. In Sec. V of this
paper this issue will be discussed in a more sub-
stantial way.

B. Low-Intensity Limit

The low-intensity case is described by y-0 or
B- 1. Equation (29) then reduces to

&» - 8(-,' y)"(++3)(++1)'.
Equation (32) shows the y» behavior characteristic
of perturbation theory. This behavior is evident in
Fig. 1, where the ¹1curve starts linearly, the
N=3 curve starts as a cubic, etc. However, for
a.ll ot' its simplicity, Eq. (32) has a great deal of
content, especially for large values of N. In any
but a first-order perturbation calculation, sums
over intermediate states occur which are notori-
ously difficult to carry out. Equation (32) gives a
simple, closed-form approximation for such inter-
mediate-state summations for any order N for the
1s-2s transition in hydrogen. ' Since we must have
y«1 for Eq. (32) to be valid, the transition ampli-
tude diminishes as N increases, but the factor cu-
bic in N tends to give greater importance to high-
order processes than one might expect.

C. High-Order, High-Intensity Limit

The case where N and B'" are both large is par-
ticularly interesting to analyze. One reason is
that it is a domain completely inaccessible to per-
turbation theory. Another reason is that the re-
sults for this case can be analyzed in some detail,
and seem to be reasonably accurate over a very
broad range of values.

An essential step in this case involves the factor
in the T matrix which is raised to the power N,
that is,

]+B
(33)

Since we wish to consider both N and B'" large,
we set

N=Q

N=7

2 -- 3 ~ 4

N =PgP»

We can then write (33) in the suggestive form

(34)

-0.1—

FIG. X. "Reduced" transition amplitude V as a func-
tion of the intensity parameter y for several values of
the photon multiplicity N.

Q'~'+1 N 2 N 2

Hence, when we take the large-N limit, we have

1-N 2 1+N 2

Thus we shall employ the approximation
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N
N/B ~f

B" +1 =e (35)

p = -', (1+W5) = 1.618 . (37)

Extrema as a function of P can also be found readi-
ly from Eq. (36). We find that

—[e '(p' —p' —p)]=e- (-p'+4p' p —1},—
ap

so that extrema are located at the solutions of the
cubic

P' -4P'+0+1=0
The solutions of (38) are p= -0.38, 0.73, 3.65.
The first of these solutions is unphysical. Hence
extrema occur when

P = 0.73, 3.65 . (39)

Figure 1 shows that Eqs. (37) and (39) give reason-
ably accurate predictions for those zeros and ex-
trema shown in the figure which involve relatively
large values of N and B'

The predictions we obtain here are more striking
when the reduced transition amplitude is plotted as
a function of N, as in Fig. 2 (where we make the
convenient presumption that N is a continuous vari-
able, even though only odd integer values of N are
physical}. Just as perturbation theory is unambig-

.08

.04

-.02 L

=5
y=l0

I ! I AA PAN I r --T--+-WV:1
K I I I I I I I I I

9 l7 25 N 4I

FIG. 2. "Reduced" transition amplitude f' as a func-
tion of photon multiplicity N for several values of the
intensity parameter y. The multiplicity N is regarded
as a continuous parameter for convenience. Only odd-
integer values of N are physical.

in Eq. (29). If in the square bracket in (29) we

count N and B'" as quantities of the same order,
we find that the highest combined order is six (e.g.,
as in NB'" or N'B' or N3B3S). Thus we achieve
the result

(8 gP/2)-1 e N/B -( NB5/2 N2B2 + N3B3 Q)
N

It is convenient to express this in terms of the pa-
rameter P of (34), whence we obtain

q' (8Bl/2)-1 e-B (P3 P2 P)

Equation (36) leads immediately to the existence
of roots at P =0, —2'(I +v 5). The only one of these
roots which is physical and consistent with the
restrictions that N and B'" are large is

uous about predicting increasing transition proba-
bilities with increasing intensity, so also perturba-
tion theory is quite clear in forecasting that low-
order allowed processes dominate higher-order
allowed processes. Figure 2 shows such behavior
only for the y=0. 1 case. For the higher intensities
shown in the figure, some process more complex
than the simplest becomes dominant. The features
of one zero and two extrema indicated by Eqs. (37)
and (39) are clearly shown by the curves in Fig. 2

for y=5 and y=10, and the explicit predictions of
(37) and (39) are very accurately borne out by
these two curves.

V. DISCUSSION

The example of the ls-2s transition in a hydro-
gen atom presented here is an analytically simple
case intended primarily to illustrate novel qualita-
tive features which are obscure or totally absent
in a perturbation treatment. An important point is
that perturbation theory has served for a long time
as a reliable guide to the intuition. When intense
electromagnetic fields are present, we now see
that the old intuitions are totally misleading. Some
of the behavior we have discussed is specific to the
1s-2s transition in hydrogen, but most of the novel
features we have emphasized are of general appli-
cability.

A major new feature which is quite general is
the relative importance of high-order transitions.
The appearance of peaks in the transition proba-
bility for certain values of N when intensity is high
is not a universal characteristic; but a trend to-
wards "flatness" of the transition probability as a
function of N at high intensity is true in general.
Thus the notion of low-order dominance fails en-
tirely at high field intensity. However, as photon
multiplicity gets large as compared to y, there is
an eventual exponential decline in transition am-
plitude, as exemplified by the e x(p-N //'B)/2factor
(or e ) in Eq. (36).

Other general nonperturbative characteristics
appear in the intensity dependence of the transition
amplitude. One general feature is the eventual
trend towards zero of the transition amplitude as
the intensity becomes very large. This effect can
be thought of as a depletion effect, since if one cal-
culates the projection of the momentum-transla-
tion wave function onto the corresponding unper-
turbed wave function, the projection oscillates in
time but gets progressively smaller on the average
as y-~.

Another aspect of the intensity dependence which
appears to be universal is the occurrence of a peak
in the transition amplitude as a function of intensi-
ty. It is possible to see in a qualitative way why
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this should happen. Consider the matrix element
which appears on the right-hand side of Eq. (7).
If there is no applied electromagnetic field (A =0),
then

since we consider nontrivial transitions. If the
field is weak, we can expand the exponential con-
taining the field and obtain

(4f, e""'"4)= (4~, 4()+(4~, ieA x4(~ ), (40)

where the first term is zero and the second term
is the usual first-order dipole matrix element.
Clearly, the right-hand side of (40} can never ex-
hibit extrema as a function of

~ X~ (i.e. , as a func-
tion of y). However, the left-hand side of (40) has
an oscillatory factor which yields a zero result
when y=0, and could conceivably lead to an ex-
tremum when y is such that in some average sense
eX x=w/2. We might then expect a zero result
again when eA x = m. These statements do not
have a well-defined meaning, since e"" " occurs
within a matrix element which implies an integra-
tion over the x variable. However, a qualitative
view is still possible. If we consider the N=1
case in the 1s-2s transition, the integrand of the
radial integral involved in the matrix element has
a form as shown in the equation following Eq. (25).
The factor r'R„R„goes to zero at r=0 and r =~
and achieves its largest values between about r = ao
and r =4g, . As a crude approximation, we shall
set )i (

= r = 2.5a, . If we substitute )x [
= 2.5a, in

eA x = v/2, we find y = 3eaa, = v/7. 5 = 0.4. This
value is consistent with a large contribution from
the j,(ear sin8) function in the radial integral, so
we should not be surprised then to find that y =0.4
is a result which roughly approximates the location
of the peak in W, as a function of y already found to
be at y =0.341. The essential point we are trying
to establish is that in contrast to the case of ordi-
nary intensities where perturbation theory would
be valid, and where ~A~ is sufficiently small that
the phase of e""'" is a monotonically increasing
function of the intensity, for high intensities e"""
can exhibit its oscillatory properties which can
then introduce features such as peaks and zeros in
the transition amplitude as a function of intensity.

The large N, large-y -(large-B'") results ob-
tained are of very simple form and should have
practical application to a type of problem to which
very little attention has been paid -a problem in
which multiphoton quantum transitions are caused
by electromagnetic fields which can normally be
considered entirely classically. To give a very
specific example, consider microwave radiation
of 1-cm wavelength. Each "photon" of such a field
carries only about 10 ~ eV of energy, and so some-

d6) e'"e
APPENDIX A: EVALUATION OF

P+ n sin'8

The parameters n, P are taken to be real and
positive, m is a positive integer, and j is either
a positive or a negative integer. Results will be
required for arbitrary n, P, j (subject to the con-
straints already listed), and for m =1, 2, 3, 4.

First consider the case m = 1. We introduce the
transf ormation

z —e2i e

which leads to

d8 = dz/(2iz),

et2ge =z'

I

~, o. , 4 nP+nsin 6= ——z ——P+—z+14z n 2

We require here that j is a positive integer. If j
is negative, the appropriate transformation is
z=e ", which leads to the same final result,

~

~

do e'2~ e dz z
P+ n sin'8 n c (z —z,)(z —z, )

' (A1}

where the contour C is a circle of unit radius cen-
tered at the origin, followed in a counterclockwise
sense through an angle of 4m, and z„z, are the so-
lutions of

z' —2(1+2 n 'P)z+ 1 = 0, (A2)

z.e.,

z, , = (1+2n 'P) + [(1+2n 'P)' —I] ' ' . (A3)

The parameters a, P are such that z, and z, are
real and positive. Since from (A2) we know that
z yz2: 1, then zy + 1, z, & 1, where z„z, corre spond
to upper and lower signs, respectively, in (A3).
Therefore, z, is outside the contour and z, is in-
side. Only the residue at z, contributes. The re-
sult is

thing of the order of 10' such photons are required
to cause a transition in the optical domain. When

y is smaller than about 10', the probability of such
transitions becomes very small because of the
e ""factor. A value y =10' corresponds to an in-
tensity of a 1-cm microwave field of about 10"
W/cm'. Smaller values of y might still give detect-
able results. A value y= 10' corresponds to 10'
W/cm'.
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J dg e""
p P+ n sin'g

dg e'»8 2~ y

p 2g
0

(A5)

2i z2'
=—4m'

A 2 1=2, , 4 (1 —)- (1 —
)

—1

(A4)

Results for m = 2, 3, 4 can be obtained either by
repeated differentiation of (A4) with respect to P,
or by direct contour integration with the same
transformation that led to Eq. (Al). If the m =2
integral is done by contour integration, the result
analogous to (Al) is

As employed in the main text, the parameters
in the integrals are such that p=1, o.'=y', Ã=2j.
With the notation B=1+u=1+y', we find that z,
can be rewritten conveniently as

z2 = 1+—— 1+— —1 I/2

Another convenient form for z, is

y
2 (Bl/2+ 1)2

We thus find for the m =1 integral

f
2& dg et2j8 1 4 dz zj"

(!3+a sin'8)' 2i rz, (z —z,}'(z —z,}' '

(A6)

To evaluate the residue in (A6) at the z, pole it is
necessary to expand z'"/(z —z,)' in a Laurent se-
ries in (z —z, ) and select the term linear in (z —z,).
The final result is

r
dg e'2j8 2j

iB 2 B'/2

(A'I)

Results for m = 3 and 4 are

i2j &
lr

2
= 2l2 ll2 4'(3B'+ 3(2j)B' —'+[(2j)'+ 2]B+3(2j)B' '+ 3), (A8)

l 27r i2j 8 2j

~ (15B'+ 15(2j)B' '+ 3[2(2j)'+ 3]B'+2j[(2j) + 14]B' '

+3[2(2j)'+3]B+15(2j)B''+15) . (A9)

In all of the above final results, we have set P= 1, n = p!', B= 1+y'.

APPENDIX B: ANALYTIC SUM OF
T-MATRIX SERIES

The T matrix for 1s-2s transitions in hydrogen
in the presence of an intense field is given by Eq.
(24). A result for the same problem was given in
the form of an infinite series in Eq. (46) of I. When
the equation from I is written in the notation used
here, it has the form

Tf" =i", , — Q(N+2k)(N+ 2k+2)
3 mgp 2 )4! p

x N+2k
( )~

(81)

We wish to accomplish the summation in (81) in
closed form. The fact that the sum is a power se-
ries in (-y~/4)' is suggestive of the Bessel-func-
tion series. '

Denote the factor (y/2)" times the sum in (Bl) by
&, that is,

N+ 2k N+ 2k+ 2)
k=p

(B2)

This is to be compared with

"l'l= (2) Z4 Inr 41.'( 4 ) '.(B3)

y
"- (N+2k+2) t y'

21 = 0

(B5)

We rewrite the factors which distinguish (B2) from
(B3) by noting that N+2k=(N+2k+1) —1, and so

(N+ 2k)(N+ 2k)! = (N+ 2k+ 1)! (N+ 2k) r

In a similar way we have

(N+ 2k)(N+ 2k+ 2)(N+ 2k) != (N+ 2k + 2) ! —(N+ 2k+ 1)!
—(N+2k) t. (B4)

Corresponding to the three terms in (B4), we will
evaluate (82) in three parts denoted ~„, E~, and

The first part is
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We now substitute the integral representation of
(N+2k+2)!, given by

(N+2k+2)! = dte 't""'".
0

give

2' 2
OO

, +——1 i dt e 'J„(yt)N

(B)0)
The order of integration and summation in (B5) can
be reversed to yield

The integral required for (B10) is

)
~

[(~2 ~ 2)1/2 ~] N

dte "'J (yt) =
0 y (Q +y)

dte 't'J„(yt).
0

In like fashion, we find

dte 't J„(yt)

(B6)

(B't)

Carrying out the operations indicated in (B10)
leads to the result

+ 3NB' '+ 3], (Bl&)

and

dt e J„(yt),
0

(BS)

with

+ gg+ VQ e (B9)

Equations (B6) through (B9) can be combined to

where B= 1+y'. Equation (Bl1) substituted into
(Bl) is equivalent to Eq. (24). The ambiguous sign
in (24) arises from the fact that (24) is applicable
to both emission and absorption processes, as dis-
tinct from (Bl) which is for absorption.

The series given in I for combined intense and
weak fields can be summed in closed form exactly
the same way as above, to give results identical
to those in the present paper.
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