
ABSENCE OF SECOND-ORDER CORRECTION. . .

ities involving massless fermions remain, but at
this stage the absence of higher-order corrections
continues to be substantiated.
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An action principle is derived from the unitarity of the S matrix. Assuming the usual as-
ymptotic behavior of the renormalized interpolating fields, emission-absorption symmetry,
and the Bose nature of the S operator, one obtains the connection between spin and statistics
and the quantization of the asymptotic fields. It is essential to the proof that the system have
a nontrivial interaction, but one does not assume the relativistic invariance of the interacting
system.

I. INTRODUCTION

In the work of Lehmann, Symanzik, and Zimmer-
mann' (LSZ) and others, ' the asymptotic condition
and some form of causality assumption were used
to develop a theory whose solutions included the
renormalized 8-matrix elements. This approach
to field theory has the advantage that- no diver-
gences appear at any stage of a calculation. How-
ever, this so-called asymptotic field theory is not
self-contained as it must borrow the quantization
of asymptotic fields from pre-LSZ field theory
and it must leave the proof ' of the connection be-

tween spin and statistics to other formulations of
relativistic quantum theory. The object of this
paper is to complete asymptotic field theory by
deriving the field quantization and the spin-statis-
tics connection from assumptions that are plausi-
ble in the framework of asymptotic field theory.

In pre-LSZ field theory the quantization is ob-
tained either from the assumed canonical formal-
ism4 or from Schwinger's quantum action princi-
ple. ' The quantum action principle is a beautiful
postulate but two criticisms of it can be made.
The first is that it is an arbitrary assumption that
the variation of the action should be related to the
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generators of the variation in the specific way that
leads to the desired results. For example, if in-
stead of assuming the action principle in its cor-
rect form,

12 Fl F2 0

we assumed instead

we would have an equally beautiful but now incor-
rect postulate. Thus, the origin of the exact form
of the action principle is mysterious. The second
criticism is that when the variations of the fields
do not commute with the fields themselves (and
they do not always commute if the transformation
is a coordinate transformation), the variation of
the action is not simply related to derivatives of
the Lagrangian with respect to the fields; for ex-
ample,

s 3

f(4') =~44'+4f40+0'f4«0 ~9$
These problems are solved in the context of as-

ymptotic field theory by relating the generators
of transformations to the variation of the $ opera-
tor. The origin of this relation —called the asymp-
totic action principle —is in the unitarity of the $
operator. The variation of operators is well de-
fined and is simply connected to the functional de-
rivatives of the operators with respect to the as-
ymptotic fields.

We treat only the case of scalar fields explicitly;
results are stated for spinor fields and the general-
ization to other fields is straightforward.

Consider an infinitesimal unitary transformation

U = 1+sF;„, F~ = Fh

which generates a change in the fields

(2)

Since the $ operator can be written as a sum of
products of in-fields, F;„also generates a varia-
tion of $, i.e.,

6 S = i[F;„,S] .
If we define

(4)

then we have the asymptotic action principle

which is a consequence of the unitarity of the $
matrix. This principle is similar to Schwinger's
quantum action principle' and can be used in the
same way. Note one difference however: The
quantum action principle was a postulate while the
asymptotic action principle follows from unitarity.

which leads to an alternate form for the asymptotic
action principle, i.e.,

(8)

The two variations of $ are, of course, related by

S S.„,= S'(C S,„)S.
In order to get useful results from the asymp-

totic action principle, some further assumptions
are necessary. We collect and discuss our as-
sumptions in Sec. II. Section III is devoted to a
proof of the spin-statistics connection and in Sec.
IV the generators are identified and the quantiza-
tion of asymptotic fields is obtained.

II. BASIC ASSUMPTIONS

A. Unitarity

$~$ =$$~ = 1.
B. Absence of Parastatistics

(10)

We assume that identical-particle states are ei-
ther symmetric or antisymmetric.

C. Einstein Emission-Absorption Symmetry

In a relativistic quantum theory the production
and absorption amplitudes must be related in a
specific way' known as the substitution law. ' Apart
from a phase this law says that the amplitude for
the production of a particle is obtained from the
corresponding amplitude for antiparticle absorp-
tion simply by replacing the negative-energy anti-
particle wave function by the positive-energy part-
icle wave function. An obvious consequence of the
substitution law is that the rate of particle pro-
duction is obtained from the rate of antiparticle
absorption by substituting the positive-energy part-
icle wave function for the negative-energy anti-
particle wave function.

An accurate field-theoretic statement of the sub-
stitution law involves the specification of relative
signs of various amplitudes. These signs have
their origin in the statistics satisfied by the parti-
cles involved. As one of the purposes of this paper
is to establish the spin-statistics connection, it
would be circular reasoning to assume the relative

The variation, 5$, occurring in the asymptotic
action principle is the change in $ brought about
by a change in p,„. It might, therefore, be more
appropriately called 5S,„as a change in p,„, will
generally produce a different change in $, namely,
5S,„,. Expressing S as a function of P,„,'s via

Po ~
=S PmS

and varying p,„„we have
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signs associated with the substitution law. We
therefore assume only that the rates of particle
emission and antiparticle absorption are related
by the wave function substitution. This is a simple
generalization of Einstein's assumption of the
equality of the probabilities of absorption and in-
duced emission of radiation. '

If we consider the S operator instead of its ma-
trix elements, the assumption of emission-absorp-
tion symmetry amounts to $ being a functional only
of the combination p(„')+))p(„) with ~)) ~

= 1. Here
p(„) is the absorption operator for particles and
p(,.„) is the creation operator for antiparticles. As
the relative phase of particle and antiparticle wave
functions is not measurable, one can set g= t. with-
out loss of generality. (The possibility that ))

might depend on the position of the field operator
in a product is ruled out by the requirement that
emission and absorption rates are related by sub-
stitution. )

The repeated application of emission-absorption
symmetry shows that particles and antiparticles
must satisfy the same statistics. Furthermore,
the transition amplitude must exhibit symmetry
(or antisymmetry) in the entire set of initial parti-
cles and final antiparticles and also, of course,
in the set of initial antiparticles and final particles.
For example, the amplitude must be symmetric or
antisymmetric upon the interchange of an initial
particle wave function and a final antiparticle wave
function.

The $ operator will be proportional to sums of
products of in-fields. We call these the normal
products and determine their properties in accor-
dance with the principle of emission-absorption
symmetry. We can allow the normal products to
exhibit two symmetries:

where each of a and P can be either+ or —.The
symmetry of the normal product must be the same
as that of the state vectors, for if they were op-
posite, all matrix elements would vanish. ' The
assumed absence of parastatistics then rules out
the possibility that e and p might depend on the
position of the fields in a normal product. The
state-vector symmetry translates into the commu-
tation rules

[y(~) p(~)] —[y(~) pt(~)] p (12)

because an n-particle state vector is constructed
by the application of n creation operators to the
vacuum state. The vacuum is defined to be the
state that satisfies

~(+)(p) y')(+)(p) p

and that is invariant urider all coordinate transfor-
mations. Nothing is known at this stage about the
commutator or anticommutator of P(') with f('„)
or Q"(').

As emphasized by Dell'Antonio, "the value of n
determines the statistics of the particles while it
is the value of P that was determined by most ear-
ly attempts at proving the connection between spin
and statistics. " Recent proofs determine o..

One completes the definition of the normal prod-
uct by saying that it is obtained from the ordinary
product by writing each P;„as P('„) + P(„) and then
rearranging each term so that all absorption oper-
ators lie to the right of all creation operators and
then multiplying each term by (-o)"(-P)", where
N' is the total number of interchanges of p,„with
y,„and of pt„with pt„and l)f is the number of in-
terchanges of p;„with pt„ in the rearrangement.

It is convenient to introduce the shorthand nota-
tion:1 ~ n/1 ~ ~ m: to stand for the awkward ex-
pression: p,„(x,) ~ ~ p,„(x„)pt„(y,) ~ ~ pt (y ):. We
also write functional derivatives 5/5P;, (Z) and
5/5$t„(Z) as 5/5Z and 5/5Z~, respectively.

The functional derivatives of normal products
are defined as

n—:1~ n/1 ~ m:=+5(Z —x )(-n)":1~ ~ ~ A. n/1 m:5Z ij=1

5Z~
&'. 1 n/1 m:=$5(Z —y )(-P)"(-o.)'":1 n/1 A. ~ m:f ij=1

(14)

where A, indicates that the ith term is absent.

D. Asymptotic Behavior of Interpolating Fields

The renormalized interpolating field may be defined' by giving its source

( -m')y(x) =iS'5S/5&~

and by demanding that it satisfies the following asymptotic conditions:
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iim dxdx(x)xxd(x) f=dxxt) (x)xxd, „, (x), (16a)

))m dxxd(x)Tixd'*'(x) =fdaxd , (.„x)7i . xd" (x).
a

(16b)

These asymptotic conditions hold also for pt(z).
Here (t) stands for any of (t)z, P,„„pe, Pt„, and

the limits are understood in the usual weak sense.
These new asymptotic conditions are quite likely

weaker than the LSZ asymptotic conditions as they
are shown in Appendix A to be consequences of the
LSZ form of the asymptotic condition, but a satis-
factory proof of the converse has not yet been
found.

E. Conservation of Statistics

The S operator is assumed to be a Bose-Einstein
operator. In other words, if S is expanded as a
sum of normal products each normal product shall
contain an even number of fields that anticommute
with any given field. Specifically, if a term con-
tains n (t). 's and m pth's, then one must have

(17)

This assumption means that the number of fer-
mions is conserved modulo 2, or more generally
if there are two types of fermions that are rela-
tively Bose, then the numbers of each are separ-
ately conserved modulo 2. In the work of Lu and

Olive, ' the conservation of statistics is shown to
be a consequence of their assumption of cluster
decomposition. Therefore; the assumption of con-
servation of statistics replaces the postulates of
cluster decomposition which is used in most other
proofs of the connection between spin and statis-
tics. In Lagrangian theories these results follow
from the need for Il to be a Bose operator in order
that [H, P] be calculable from the canonical commu-
tation or anticommutation rules.

III. CONNECTION BETWEEN SPIN AND STATISTICS

The variation of the S operator depends on the variation of the fields. The precise relationship between
these variations is obtained in Appendix B. The specific result for a Bose-Einstein operator is

(-) S g
(-) (S S g

(+) ( Sg gP()( (18)

From the definition of the interpolating field [Eq. (15)], one has

S~5S= -i d $ 6,„, 0-m' +5,„, C] -m' —n -m' 6Q.' —n -m' (f)6

One integrates by parts and employs the asymptotic condition in the form of Eq. (16} to get

Since all integrals of the form f, (fo „p„a~(t)~~, with A and 8 standing for in or out, are independent of o,
they are invariant under coordinate transformations:

(2o)

5 do'
p ABp

a

%hen we further note that

(21)

(22}

we have

(28)

It is now easy to see that the unitarity of S implies the correct connection between spin and statistics.
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Since S 5S is anti-Hermitian when S is unitary, the integral in (23) must be Hermitian. Whenever p,
g)t).,„, i.e. , whenever there is interaction, the last two terms are not Hermitian. Thus, we must choose
n= -1 and the spin-zero particles satisfy Bose-Einstein statistics.

Note that the value of P has not yet been fixed. It is determined in Sec. IV.
For spinor fields satisfying the Dirac equation, the result corresponding to (23) is

St5S= — d0„6,„,y„,„, —&&;„y„ i„—& —« '.„',y„

+ 6p(-)T(y(+) y ) T ~6y(-)T(y(+)y )
T (1 ~) 6y(-)T(y(+)y ) T] (24)

Here the integral must be anti-Hermitian and this would not be so in the presence of interaction if the
terms proportional to (1 —a) were present. Thus n =+1 and the spinor particles satisfy Fermi-Dirac sta-
tistics.

Using the methods of Rarita and Schwinger, " one can generalize these results to particles of arbitrary
spin in a very straightforward way.

IV. QUANTIZATION OF THE ASYMPTOTIC FIELDS

With Bose-Einstein statistics for the scalar field, we have

(26)

Thus, Fin and I',„, are determined up to the addition of an Hermitian operator that commutes with S. This
arbitrariness reflects the possibility of unitarily transforming both the in and out states simultaneously.
Such a transformation has no physical significance as it is merely a change of basis.

Since the vacuum must be invariant, we have

+in + p ~ in ~p in ~fin ]1 in (26)

(27)

and a similar expression for I',„,. These generators determine the quantization of the fields in the usual
way, i.e.,

5s(„4)= '();„o)„')*)I=-)fdrr, &))y(„')))~„(ylJ''))), y'„')x)l &el' '8 (e)'()); e(, ')*)I,,) .

Here we used Eq. (12). Since the Green's function for the Klein-Gordon equation is unique and since
5&t)(„) and 5))))t„( ) are independent, we have

l. y l."(3),y(.'(~)] = —&, (y -~),

t:y('„) (y), y(„-)(x)],= o.
From (28) we see that p= -1; thus we have

ly( )(y), y(.)(.)] =o,
which completes the quantization of the fields. Finally, with p= -1, one can rewrite (26) as

(28)

(29)

(30)

Ein do p 5 inBp

«):4(n()) 64(n: ~
~ ~

(31)

V. DISCUSSION

It has been shown that the spin-statistics connection and the quantization of the asymptotic fields are con-
sequences of unitarity, asymptotic conditions, emission-absorption symmetry, and conservation of statis-
tics. The simplicity of the proof resulted from dealing mainly with the asymptotic fields. It must be em-
phasized, however, that it is essential to the proof that there is an interaction in the nonasymptotic region.
Indeed, no connection between spin and statistics can be obtained by these methods in the free-field case
(S = 1).

It should also be emphasized that no assumption was made about the relativistic invariance of the S ma-
trix. Thus, the proof is valid whether or not the interactions are such that the usual conservation laws
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hold. Other proofs' "require invariance of the interacting system.

APPENDIX A: THE ASYMPTOTIC CONDITION

Here we prove that the new asymptotic conditions used in this paper are consequences of the LSZ asymp-
totic conditions. Consider a matrix element of p~„&s„}}}}between states ((n) i

and i(P)) with i(n)) —= in, n„ in).
Using

y „ in, ~ ~ n„in) =Q f„,in, A, ~ ~ n„in), (Al)
j=1

where f, is the wave function of the state in, ), we have

n

=2 do'p(inn'' ' 'A n. I fm(&pg, „,„„l(P))
j=x

dO'
P Q jll Bj(f t jll P (A2)

Here we used the LSZ form of the asymptotic condition in going from the second line to the third. To prove
the asymptotic conditions that involve p, ~, one uses states i(n)) and ~(P)) that are out states and the proof
follows the same lines as above. Thus, our asympototic condition is a consequence of the LSZ asymptotic
condition.

In the above proof Hermitian scalar fields were used for simplicity. It is clear, however, that the re-
sult does not depend on either the spin or Hermitian nature of the fields.

APPENDIX B: OPERATOR VARIATIONS

The operators occurring in field theory are sums of operators of the form

nm +& +n ~1 d 3m ~nm +1 nYl 3m ' (Bl)

Here a„are generalized functions of their arguments. Since all variables are integrated over, it follows
from (11) that one can take a, a„ to have the symmetry properties

a ( ~ x x. ~ ~ ) = -na ( ~ x.x. ~ ~ )nm j j nm j j (B2)

without any loss of generality.
Consider the change induced in A„when all in-fields undergo the infinitesimal variation

4|n 4}n+ 5&/'|n ~

We shall prove by induction that the variation of A„ is given by

(BS)

d 4g 5~(-) (~) nm + 5~V(-) (~) nm + ( n)n-1( p)m nm 5~(+) (~) + ( p)n( n)m-1 nm 5yt(+) (~) (B4)

This result is clearly true in the trivial cases n = 1, m =0 and n =0, m = 1. Assume it true up to some n

and some m and consider A„„.Because of Eqs. (B2) and (12) we can write

n+j. .m x
'

n+ &j. d 3'm'en+i m kin &i: +:+~:1 ' '+ 1' ' ', -'
lD &n+z

(B5)

The rest of the proof is straightforward: One varies (B5) and uses the result (B4). After collecting terms,
one finds that (B4) extends to 5A„„. A similar method extends (B4) to 5A„„, thus completing the proof.

We note that if A„ is a Bose-Einstein operator, then

nm ~jfl
g~

~jul g(T
~ ™d4t. 5~(-)(t) nm + 5~'t{-)(~) nm n nm 5y(+)(~) n nm 5ytt+)(~) (B6)
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The propagation of classical and quantized vector fields under the inQuence of external
fields constant over wide regions of space-time is investigated. Noncausal propagation is
established for suitable external fields. The canonically quantized vector field generates a
perturbation expansion for the propagation function which is in agreement with the behavior
of the solutions for the classical vector field.

I. INTRODUCTION

The complexity of field equations describing
both interacting and free particles with higher
spin' has generated a spectrum of different view-

.points from which such equations are analyzed. ' '
We propose to treat particular models involving
external fields which are constant in appropriate
domains of space-time and are acting on a vector
meson.

In Sec. II the uniqueness and existence of solu-
tions as well as the domain of dependence for
smooth external fields in two-dimensional space-
time are analyzed. We take the obtained results
as a justification for discussing the situation of
constant external fields. This is done in Sec. III,
where a particular external tensor field, as well
as the quadrupole coupling, is treated in four di-
mensions. The tensor field T„„=m'eS„„(mis the

mass of the vector meson, e the strength of the
tensor field) corresponds to an optical medium'
with refractive indices nT, = 1 for the transversely
polarized modes and n~ = [(1+a)/(1 —g)]'~' for the
longitudinally polarized mode.

Earlier discussions" used the method of char-
acteristics for the discussion of causality. But
there remained some technical questions as to the
applicability of this method to the case of higher-
spin equations. Thus it is desirable to have a
model with the analysis based on an independent
method which confirms the previous results by
Velo and Zwanziger. '

Q Sec. IV the canonical field theory is discussed.
The correctness of "Feynman rules for any spin"4
is proven for the tensor model. The complete
propagator function can be calculated explicitly.
In two-dimensional space -time the propagation
function coincides with the unperturbed one in a


