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An exact inequality involving the K&3 scalar form factor D(t) and its derivatives is derived
by utilizing the soft-pion theorem. From our analysis, the chiral SW(3) model of Gell-Mann,
Oakes, and Renner and of Glashow and Weinberg appears to be inconsistent with the present
experimental data. The linear extrapolation method for D(t) is also shown to lead to an in-
consistent result.

Li and Pagels' have used analyticity to bound K,3

form factors in the spacelike region by their mag-
nitude in the timelike region. Subsequently, we
have proved' a stronger and more general theorem
in a series of recent papers, and applied the result
to test the chiral SW(3) model' of Gell-Mann,
Oakes, and Renner and of Glashow and Weinberg
(hereafter referred to as GMORGW) for the K»
problem. Let D(t) be the K„scalar form factor
given by

D(t) = (m»' —m, ')f,(t) + tf (t)

in terms of the standard form factors' f,(t). D(t)
is a real analytic function of t with a cut on the
real axis at t, ~ t &~. If we define

n(q')= —
'~ d'xe"*(0~(s„V„" "'(x), s, V„" '"(0)},~0),

then the positivity of the spectral weight in the
Kamefuchi-Umezawa-Lehmann-Kallen (KULK) rep-
resentation gives us the inequality'

more weakly, if we have' 5, ~ 5~ ~ 0 and A44 ~ A33
~ 0, then we can derive the inequality'

[n(0)]'t' = ~ (m„f» —m,f, ) (5)

assuming the GMORGW model.
Using the experimental value f»/f, f,(0) = 1.28

with f,(0) & 1 we derivedz an exact bound,

-0.008 ~ Ao ~ 0.044,

where A, is defined by

A, =m, 'D'(0}/D(0) = X, +m, '(m ' —m, )

(8)

Ao= -0.024 + 0.02 (8)

In the above discussion, we did not take into ac-
count the soft-pion theorem, '

The bound Eq. {6) is only marginally compatible at
the lower end with the present world-averaged
value'

p oo

I =——2:
7T

0

dtt(t)~D(t)~' ~(O), (2) D(5)/D(0) =(f /f. f,(0))[1+o(~.') I

= 1.28, (9)
where

y(t)= t (t t) t2(t —t) t
64~

t, = (m»+m, )', t, = (m» —m, )'. (4)

In the previous papers, ' we have discussed and
solved the problem of finding the best bounds for
D'(0) and D"(0) when D(0) is known and the inequal-
ity (2}holds.

To estimate 6(0), let us set

A„z =i d'x(0~ (s„A„'"'(x),s„A,'N(0)), ~0) .
4

The KULK representation for A z enables us to
write

1
33= 2m„ f„+5, , A44= 2m' f~ + gK,

where 5„and 6~ are the non-negative contributions
to A33 and A,4, respectively, from multipartic le
intermediate states. If 5, and 5K are negligible or,

and set

I'(z) =- D(t) .

(10)

Then, F(z) is a real analytic function of z inside
the unit circle, ~z~ &1. Moreover, we define Q(z)

where we adopt 5 =mK'-m„' for the soft-pion point
because of an SU(3) consideration. ' Now, the ques-
tion we want to answer is the following: What is
the best bound for D'(0) when we use the additional
information contained in Eq. (9), as well as Eq.
(2)? A partial answer has been given elsewhere. '
Here we shall approach the problem in a general
way and then compare the results we obtain with
experiment.

To that end, it is convenient to map the cut t
plane into the interior of the unit circle, ~z~ &1, by
the conformal transformation,
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Q(z) = exp —,d8(e' + z)(e' —z) ' lnw(8)
47} „'

(12)

then we must have the Bessel inequality

Z l(g. , f)l'- (f, f) =I'
n=o

(18)

w(8) = t, l
cos-,'8ll sin-,'8I 'k(t), t= t, (sin-', 8) '.

Further, if we set

f(z) =- y(z)F(z), (14)

I'=(f, f) -. ~(0), (15)

where we have defined an inner product (g, f) for
two analytic functions g(z) and f(z) by the formula

then f(z) is analytic in Izl &1 and Eq. (2) is simply
rewritten as

for an arbitrary non-negative integer N.
For a, given point z = A inside the unit circle (i.e. ,

I
A.

l
& 1), let us set

4(z) = (1 —
I XI )" z"'(1 —a*z) (19)

which belongs to H'. Then the N+ 2 functions g„(z)
defined by

g„(z)-=z" (0 & n & N),

g„„(z)= q(z) (n =N+ 1), (20)

are easily shown to form an orthonormal set in H'.
Moreover, the standard Cauchy theorem demands

8 277

(g, f) = — d8 g*(e' )f(e' ).
2 tT ~ Q

(16) (z",f)= —„,f'"'(0),

All functions f(z) which are analytic in Izl & I and
have finite norm II f II = (f,f)'t' form the Hilbert
space' H' If g„(n=.0, 1, 2, . . . ) forms an orthonor-
mal set, i.e., if g„satisfies

(q, f) =(1 —
I

i I')'"p, "+'& f(z) —g —f'"~(0)
n=o

so that the Bessel inequality (18) is rewritten as

1 ~n 2—f~"~(P) ~ (I —
I

ylz)
I

gl
z~~" ~ f(A) -g —f~"'(0), j2 . (»)n! o n

n=Q

The equality in Eq. (21) is possible if and only if f(z) is a linear combination of g(z) and z" (0- n & N). If we
omit the last term on the left-hand side of Eq. (21), then the expression reduces to the one discussed in
previous papers. ' In particular, the case X=O reproduces the result given by Neiman. '

Now we let A. correspond to the soft-pion point, i.e.,

A. =(p, —I)(ti, 1} ', ti, =—[1 —(5(t,)]' '.
Then Eq. (21), together with Eq. (15}, gives our fundamental inequality:

N N

Q I t. I'+ (I —
I
&I')

I
&I

"""'D(5)&y(~) —g ~ "&„-&'A(0),
n=o n=Q

~ =[y(0)]-', A-'h„= —,f'~(0).

(22)

(28)

(24)

Note that h„has the form'
n

t mD(m)(p)
m=o

with values of y„given by goo = 1 yii = yio
=Ap'(0), etc.

First, consider the case N =1 in Eq. (23). Then
for f,(0) & 1 we find

linear extrapolation procedure. It may be of inter-
est that the bound Eq. (25) is marginally compatible
at the upper end with the Dashen-Weinstein sum
rule'.

A. = zm. '(mz'-m. ') '[(fry, ) —(f.&fz)]

= 0.020.

0.0080 & Ao & 0.0186, (25)
For a comparison, if we had used the stronger

estimate" for 6(0),
which greatly improves the previous bound Eq. (6).
Our bound Eq. (25} is outside the experimental er-
ror for A, (see Eq. 8). Also, it is inconsistent with
the value of A, =0.023 which is computed from the
soft-pion theorem on the basis of a naive linear ex-
trapolation of D(t) to the soft-pion point t=5. This
fact clearly demonstrates the inadequacy'" of the

[A(0)]'~ = 1.01m f, , f,(0) =0.85,

then we would have obtained an even stronger
bound,

0.0126 & AQ & 0.0141 .

(26)

Returning to the general case, let us next consider
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the case N = 2. Defining the parameter p by

p = ', m-, 'D"{0)/D(0)

=-,'m, 'f, "(0)+m, '(m ' —m, ') 'z ],
we find from Eq. (23)

4.41x10 ' ~ p & 5.08x10 ' for A, =0.008,

(28)

(29)
3.20x10 ' ~ p & 3.86x10 ' for A, =0.018.

If we use the experimental value of Chien e& al. ,
'

A., = 0.026+ 0.006,

—,'m, ~f, "(0)=0.0045+ 0.0015,

then our bound Eq. (29) enables us to estimate A. :

0.222 & A. & 0.226 for A, =0.008,

0 ~ 514&3. &0.522 for A =0.018.
(30)

We believe that such a large value for A. is un-
likely.

Finally, if we accept an error of 10% in the soft-
pion theorem, the value D(5)/D{0)= 1.15 is possi-
ble, in which case Eq. (25) is replaced by the bound

0.0034 & A, & 0.0135 (31)
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for the range f,(0) ~ 1.0. However, Eq. (26) then
admits no solution for real A, .

In concluding this paper, our inequality may be
in conflict with the experimental data. If this is the
case, we have to abandon some of the assumptions
we used in its derivation. For example, the KULK
representation may need one subtraction, or the
GMORGW model may be incorrect, or the soft-pion
theorem may not be satisfied. Another intriguing
possibility is that the Cabibbo theory for the weak
interactions may need to be suitably modified. "
However, in view of the experimental uncertainty,
it is premature to speculate on these points.

Last, we simply remark that analogous tech-
niques can be used for various other problems. "
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