
PHYSICA L REVIE W D VOLUME 4, NUMBER 11

An Absolute Calculation of K'~ a+ffo Decay

1 DECEMBER 1971

J. Chen and V. S. Mathur
Department of Physics and Astronomy, University of Rochester, Rochester, Net@ York 14627

(Received 20 July 1971)

Starting with the usual Cabibbo form of the current-current theory of weak interactions, an
absolute rate for K'- m'+~ is calculated. Accepting the criticism of Lee against the soft-
pion analysis, we analyze here the soft-kaon limit. The extrapolation to the physical point is
then performed using a recent suggestion of Okubo and Mathur.

The soft-pion analysis of K- 2& decays was first
carried out by Suzuki, ' who showed in particular
that in this limit, the nonleptonic K decays obey
the b I= & rule. Lee' has recently pointed out that
this is not a general result and is true only in spe-
cial models. To see how this arises note that in
the soft-pion limit, one may or may not conserve
4-momenta of particles, although of course for
the physical process this must be so. Without
energy-momentum conservation but with fixed &

and K masses, the matrix element for any K- 2m

process can be described by a function of three
scalars formed out of the 4-momenta. Even for
the simplest case where the matrix elements for
various K- 2& decays are assumed to be linear
functions of these scalars, Lee has shown that
the soft-pion constraints do not determine the
matrix elements uniquely, and in particular the
X'- m'&' amplitude may not vanish. The case
when energy-momentum may be taken to be con-
served in the soft-pion limit corresponds to the
situation of fixed kinematics. In this case the ma-
trix elements are not functions of momenta, but
the current-algebra constraints force all K- 2&

amplitudes to vanish. This last result can be un-
derstood simply as follows. With energy-momen-
tum conservation for zero-mass pions [SU(2)
xSU(2) limit], one observes that in the soft-pion
limit one must also have a massless kaon. It is
simple to see that in the soft-pion limit one is
then working with the larger SU(3) x SU(3) sym-
metry. The vanishing of all K- 2& matrix ele-
ments is then a consequence of the well-known
result' for the SU(3) subgroup. From the point
of view of these considerations it is clear that an
understanding of the K- 2& decay is very much an
open problem. In particular, K' —&'&' may not
vanish in the SU(2) x SU(2) limit.

A study of K'- &'&' is of special interest also
for other reasons. This process violates the 4I
=-, rule. Despite many investigations, it is not
clear whether this arises due to electromagnetic
corrections to a strict AI= & weak nonleptonic in-
teraction or due to intrinsic 4I4 & effects in the

structure of the weak interaction. The main prob-
lem of course is that at the present time we do
not have a reliable way to compute the K 2& ma-
trix elements, especially if the soft-pion approach
leads nowhere. Furthermore, in order to test the
effect of the Cabibbo angle in nonleptonic decays,
one needs an absolute determination' of these ma-
trix elements.

In this paper we present a calculation for the
absolute determination of the K'- &'&' matrix
element, based on the usual current-current pic-
ture of weak interactions. We neglect the electro-
magnetic corrections. ' Our starting point is the
observation that whereas the soft-pion limit in
this process is intractable, the soft-kaon limit
is not. First note that if energy-momentum is
conserved in this limit, the kinematics does not
force one to work in the SU(3) x SU(3)-symmetric
limit. However, this limit is unphysical, since
one of the pions would acquire negative energy.
But this may be suitably handled by crossing sym-
metry if we assume analyticity in the pion energy
variable. ' The question at this point is how good
is the soft-kaon result.

For this purpose we use the technique recently
suggested by Okubo and Mathur. ' The central idea
here is the suggestion that if SU(3) x SU(3) is an
approximate symmetry of nature, so that the Ham-
iltonian has one piece which is invariant under
SU(3) x SU(3) and another which violates this sym-
metry, characterized, say, by a parameter a, we
may assume that matrix elements are smooth con-
tinuous functions of a. If we now know the matrix
element for some special values of a, where for
instance some known subgroups of SU(3)x SU(3)
are realized, we may use the hypothesis of maxi-
mal smoothness to compute the matrix elements
for the "physical" value of a. The "physical" val-
ue corresponds to that value of a for which a bro-
ken-SU(3) x SU(3) description, for instance, leads
to the physical masses of the pion and the kaon.
Thus for the matrix element of K'- &'&, knowing
the soft-kaon limit [chimeral' SU(3)] and the well-
known null result in the usual SU(3) limit, one can

3511



3512 J. CHEN AND V. S. MATHUR

linearly extrapolate to the physical value of a. In

the SU(3) && SU(3)-symmetry-breaking model of
Gell-Mann, ' recall that at a = -1, one realizes
SU(2)xSU(2) symmetry with a Goldstone pion; at
a=0, the usual SU(3) symmetry and at a=2, the
chimeral SU(3) subgroup with a Goldstone kaon.
Note that our assumption that matrix elements
are gentle functions of a in the range -1 &a & 2 is
much stronger than the one implicit in the pion
PCAC (partial conservation of axial-vector cur-
rent) hypothesis. However, the combined success
of the pion PCAC hypothesis and SU(3) perturba-
tion theory, as well as the fact that the kaon PCAC
hypothesis is not inconsistent with experiments,
suggests strongly that the assumption of gentle-
ness in the whole region -1 & a & 2 may indeed be
quite reasonable.

We now turn to the soft-kaon evaluation of the
matrix element for K' - &'+. Define

A,'o = i(-8k„k,~,V')'~2(w'(k, )w'(k, ) ~H (0) ~K'(p)),

(2)

J„=(V+A)„. (3)

Note only parity-violating terms in (2} contribute
to (1). Using the kaon PCAC 8„A4'"(x)=fxmx2
XK""(x), we obtain in the soft-kaon limit

where 0 is the weak nonleptonic Hamiltonian in
the Cabibbo form

& (x}= (G/u 2 )-,'[J'„'"(x}J4„"(x)

+J'„"(x)J'„'"(x)]sin8cos8,
with

4;,(e- 4)= '(4e„e-„—v*)' Ja *'"*( ('e, ) (e, )'l ]4, '' (e) tt„(e)]e(*,)le).
fee

(4)

The equal-time commutator can be evaluated using the standard SU(3}&&SU(3) algebra. Since the two pions
are in an I=2 state, we may rewrite (4) after some simple manipulations with Clebsch-Gordan coefficients:

A '„{p- 0) = (4k „k„—V ')' ' ~ —sin 8 cos 8 &2[(w' w
~

J„'(0)J„'(0)
~
0) —(w'w'

~
J„'(0)J„'(0)

~
0) ] . (5)

In the soft-kaon limit, since k, = k2 =k (sa-y) on using crossing symmetry and assuming analyticity in the
complex pion-energy plane, we obtain from Eq. (5)

A;, (p- 0) =—(2g V) —sin 8 cos 8[(w'(k)
~
V„'(0)V„'(0)+A'„(0)A'„(0) ~w'(k)} —(w (k)

~
V„'(0)V„'(0)+A'„(0)A'„(0)

~

w'(k))] .1 G

(6)

At this stage, we note that the matrix element in Eq. (6) is simply related to the one that appears in the
hard-pion analysis of the &' —&' mass-difference problem. ' Defining

2koV[(w'(k)~ Vq'(0)V3(0)+A„(0)A', (0)~w'(k)) —(w'—w )] =5v,A+ "
2 B,

where A and B are constants, Eq. (6) reduces to

1GA', ,(P- 0) =——sin8 cos8(4A B) . - (8)

To obtain 4A —B we proceed as follows. To order e', the pion mass difference is given by

e' d'q
m, +' -m, t)' = ——2k, Re, . T»(k, q),0

Q

where

(9)

&„.(e, e)= je'* '"]( '(e)le(v'„"( )v:-to))l 'te)) —t
'- ')I

and, as usual, by covariance,

T„„{,q) = (q„q, —6„„q )T,(q', v) + [(k ~ q) 6„,+ q'k „k„—(k q)(k „q,+ k„q„)]T2(q', v),

(10)

with v = -k q/m „. Recall that the logarithmically
divergent part in Eq. (9} is given by the first
nonvanishing term in the Bjorken" expansion. Us-
ing the Lee-Weinberg-Zumino field algebra, "one

I

obtains in the Bjorken limit

i 1 1 k;k~ 1
V6)t 6,) 6(~A+ 2B +0 4

Bjorkeo q 4 m fr q

(12)
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where f„ is the &„decay constant. From Eqs. (11)
and (12), one obtains in the Bjorken limit

i 1 A v2B

A;0 = 0 [SU(3)] . (17)

The constraints (16) and (17) and the hypothesis of
maximal smoothness discussed before simply lead
to the result

i 1 B
+ ~ ~ ~

sjorken fz 2~0 ~ 1
G f'

A;, = —st n8 cos 8 (m, ' -m~') " (1 + 5') . (18)

so that

1 SA B
8'orken fff 2~P ~

Numerically"

~A '„~= (2.0-2.5) x 10 'm „,
where the terms contained in the - ~ lead to finite
results for the mass difference. Substituting Eq.
(13) in Eq. (9), we obtain for the divergent term
in the mass difference

(m, +' —m, o')~;„= —,(4A —B) lnA' .3a 1'" 327 f,' (14)

Thus the constant 4A -B appears in the coeffi-
cient of the divergent term (14). This coefficient:
has been evaluated using hard-pion techniques by
Gerstein et al. ,"who get

(m, +' -m, o')g;„-— m„'(1+ 5') lnA',
327 (15)

We now return to the problem of extrapolation
discussed before. Note also that in the current-
current model (2), CP conservation implies that
in the SU(3) limit' "

where 5 is the usual parameter which appears" in
hard-pion calculations. Comparing Eqs. (14) and

(15), one obtains" from Eq. (7)

f'
A', 0(p- 0)= —sin0cos8 " m, '(1+5') (soft kaon).

(16)

to be compared with the experimental result" 1.3
X10 'm„. In conclusion we wish to make the follow-
ing observations:

(1) Note first that our technique leads to an ab-
solute determination of the decay amplitude. Nu-

merically our result is somewhat larger than the
experimental value. It is however remarkable
that we do obtain a suppression of the ~It —,

' effects
in our approach starting from the weak Hamilton-
ian in the standard Cabibbo form.

(2) We do not consider the numerical discrep-
ancy of our result with the experimental value as
serious, in view of the approximations involved in
deriving Eq. (18). Aside from possible uncertain-
ties in the extrapolation discussed above, the re-
sult in Eq. (15) also involves several approxima-
tions. In particular, this result has been obtained
using a low-energy description, which has prob-
ably been unjustifiably extrapolated" to high-ener-
gy virtual processes.

(3) Based on our result, we observe that the
Cabibbo-angle suppression is indeed required in
Eq. (18), in contrast to the conclusion of Sakurai. "

Applications of this method to the other non-
leptonic decays will be discussed elsewhere.
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Two alternatives to reconcile the present disagreement between experiment and the "sim-
ple" unitarity bound in Kz —@+p are considered. These alternatives presume that CP vio-
lation does not play the dominant role (via Res) in the resolution of this puzzle. They are
(1) the introduction of new muonic interactions, and (2) the existence of a new pseudoscalar
meson. The first alternative can already be eliminated by present experimental evidence.
The second alternative must satisfy a number of restrictions.

I. INTRODUCTION

Recently, the result of an experimental search
for the decay

K~-p'p,

was reported by Clark et al. ' They observed no
clear evidence for reaction (1), and set an upper
bound to this branching ratio. It is

Rl""(g' p. ) .1.8 x10 ' (90/q confidence limit) .

(2)

This upper bound is significantly helot the "sim-
ple" unitarity lower bound" calculated from as-
suming (a) unitarity and CPT invariance, (b) CP
invariance, and (c) dominance of the unitarity sum
for reaction (1) by the two-photon state. ' (See Fig.
1.} Taking the branching ratio for'

el estimate of the g pz contribution' both support
this conclusion.

The role of (b) in deriving the inequality (5) ha.s
also been examined. Two cases have been studied:

(i) Neglecting Res, ' the real part of the CP-vio-
lating parameter in the neutral kaon system, it
was shown that a lower bound still holds. ' " This
lower bound may be 18~/o lower than (5) if the de-
cay

(6)

which violates CP, dominates reaction (8). Con
versely, the experimental limit given by (2) was
used by Farrar and Treiman' to set an upper
bound" on the presence of reaction (6).

(ii) Retaining Ree but assuming (c), a, triangle
inequality was derived by Christ and Lee relating
the decay rate for

KL- »0
0 +Ks (7)

to be

RPP(yy) =5xi0 ',
the "simple" unitarity bound" gives

(4)

to the decay rates for reactions (1) and (8). In
this case, the branching ratio for reaction (7) is
constrained [using (2)] to be within

10 'o ft ~" (~'p ) o 5x10 '. (8)
ffcai(p+ p-) o 6 x 10 ' .

Dimensional estimates on the validity of (c}have
shown that other intermediate states can contrib-
ute no more than 10% in the unitarity sum. ' A de-
tailed estimate of the nrem contribution' and a mod-

This range is roughly 6 orders of magnitude above
the corresponding "simple" unitarity bound for the
reaction. It also requires the presence of signifi-
cant CP violation either in reaction (7) or in reac-
tion (3)."


