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We use the hypothesis of the partially conserved axial-vector current (PCAC) to show that
the matrix elements for y+y —zr +zt +zr and y+y —zr +zr +zi. vanish in the soft-zt limit.
This, combined with photon gauge invariance, implies low-energy theorems relating these
matrix elements to the matrix elements for y+y —zt and y- zt +x'+zt . Since the magni-
tude of the former is determined by the zt lifetime, while the ratio of the latter to the for-
mer is determined in a model-independent way by isospin and low-energy-theorem argu-
ments, a model-independent prediction for the y+y —zt. +z). +zr amplitude can be given. Our
results agree with those of Aviv, Hari Dass, and Sawyer in the neutral case, but not in the
charged case, We give a diagrammatic and effective-Lagrangian interpretation of our for-
mulas which explains the discrepancy.

The reaction y+y —Tt+zr+z] is of interest, both
because it may be observable in electron-positron
colliding-beam experiments, ' and because it is
relevant to theoretical unitarity calculations' of a
lower bound on the decay rate of K~ - p,

'
p, In re-

cent papers, Aviv, Hari Dass, and Sawyer' and
Yao4 have applied effective-Lagrangian methods
to calculate the matrix elements for the neutral
and charged cases of y+y- v+zz+zz. The fact that
Refs. 3 and 4 are in disagreement has prompted
us to repeat the calculation by standard current-
algebra-Pt"AC methods. ' Our results agree with
Ref. 8 (but not with Ref 4) in the. neutral case
y+y zt +zT +n', and disagree with both Refs. 3
and 4 in the more interesting charged case y+y
—zz'+zT'+zt . After briefly discussing our method
and results, we explain the reasons for our dis-
agreement with the earlier calculations.

We begin with the simple, but powerful observa-
tion that the matrix elements

%" =-%{y(&,)+y(&,)- zz'(qo)+zT (q,)+~ (q ))

and

%"'=-8R(y(k, )+y(k, ) —v'(q, ) + m'(q,') + v'(q,"))

vanish in the single-soft-zT' limit q, -0, with the
remaining two pions held on the mass shell. To
see this, we follow the standard PCAC procedure'
of writing the reduction formula describing 3g"
or gg~' with the m' off the mass shell, and then re-
placing the zt' field by the divergence of the axial-
vector current (M,'f) ' 8~8:,'". [The normaliza-
tion constant f is given by f=f,)(&2M,') = 0.68M„
with f, the charged-pion decay amplitude ]Be-.
cause the corresponding axial charge E3 com-
mutes with the electromagnetic current, no equal-
time commutator terms are picked up when the
derivative B~ is brought outside the T product in
the reduction formula. Integration by parts then
makes the derivative act on the 7t' wave function,
producing a factor q». Thus both gg ' and gg"'
are proportional to qo, and since they contain no
pole terms which become singular as q0-0, they
vanish in this limit. Note that this argument is
unaltered by the divergence anomaly' in 2), F,'",
since when 5,' is the only axial-vector current
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present, its divergence anomaly vanishes when

the associated four-momentum q0 vanishes. "
In addition to the soft-71' limit which we have

just derived, we know that 3R~ and 3R must be
gauge-invariant. That is, they are bilinear forms
in E'

] and 62 {the polarization vectors of the two

photons) and vanish when either e, is replaced by

k, or e2 is replaced by k, . We can now invoke the
standard lore of current-algebra low-energy theo-
rems, ' which tells us that since we know three in-
dependent pieces of information about the low-en-

ergy behavior of 3g" and 3RM' (the q, -0 limit,
gauge invariance for photon 1, and gauge invari-
ance for photon 2), we can determine 3R" and
5g~' from their pion-pole diagrams up to an error
of order O(qok, kw) at least. 'o In particular, the
terms in ~ and 3P quadratic in the momenta

k„k„qo, q, (qo), and q (qo) are completely deter-
mined. The relevant pion-pole diagrams are illus-
trated in Fig. 1. The pion-pion scattering ampli-
tudes which appear are evaluated from the current-
algebra expression" "

3R(w'- w'(q, ) + w'(q, ) + w'(q, )) = if ' [5„5~[(q, + q, )' —M,'] + 5„5„[(q,+ q, )' —M,'] + 5„5~[(q, + q, )' —M,']

-x [(q, + q, }'+(q, + q, )'+ (q, +q, )' —3M,'J(5„5~+5„5 + 5„5~)[, (la)

where x is a parameter proportional to the isotensor component of the "o term" and is related to the I=0
pion-pion S-wave scattering length a0 by

a, = (7/32w) f -'M, (1 —v'x) . (lb)

The y+y- m' and y- m'+m'+m amplitudes are expressed in terms of coupling constants F"and F" defined
by

3R(y(k, )+y(k, )- w') =ik,"k, e|~e2 e ~w„, F',
(2)

K(y(k, )-wo+w'(q, )+w (q )) =ik(e~8qf q e ez&F".

The coupling constant F' is related to the m lifetime by"

T o '= (M„'/64w)(F')' .
(3)

Comparison with experiment gives ~F, ~
=(n/w)(0 66+0.0. 8M, ) ', with o. the fine-structure constant. While

the coupling constant F'" has not been measured, both the theory of PCAC anomalies" and model-indepen-
dent isospin and low-energy-theorem arguments (see below} predict

eF"=f 'F", e=(4wo}'". (4)

Combining Eqs. (1) and (2) with the appropriate propagators to form the pion-pole diagrams, and adding
the unique second-degree polynomial which guarantees gauge invariance and vanishing of the matrix ele-
ments as q, -0, we get the following predictions for " and ~:

3R'" = (1 —3x) %(q„q,', qo'},

K(q, q', q"}=if 'F k "k " "I— ' ' ' ' ' ')q0& 0~ 0 J 1 2 j. 2 asyh (q, +q,'+q,"P -M '

2

=&f 'F"k, k, ~y&, & qy~ k k,', {when three final pions are on mass shell),{0+k) -~ (5a)

q+q )' M'
(q0+q, +q )2-M,2

3 & s (2q —km)s ~ «(2q —kw)p—ieF eie, k, 2 k
k (q+ —k) q -k, 2 k

k q+(q —k)' e~y«q+' 2 k, -2q

+(k,- k„y-5)+(k, -k, ) q', e„„~, (Sb)
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FIG. 1. Pion-pole diagrams for (a) the neutral and

(b) the charged cases.
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These equations are our basic results. "
Our expression for 5go ' in Eq. (5a) agrees with

that given by Aviv et al. We disagree with the re-
sult for 5g"' quoted by Yao, who has (through an

apparent algebraic error) replaced -M,' in Eq. (5a)
by -4M,'. In the case of strictly massless pions,
our on-shell result for 3g ~ is the simple state-
ment that the terms in the matrix element quadrat-
ic in the external rnomenta vanish. " This result
can be immediately generalized to the reaction
y+y —nm', as follows: The PCAC argument given
above tells us that in the limit when any one m' has
zero four-momentum, with the other n —1 m 's on
the mass shell, the matrix element Jg(y+y-nwo)
must vanish. In addition, gauge invariance implies
that 5g must vanish when either of the photon four-
momenta, k, or k„vanishes. Taking four-momen-
tum conservation into account, this gives us n+2 -1
= n +1 independent conditions on the low-energy
behavior of 9R. Since for massless, neutral pions
the pion-pole diagrams (tree diagrams) sum to a
constant, independent of pion four-momenta, the
n+ 1 conditions can be satisfied only if 5g(y+y
—nw') vanishes" up to terms which are at least
of order (momentum)"''.

Our result for 5go' in Eq. (5b) disagrees with
the formulas quoted by Aviv et al. and by Yao, both
of which overlook the class of pole diagrams pro-
portional to E"'. The formula of Aviv et al. also
has the 1 in the large round parentheses multiply-
ing F' replaced by —,'. In order to better under-
stand this latter discrepancy, it is helpful to have
a diagrammatic interpretation of the various terms
in Eq. (5b). This is given in Fig. 2, which illus-
trates the lowest-order perturbation-theory con-
tributions to 9Q'~ and 5K" in the Gell-Mann-Levy
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cr model. " The first and fourth rows give just the
lowest-order contributions to the pole diagrams of
Fig. 1. The o-pole diagrams in the second rom can
clearly be represented as matrix elements of the
effective Lagrangian

(6)

with F 8 the electromagnetic field-strength tensor.
As a check, we note that w'w w=(w')'+2w'w'w, and
since the matrix element of (m')' has a Bose sym-
metry factor of 6, the contributions of Eq. (6) to
Jg~' and to 5g~ are in the correct ratio of 3:1.

+ y(kl )~y (k2)

FIG. 2. Lowest-order diagrams contributing to (a)
and (b) SR ' in the Gell-Mann —Levy 0 model. The

single solid line propagating around each loop denotes
the nucleon. In this order of perturbation theory, f ~

=g„/M~, with g„ the pion-nucleon coupling constant and
with MN the nucleon mass. f The large black dot at the
four-pion vertices denotes the pion-pion scattering am-
plitude of Eq. (1). To lowest order in perturbation
theory, this arises as the sum of a direct four-pion in-
teraction [coming from the term (w. %)t in the rr-model
Lagrangian] and of pole terms involving isoscalar 0
mesons exchanged between pairs of pious. )
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Let us turn next to the five-point functions in the
third row. Aviv et al. assume that these are rep-
resented by the same effective-Lagrangian struc-
ture as in Eq. (6). If this were so, a five-point
contribution of -2f '

3Q,
" to ' would imply a

corresponding contribution of - ,f ' -JR' to K ',
which would then combine with the o-pole diagram
to give a total nonpole contribution of 3f ' 3g".
This is the origin of the —, in the formula of Aviv
et al. In actual fact, however, we find that the
five-point diagrams are not described by Eq. (6),
but rather by the effective Lagrangian

i g, &&' ————,'f eF '(6 A~)A e &g
(a'v')v f. . (7)

Equation (7) still couples the three final pions
through a pure I =1 state, as required by 0 parity.
In the charged-pion case, Eq. (7) obviously leads
to the five-point contribution listed in the third
row of Fig. 2(b). Although not gauge-invariant by
itself, this contribution combines with the pole
terms in the fourth row of Fig. 2(b) (which are
also not by themselves gauge-invariant) to give a.

gauge-invariant sum. In the neutral case, using

the fact that the matrix element of 6 m'(w')' is
2i(q, + q,'+ qo') = 2i(k, +k, ) and using Eq. (4) to elimi-
nate F" in terms of F', we find that Eq. (7) just
gives the gauge-invariant contribution -2f ' 3g',
as required. " Finally, we note that while Yao ob-
tains the correct value of 1 for the constant term
in the large round parentheses multiplying I ", he
gets this by using an incorrect effective Lagran-
gian, which does not respect the 6 I= 1 rule, to
generalize from the neutral to the charged case.
The moral is that effective Lagrangians must be
handled with caution. When ambiguities arise as
to the form of the effective Lagrangian, they must
be resolved by reference back to the basic current-
algebra relations, which the effective Lagrangian
is supposed to represent. "
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An intimate connection between the Pomeranchukon and the f and f ' Regge trajectories
is derived in the context of a specific rnultiperipheral model, embodying duality. The ex-
plicit dependence of the Pomeranchukon couplings on the f (and f ') Regge poles clarifies
certain features of diffraction scattering data.

Recently' we have proposed that the couplings of
the Pomeranehukon are proportional to those of the

f and f' Regge trajectories, and have verified some
consequences of this proposal for total cross-sec-
tion data and s-channel helicity conservation. We
believe that the general form of the diffraction
amplitude in which the Pomeranchukon couples
through the f and f' is common to many models re-
gardless of the models' detailed J-plane structure.
Thus, although experimental data on multiparticle
production does not conclusively favor any parti-
cular production mechanism, the conclusions of
Ref. 1 extend beyond the details of the model used
to derive them. '

The model of Ref. 1 described the totality of
inelastic states as a pair of fireballs with single-
Pomeranchukon exchange between them. In this
note we discuss an alternative to the two-fireball
picture, based on multiperipheral bootstrap ideas.
Unlike previous treatments, ' we include the f' as
well as the f trajectory and make use of duality in
summing the intermediate states in the unitarity
equation. This provides an explicit dependence of
Pomeranchukon couplings on the residue functions
of the f and f' trajectories.

We illustrate our approximation to a production
amplitude in Fig. 1(a). All stable particles in the
final state are assumed to come from the decay of
resonances which are produced by multiperipheral
Pomeranchukon-plus-Reggeon exchange (at this
stage we do not need to specify the nature of the
exchanged Pomeranchukon). Unitarity is shown in

Fig. 1(b). The sum over inelastic states is re-
duced to a sum over excited resonance intermediate
states with integrals over the mass of each reso-
nance (s,.)' '. Using duality' the sum over reso-
nances in each leg is replaced by the imaginary
part of the leading non-Pomeranehuk Regge pole
with vacuum tluantum numbers' (i.e. , the f and/or
f' trajectory). Throughout this paper we shall as-
sume that we can neglect the contributions of lower-
lying Regge trajectories to the Pomeranchukon
singularity. We also restrict ourselves to values
of t very close to 5=0. The resulting expression
for the amplitudes in the J plane is illustrated by
Fig. 2. Each bubble, B(d, t), in the chain corre-
sponds to double Pomeranchukon-plus-Reggeon ex-
change, and is assumed to be an SU(3) singlet. (In
principle, this should be derived from consistency
requirements, but we shall assume it here. ) The
links correspond to f and f' propagators [R(J, t) and
R'(J, t)J which are taken to be that ideal mixture of
SU(3) singlet and octet which decouples the f' from
pions and nucleons. Thus, if we have exact SU(3)
couplings, each internal link has the form R(Z, t)
+-,'R'(J, t) and the ratio of f to f' in the first and
last links is determined by the quantum numbers
of the external particles. The J-plane structure
corresponding to Fig. 2 may be exhibited by apply-
ing the rules of Gribov and Migdal. ' These rules
were not originally derived with reference to sum-
ming over inelastic states in the unitarity equation
(and care must be taken since some of the lines in
Fig. 2 correspond to the imaginary parts of Reg-


