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A semiclassical, geometrical model for high-energy hadron collisions is proposed, which
incorporates multiparticle unitarity. The model leads to asymptotically constant elastic
and total cross sections (fixed Pomeranchuk pole at J = 1), together with logarithmically
increasing average multiplicities. A specific phenomenological form of the hadronic current
distribution, first used by Heckman, is found to give very good agreement with single-parti-
cle inclusive spectra with no adjustable parameters. Correlation functions are not present
in this model.

I. INTRODUCTION

In high-energy hadron collisions, the properties
of elastic scattering and multiple-hadron produc-
tion are connected by unitarity. Models for elas-
tic scattering have been suggested in which the
Pomeranchuk singularity' is taken as a simple
moving pole, a fixed pole, or a cut in the angular
momentum variable appropriate to the crossed t-
channel reactions. ' These various assumptions
lead to characteristic energy dependences of total
cross sections (err} and integrated elastic cross
sections (&xs). At the same time, various models
for multiple production have been proposed which
lead to characteristic energy dependences of aver-
age production multiplicity and secondary-particle-
momentum spectra. These properties are con-
tained in single-particle inclusive cross sections
ur(k}d'u/d'k =F(k, s). The inelastic-unitarity con-
tributions usually determine the energy dependence
of vz and (xE.

Examples of models including unitarity previous-
ly discussed extensively in the literature are (1)
multiperipheral models, ' (2) fixed-pole Pomeran-
chukon schemes, ' and (3}bremsstrahlung or semi-
classical models. ' Other types of scattering or
production models, such as thermodynamic (sta-
tistical}, pure geometrical, or dual-resonance
types, either do not include unitarity or have in-
ternal-consistency problems, at their present
stage of development.

In the three classes of models considered, one
finds no example which allows a strictly geomet-
rical behavior for elastic and total cross sections;
i.e., both o~ and aE are constant at asymptotic en-
ergies, while accommodating an asymptotically
growing average multiplicity such as n-lns which
is strongly indicated by cosmic-ray data. '

Multiperipheral models which include Pomeran-
chukon-induced contributions in production reac-
tions, as is necessary in principle if the Pomeran-
chukon (P) is a factorizable pole, can be of two

types: (1A) The intercept n~(0) of the P trajec-
tory n~(t) is exactly unity, leading to constant or;
or (1B) the intercept op(0) is less than unity, lead-
ing to the asymptotic vanishing of o~. In the for-
mer case, investigated extensively by Gribov,
Migdal, and co-workers, ' consistency with unitar-
ity is arranged through the vanishing of the 3-
Pomeranchukon vertex when momentum transfers
are zero. Because P is a moving singularity (a
combination of poles and cuts) a~ asymptotically
decreases to zero as an inverse logarithm of the
squared energy variable (s). In the latter case, as
discussed by Chew, Goldberger, and Abarbanel, '
both o~ and o~ asymptotically decrease with a
small power of s, and the 3-P vertex is not zero.
These models predict a logarithmic growth of av-
erage multiplicity, as well as many other features
of the inclusive spectra which are consistent with
production data. A very slow decrease of v~ or
a~ may not be measurable at available energies,
and these models have provided valuable guides
for interpretation of a wide range of experimental
data; but if one desires a model with strictly con-
stant cross sections, and with no shrinkage effect
in elastic scattering, these models must ultimate-
ly be abandoned.

The self-generation of a fixed pole P has been
suggested as a viable alternative by several au-
thors. ' "" It has been demonstrated that models
based on s-channel unitarity, in which the P in-
duces "diffraction-dissociation" particle produc-
tion, can yield a satisfactory theory of asymptotic
elastic scattering. However, the production multi-
plicity in these models appears asymptotically to
approach a constant. Although not conclusively ex-
cluded by present data, this possibility is not sug-
gested by the available information from all
sources, and would be a surprising phenomenon if
true.

Models for production based on bremsstrahlung
(semiclassical) pictures, " " although intuitively
appealing, have never been formulated in such a
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way to consistently accommodate unitarity, except
for one case which (as in the fixed-pole schemes)
includes a nonincreasing average multiplicity. "
Thus, one cannot see the constraints between pro-
duction and scattering, which must be imposed im-
plicitly in a manner not specified by published
work in this field.

Feynman has suggested' that many of the char-
acteristic features of high-energy hadron colli-
sions can be understood in terms of a semiclassi-
cal current-radiation picture similar to that used
in bremsstrahlung models, but he has not made
specific proposals for the distribution of hadronic
currents in such processes. Many of his sugges-
tions are incorporated in the model to be dis-
cussed below.

We will propose a specific model for high-ener-
gy hadron collisions which has the following prop-
erties:

(1) The Pomeranchukon is a. fixed pole with

n(0) =1; thus, or and vz are asymptotically con-
stant.

(2) Inclusive particle spectra have the scaling
properties" "suggested by multiperipheral mod-
els and "limiting fragmentation. ""

(3) Average production multiplicities grow loga-
rithmically with s.

(4) The most important regions in production
spectra can be calculated from a knowledge of
elastic scattering amplitudes.

As incidental features of the model, we indicate
how some of the fixed-pole-P "bootstrap" theories
can be consistent with such a model, and argue
that a fixed-pole P should not factorize.

This model has been developed by including im-
portant parts of several other works, primarily
those of Feynman, "Heckman, "Gundzik, "and
Steinhoff and the present author, "together with
clues from the extensive literature on multiperiph-
eral Pomeranchukon theories beginning with Chew
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FIG. 1. Sketch of spatial distributions of exchange
currents in collisions.

and Pignotti. " For simplicity, we will (1}con-
sider only proton-proton collisions; (2} ignore
spin, parity, isospin, and other quantum numbers,
and similar other details; (3) assume the inelastic
processes which dominate the aspects of the prob-
lem we are concerned with can be considered as
production (emission) of secondary spinless par-
ticles ("pions, "which might better be considered
s-wave vv pairs); and, consequently, (4) neglect
any resonance or baryon pair production com-
pared to this dominant process. Thus, we can
theoretically identify a "leading particle" in al-
most every collision and separate it in principle
from produced pions.

II. FRAMEWORK OF MODEL

In a high-energy proton-proton (Pp) collision, we

will consider the basic interaction process as an
exchange, generating a had~onic exchange-current
distribution in the collision. Such a current, cou-
pled to a pion field, will radiate secondary pions.
Other types of quanta (e.g. , K-meson pairs) can
also be radiated, with a different coupling; but we
assume pion emission dominates, as suggested by
experimental data. The spatial distribution of the
current will be one of the determining factors in
the S-matrix element connecting the initial pp
state with any final state containing pp plus sec-
ondary pions.

Following Heckman's work, "we formulate this
picture with a factorized ansatz for matrix ele-
ments determining production of n secondary pions
in pp collisions:

A„(P,'P,'; k, ~ ~ k„;p,p, )

Here, p„p, are the incoming protons' 4-mo-
menta; p', , p,' are the outgoing protons' momenta;
k,. is the momentum of the ith outgoing pion; g„
is the coupling constant of the pion field to the ex-
change current; J(k) is the Fourier transform of
the exchange-current distribution j (x); and A, is
a "bare" exchange amplitude. In the last identifi-
cation, we depart from Heckman who assumed
Ap was essential ly an elastic scattering amplitude.

Such matrix elements correspond to classical
radiation, and the total pion field is in a "coherent
state" after the collision, as discussed by Gund-
zik" (who, however, also assumed A, to be quasi-
elastic). Although not explicitly indicated above,
the current distribution J depends on the param-
eters of the exchange collision (the arguments of
A, ), which may be taken to be s = (p, + p )', and p,
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and p„components of the 3-momentum of one of
the outgoing protons in the center-of-mass frame.
Since in our model we will immediately assume
J is approximately independent of p„we write J
as an explicit function of k, with s and p, as pa-
rametric variables, J(k; s, p, ).

For an explicit model of the current distribution,
we adopt Heckman's ad hoc assumption for the p, —

independent part, Jc, of J which will dominate
secondary-particle production. However, we also
introduce another contribution, J~, which will de-
scribe emission processes concentrated along the
trajectories of the protons. We assume J~ is
small, depends on P„and describes "break-up, "
excitation of the protons, or "shaking-off" of pions
from the trajectories of the "leading" protons. By
contrast, J~ will generate pions which are peaked
in momentum around the center-of-mass (c.m. }
momentum. Specifically, Jc(k; s) is to be propor-
tional to the Fourier transform of

C

jc(b, ~) = r ' —
I V(b, s) I

',
where y is the eikonal pp wave function; it is ob-
tained from an optical potential V(b, z; s) which is
assumed Lorentz-contracted in the c.m. system,
and whose b dependence is determined by the pp
elastic scattering amplitude. " Here, y is the
Lorentz-contraction factor (Ws/2M~ ). Explicitly,

(2)

Z

jc(b, z) = Im V(b. e) exp -2 im
~

V(b, z'}de '

Motivation for (2) is rather ad hoc; one might
interpret it as a proportionality of current strength
to the gradient of a hadronic density along the di-
rection of motion. We will return later to the
phenomenological applications of this expression.
We find at this point, however, that J~ satisfies
a, scaling relation: It depends on s only through
the ratio 2k, /vs =x, where k, and k, are defined
in the c.m. frame,

Jc(k~, k, ; s) = Jc(k~, x) . (4)

This is a consequence of the Lorentz-contraction
effect assumed in the center-of-mass system.
Qualitatively, the assumption (3) leads to a strong
damping in k~' and a Gaussian behavior in x. The
total current J is now J~+J~.

As concerns Js, we will assume (1) Js is strongly
damped in k~, (2}Js is negligible except when

~ k, ~

is within a finite interval of (k,),„=Js, and (3)
integrals of J~' can be neglected compared to inte-
grals involving the product J~ J~ or J~'. In Fig. 1
we qualitatively indicate the proposed spatial cur-
rent distributions, jc and j~.

From the ansatz (I), we can compute, in terms

independent of x~ in that configuration, as long as
1 —x~ is not very small.

III. GENERAL FEATURES OF PARTICLE

PRODUCTION IN MODEL

Integrating
~ A„~

' over the phase space for n par-
ticles, and taking into account the properties of
J and A.„we obtain

a„~ o,(s),[n(s)3"
n!

(6)

where, keeping the terms dominant for s- ~,
d 0n(s)=-g' IJ (k, s)I'.

n&s) ~ k

The denominator n! arises" from combinatoric
arguments; and Q(s) is the available phase space
for one emitted pion. Using the scaling property, "
and strong damping in k, we can evaluate the as-
ymptotic s dependence,

f d 0 "~au
dp, '~ Jc(p, ', x)(' =h lns.

q~ k --wk, ~ 0

(8)

The essential property used here is the exis-
tence" "of a nonzero limit for

~ Jc ~

' as x- 0.
From (6), we identify n as the mean pion multi-
plicity. We can now calculate the sum of (leading
logarithmic terms in) o„and thus obtain the as-
ymptotic form of the inelastic cross section cr,
=(7T —CTg,

(
—

)n

n!
n=0

Since n(s)-go'lns, where go' =g'h, we obtain
2

cr, (s) —s'o (io)

This can be constant, as desired, only when go'=1.
This constraint fixes the normalization of the had-
ronic current, given a pion coupling constant.
Such a condition gives a reasonably good predic-
tion for charged multiplicity, "' ' and enables
the phenomenological current form to be used with-

of J and Ao, all production cross sections multi-
plicity, and all inelastic unitarity contributions;
hence, we can determine pp elastic scattering.
We will make assumptions necessary to obtain
constant o~ and o~, yet growing multiplicity. The
remaining essential ingredient is the energy de-
pendence of A.o Guided partially by Feynman's
arguments, " for the moment we assume specifical-
ly that for p, /p, ~,„=x~ held at an s-independent
constant

A, (s, p„p,) ~ a, (p, ')s '",
~ OO
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out adjustable constants. Our assumption (5) thus
replaces the soft-pion normalization used by Heck-
man. "

We can now examine some detailed features of
particle production in this model.

(1) Consider an ensemble of collisions with given

p, . We can compute the differential cross section
for production of any number of particles by inte-
grating IA„I' over the mesons' phase space. If

Ip, —p, ,„I is large enough, i.e. , x~ not close to
unity, we ean carry out these integrals over all
phase space, sum over all n, and obtain

„'2=d 'aexp
~

I&(k;s, p, )I'dgg da'0 d

(d(k), „= Id, (k, s) I'o, (s) . (12)

The square of the current Jc thus is directly pro-
portional to the inclusive single-particle spectrum
in the regions not close to the meson's phase-
spaee boundary. The choice (3) for J immediate-
ly provides a phenomenological theory for the in-
clusive spectrum, even at nonasymptotic energies.
We will discuss the agreement with experimental
data later. The expression (12) shows that discus-
sions of scaling, possible dependence on quantum
numbers of incoming channel, "and other proper-
ties of inclusive spectra can be transferred to J
directly.

(3) Multiple-particle inclusive meson-production
cross sections factorize completely in this model,
if phase-space constraints are ignored. Thus,
they trivially obey scaling laws, since the single-
particle spectrum does. All correlation functions
then vanish, except for phase-space boundary
effects.

i&0 enl(s, P&) (11)
dp +

If we compute the mean multiplicity of emitted
mesons under these conditions, we obtain n, (s, p, );
i.e. , at fixed p~, the multiplicity distribution is
Poisson with a mean value n, . Such general fea-
tures have been emphasized in semiclassical mod-
els by Kastrup and co-workers. "

Note that whatever form we assume for Zs(p, ),
we obtain dof/dp, ' which is independent of p„and
s, in this "deep-inelastic" region. The first seems
to agree with the data, "although the s dependence
for such a region has not been checked.

(2) Consider experiments which measure the out-
going flux of mesons with a given momentum k in
the c.m. system, where IkI is small compared to
Ws. Then we compute the inclusive single-particle
spectrum, by extracting one factor of

I
JI' from

each IA„I' and summing over all other mesons.
The result" (ignoring ds in this region} is

+ vs (1-x) y 3k
n, (s, x)=,

~) I de(k; s) I',
(d (k

and, if we assume J~»J~,

f(k') f( ,)=Z (k; )Z (k;,),').

(14)

(15)

In (15) we assume the currents are real for sim-
plicity, ' we consistently ignore J~' compared to
Jeds; and we assume f becomes independent of
s as s- ~. This is consistent with a scaling be-
havior for J~, if JB is strongly damped around
k, = k, ,„, independent of s. If we thus assume Jc
is the dominant feature, we can evaluate n, for
asymptotically large s, but fixed x, using the scal-
ing of Jc. We obtain

n, (s, x)- g,'I Ins+2 ln(1 —x)]

and finally, with (d( p) -=p„„=s and go' = 1,

s d (f (s p0iipk)) 2f(p )( )2g
dp qp

2

This expression shows the scaling of the inclusive
baryon spectrum, provided sero scales. Thus, we
assume further that asymptotically

2 3

, = F,(x, pk ) independent of s,
dp dp~

where I'0 is presumed to vary slowly with x if x
is not close to unity. If this is forced to be con-
sistent with the usual x behavior at the phase-

X-2a (P )space boundary (1 —x}' ' ((~& ' as discussed by
Peccei and Pignotti, " it is necessary to assume
that in the limit x-1,

(» p ~) F (p )(1 «)( (k((('k ) 2)(0 (18)

(4} Scaling for inclusive baryon spectra, and the

effects from phase-space constraints, can be dis-
cussed by considering the limitation created on

the e.m. energy of emitted mesons by specifying
a small value of

I p, —p, ,„I. The maximum avail-
able c.m. energy for a pion is k, ,„=Ms —p„' in

terms of the baryon's x this becomes

,„=Ws(1 —x) .
The squared missing mass M' is related to x by
1 —x =M'/s. Taking this value as the upper limit
in integrals over

I
J I', we obtain for the inclusive

cross section for a leading baryon, summing over
all secondary mesons,

2

( )
d o

( )
d vo(si P). ) Pk& rim(s, k)+2f(()i )

dpzd px dpz
(13)

where
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This implies a form of the cross section for pro-
duction of a few particles of small momentum in
the center-of-mass system in the limit of small
inelasticity (x close to 1).

&(p) " —= ["2 ~ ' (1 —x) ' '~" ' 'F,(p ')s 'd'o [ (s, x)]"
dP, dp, ' n t

(19)
2

where F, =I',e' ' ~ '.
Although n, will not necessarily be asymptotic

in ln(s) in experimentally accessible regimes,
such a form may be used to compare multiplicity
distributions at various values of pl' for fixed s
and x. One sees the Poisson distribution with
mean n„which is independent of p, ', but depen-
dent on x.

At fixed M', as s- ~, the form (19) exhibits a
moving-Regge-pole structure in the s and p, ' de-
pendence. Thus, it is consistent with a physical
charge-exchange-amplitude interpretation with
suitable e, . Only when x is near the phase-space
boundary is this relevant; for smaller x the Regge-
pole behavior is replaced by a fixed pole, relevant
to high-multiplicity production at l = —,'.

IV. MULTIPARTICLE UNITARITY AND HIGH-
ENERGY ELASTIC SCATTERING

To explore the consequences of the model for
gE, we consider nonforward elastic scattering and
saturate the unitarity condition with the pion pro-
duction amplitudes A.„of our model, together with
the elastic-unitarity contribution from the elastic

amplitude AE. %e obtain

ImAs(s, t) =)~ „, , „As(s, t')A (ss, t")dt'dt"

(, „,A*(, t')A (, t")g, „)J (k;, t'}J(k;,t"),
n=O s=l

(20)

where 6 is the standard triangle function result-
ing from a change of integration variable from
cosa to squared momentum transfers t, in the
high-s limit; the integrals in t', t" are carried
out over regions where n &0. [We have written
here t instead of p~'; it does not refer to (p, —p', )'.]

The sum over n can be performed using coherent-
state formalism", neglecting phase-space bound-
ary effects, and dropping terms of order s "', we
obtain

" "dt'dt"
ImA (ss, t}=(ImAs)o+ ', q, AoAoG(s t'

E O gl/2

(21)

where

2

G(s, t', t") = exp —
J „~J*(k;s, t') +J(k; s, t")

~

',
(22)

and (ImAE)o is the elastic-unitarity contribution,
the first term on the right in expression (20). For
simplicity, we will assume J is real henceforth.
Following previous assumptions on J, we ignore
J~' and carry out integrals on Jc' and JcJ~, ob-
taining

G(s tt te) crt(s&&fo')+f(k )"
7 y

where f is given by the integral (17}. Taking the

I

limit s- ~, using assumption (5), we obtain

ImA, (s, t) =(ImA, ),
dtldtlfat(tl)n (tlat)

t 1/2(t ti ter)

(23)

where h(t) =et"' and c is a constant. Now we see
the assumption of a fixed pole for As, i.e. , As(s, t)
—tas(t), is compatible with our model for particle
production, since both sides of Eq. (23) are inde-
pendent of s in that case. This conclusion would
not be affected if we included J~' terms, although
the kernel would be more complicated, but it de-
pends on f (or more complicated t dependences)
being independent of s asymptotically. This holds
trivially if J~ vanishes as s- ~, but that is not
necessarily a desirable assumption.

If in fact a nonvanishing f(t) is proposed which
satisfies our criteria, we can go a bit further and
suggest a connection between the expression (23}
and some self-consistent theories of the Pomeran-
chukon which yield fixed-pole solutions. '~" A
possible hypothesis is the identification of the t
dependence of ao with the t dependence of aE. Such
an hypothesis would incorporate the "droplet mod-
el" point of view'~ which regards the t distribution
in two-body exchange processes as given by geo-
metrical (energy-independent} considerations. In
our case, it immediately yields a quadratic inte-
gral equation for as(t); ignoring the elastic-uni-
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tarity term for simplicity, we obtain

~~(f) = c J"J „, [a,(t')k (t')][as(t")k (t")j . (24)

This can be transformed into the form proposed,
e.g. , by Steinhoff and the present author, ' for the
residue function of the Pomeranchukon, by writing

fl(f) = ~, (&)k(&)

and XU'(f) = ce ~" '; then we obtain

which is Eq. (1't) of Ref. 10. The relationship of
the physical assumptions involved in the two ap-
proaches remains to be clarified. However, it is
tempting to speculate on the possible calculation
of U(t) through pion-exchange diagrams as in Ref.
10. Through solution of the quadratic integral
equation above, one could then obtain a~ and a,.
Since the high-energy limit of J~ is determined by
as(t}, this would determine essentially all observ-
able cross sections, providing a complete theory
for asymptotically high energies, except for pro-
duction near phase-space boundaries.

V. AN ALTERNATIVE HYPOTHESIS FOR
AND n(s)

We have described the simplest possible set of
assumptions providing a combined theory of multi-
ple production and elastic scattering in which cr~

and 0~ are asymptotically constant while accom-
modating a logarithmic growth of multiplicity.
However, it is possible to consider a slightly dif-
ferent set of hypotheses for Ap and J, which have
an advantage of increased theoretical unity, at the
expense of tolerating less specific properties for
J.

We had introduced the fixed pole at / = —,
' in A,

in a completely ad Aoc way. There is, however,
a natural theoretical model which leads to a fixed
singularity at / = —,

' in exchange amplitudes: the
hybrid model. " In this model, one begins with a
moving Regge pole for exchange amplitudes; but
after iterations of a fixed Porneranchuk singularity
with this exchange pole, one obtains a fixed cut at
l = —,'. In fact, a strong result appears: The p~'
dependence of the exchange amplitude, as a con-
sequence of these iterations, is identical to the
p~' dependence of the Pomeranchukon terms
s- ~, except for a tiny neighborhood of p, '=0.

We have seen that such a situation enables us to
construct a bootstrap theory of the p~' dependence
of Qp The replacement of our fixed -pole assump-
tion for Ap by the hybrid-model fixed cut, however,

requires a slight modification in our assumptions
concerning J.

We now assume o,(s) -s '(lns} ', this requires,
if we want o~-const, that H(s) -const+ lns
+ 2 ln(lns) as s- ~. We obtained the logarithmic
(second) term from scaling behavior of Jc. The
ln(lns) term must be obtained from contributions
which are less important asymptotically than the
x =0 region of J~; possibly it could come from J~.
We have not pursued this approach sufficiently as
of this writing to propose a specific form in J
which would generate the ln(lns) term. Experi-
mentally, this term in n would probably not be
distinguished from the constant term.

Such a set of assumptions provides a theoretical
framework which is highly unified, with intrinsic
bootstrap conditions determining AE in terms of
J~ and the usual Regge-pole exchanges.

Vl. COMPARISON OF PHEROMENOLOGICAL

MODEL WITH DATA

~ J(k, ', x)
~

' =-exp(-8'k~') exp(-R'AFx') (25)

where M is the proton mass. (We will retain the
proton mass here when examining E+ and m' data,
even though one might guess a geometric mean
should be used; this point requires further investi-
gation, since a geometric mean would yield much

We take assumption (3) to determine inclusive
pion spectra in pp collisions, and also K'p colli-
sions, since in such cases a leading particle can
be identified. These are expected to be "asymptot-
ic" at a reasonably low energy, in our model,
since the imaginary parts of the appropriate opti-
cal potentials, which are related to total cross
sections, appear energy-independent above 3 GeV.
To make rough comparisons with data we first con-
sider, at small k~', only the lowest-order terms
in Im V (ignoring "multiple-scattering" terms} and
assume a Gaussian form for ImV, as did Heckman, "
who kept higher-order terms. His fits to pp-n+
spectra are qualitatively very good, except at
large c.m. angles, and we do not consider further
here the data he discussed. Recently, there have
been published several K"P and 71'p inclusive spec-
tra from bubble chambers, and a few points from
CERN Intersecting Storage Ring, which confirm
scaling in pp collisions. We, therefore, will com-
pare only with the K' p and m'p data, in detail.

A Gaussian form for Im V, after normalization
of the current is specified, contains only one pa-
rameter 8', determined by elastic scattering data;
for K'p, R' (at 10-15 GeV) is of order 8 GeV ',
for pp, R' is about 12 GeV ' at high energy.

We obtain from (3), normalizing to unity at k '
=0, and dropping higher powers of V,



3494 RICHARD C. ARNOLD

poorer agreement with experiment. ) We will con-
centrate on a comparison of x distributions, for
x' not close to unity.

The comparison of this model with experimental
pion-production data should be carried out in a
manner chosen to maximize independence of the
precise assumptions on the nature of the primary
emitted unit, e.g. , c meson, which decays into ob-
served pions. The decay process will strongly
affect the k, ' dependence at k~' ~ 1 GeV', but
should not change the qualitative behavior for
large k, '. On the other hand, the limiting x dis-
tribution will not be affected by a decay process
(with finite Q value) as an intermediate step;
hence, our emphasis on x distributions, in what
follows.

To begin such a comparison, it is useful to re-
call the analysis of Bali, Brown, Peccei, and
Pignotti" on scaling of single-pion spectra in a
compilation of data on pp collisions. They found

x dependence was fitted very well by Gaussian
forms, with the coefficient of x' for ~ production
of the order 10—11 Geg '; and the k, dependence
was independent of energy, dropping sharply. They
used a linear exponential in k„but the data can
also be fitted by e "" for small k,' as was done in
some of the original experimental work" at 12.2
GeV/c. Thus, qualitative properties in pp pion
spectra are accounted for in our model at small
k, '. We will discuss later the behavior at large
k, ', which involves consideration of the nonlinear
("multiple-scattering") terms in the expression (3).

Continuing with other data, we compare in Fig.
2 the k, distribution results of a 12.7-GeV/c K'P
experiment reported by the Rochester group. " In

Fig. 3, 7-GeV/c v'p data are shown, with the same
Gaussian function in x for comparison. Agree-
ment is good in both cases. We have compared the
same x distribution function with data published by
Ko and Lander" from a K'p exposure at 1]..8
GeV/c. Again, for small k~', agreement is rea-
sonably good, confirming scaling, except for a
few points. Other data" on x distributions in pp
—v- + anything at 28.5 GeV/c, and v'p interac-
tions'0 at 18.5 GeV/c, confirm a universal Gaus-
sian shape and normalization proportional to 0~
(which is noticeably different in pp and K'p colli-
sions).

Going beyond the lowest-order terms in Im V,

we can ask for the large-k, behavior of J. An ex-
amination of the function (3), with Ga,ussian V,

will show a series of alternating terms with suc-
cessively shorter range in b', similar to multiple-
scattering series, e.g. , as in the hybrid model. "
The large-k behavior will, therefore, be qualita-
tively similar to that found in elastic scattering,
which is predicted asymptotically to be exp(-ak, )

(up to more slowly va, rying terms in k~) for suffi-
ciently large k„. a should have the same value as
in elastic scattering. The x dependence will be
rather weak at large k, .

The factorization of approximation (25) is not
maintained when higher-order terms are kept.
One finds qualitatively that the mean value of k,
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varies with x, but not a great amount, becoming
slightly smaller as x-0.

Without a detailed model for energy dependence
and phases of V, we cannot predict what J should
look like in much greater detail. However, at the
special point x =0 we can do better; one may per-
form an integration by parts in the Fourier trans-
form of expression (2) and relate jc(k, ', 0) directly
to the elastic scattering amplitude, and, thus, es-
tablish a more direct connection with the k, dis-
tribution in a region (x-0) of large cross section.

Specifically, one finds

d(k, ', 0}=
J

bdb J,(bk, )(1 —exp[-2 Imf g(s, b')]).
0

(26)

Here g(s, b'} is the eikonal (phase-shift) function,
related to the elastic scattering amplitude by

(27)

This relation may be useful to estimate the loca-
tion of possible zeros in J, which would appear as
"diffraction" minima in the k distribution (at x
=0). For example, in pp interactions, if one takes
a black-disk model for scattering at energies of
a few GeV, one expects a minimum in the inclusive
pion spectrum around k, ' &0.6 GeV' since pp elas-
tic scattering has such a minimum. At asymptotic
energies, if the fixed-pole model is correct for
pp scattering, then accompanying any diffraction
zeros in pp elastic scattering, one should find
associated zeros in k,' dependence of the inclusive
spectrum of primary emitted units (but not neces-
sarily the pion spectrum).

VII. CONCLUDING THEORETICAL DISCUSSION

We have described a model for high-energy had-
ron collisions which provides that 0~ and a~ ap-
proach nonzero constants at high energy, while n

grows logarithmically. The model incorporates
multiparticle unitarity. It is convenient for phe-
nomenological studies of inclusive single-particle
spectra since it gives explicit predictions in terms
of elastic-scattering information. It does not give
correlation functions in multiparticle inclusive re-
actions.

The model is based on geometrical, semiclas-
sical ideas. It assumes a certain nonmeasurable
amplitude ("bare" exchange amplitude) A, to have
a fixed pole at l = —,

' for large enough inelasticity.
From this, it generates a physical elastic scat-
tering amplitude with a fixed pole at l =1. Regge
(moving) poles are not an essential part of this

model, but can be introduced consistently, togeth-
er with hybrid-model concepts, for a unified theo-
retical framework.

If we take the present model seriously in these
respects, it suggests that in reactions such as
pp-ppv'v where the pionpair is slow (x, =0) in
the center-of-mass system, but x~ is not close to
unity, the cross section should drop off with en-
ergy (as in multiperipheral models with p, u& ex-
change); but the p, ' distribution of the leading
proton should not show a shrinkage effect, if x~

is fixed, since the production is presumably as-
sociated with a fixed "exchange current" pole
rather than a moving pole.

Since we can obtain elastic scattering with a
constant cross section, it should also be possible
to obtain, through unitarity sums, a constant cross
section for some special inelastic processes which
do not involve quantum-number exchange, histori-
cally called "diffraction dissociation. " These
would include pp —(Pv) +P and PP —(Pv) + (Pv) in our
model, where the invariant (mass)' s' of each (pv)
system is confined to a vanishing fraction of s.

The dependence of such cross sections on s', as
s' increases to a large value (but remains small
comps, red to s), has been discussed in terms of a
triple-Pomeranchukon-pole vertex in models with
a moving Pomeranchukon pole. ' In our model,
large-s' behavior is determined by J~. We as-
sumed, generally, in our development that J~ was
peaked strongly around the momenta of the lead-
ing particles. In terms of s', this means there is
no constant term as s'-~; i.e., no Pomeranchu-
kon contribution to J~ itself. This means the effec-
tive triple-Pomeranchukon vertex vanishes; dif-
fraction-dissociation cross sections should drop
off fairly rapidly as s' increases.

Finally, without restricting our attention to this
specific model, one may consider the more gener-
al problem of reconciling constant 0~ and oE with
a growing multiplicity. It is sufficient, for the lat-
ter, to obtain a six-point function for 3-3 scatter-
ing with zero momentum transfers whose value
does not vanish" at x=0 as s-~. It would appear
that the slope of a Pomeranchukon trajectory is
not constrained by this condition, so we could pro-
pose a fixed pole if desired. However, the ques-
tion of faetorization immediately arises. If P fac-
torizes, we must include it in multiperipheral
chains; diffraction-dissociation channels. This
will lead to a conflict with s-channel unitarity as
s- ~. Such a difficulty can be avoided, if the pole
moves, by requiring the vertex functions to van-
ish at zero momentum transfers, ' since an addi-
tional factor of (ins) ' will be associated with each
internal pp vertex in that case; but if the slope
vanishes, such compensating terms will not ap-
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pear. This leads us to the conclusion that a f&&«-
Pole Pomexanchukon amplitude must not factorize.

Such nonfactorization of scattering amplitudes
appears naturally in the hybrid model, "where
hadron-hadron scattering amplitudes are obtained

by iterating a "bare" fixed Pomeranchukon pole
(optical potential); such a potential term may fac-
torize, but not the amplitude's fixed pole, whose
residue contains an infinite series in the bare res-
idue.

Of course, approximate residue factorization

may be manifest in some limited range of kinemat-
ic variables, such as small k, '. Thus, rough
checks of experimental data" will not generate con-
flicts with our point of view.
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