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The “Deck effect” is generalized to include multiple scattering, which should be important
in diffractive dissociation on nuclear targets. A simple and intuitively appealing optical
(eikonal) representation is given. On the basis of this representation, it is conjectured that
form-factor effects should be included as a function of the distance off the energy shell in
old-fashioned perturbation theory, at “infinite’” momentum, rather than as a function of the
distance off the mass shell, as in the usual double-Regge models. Ways to test this conjec-
ture are discussed, and a procedure is given for including absorptive effects in 2—3 pro-

cesses,

I. INTRODUCTION

When two hadrons collide at high energy, many
final states can be produced. The many possibili-
ties for inelastic reactions result in absorption of
the incident waves at impact parameters <1 F,
which gives rise to strong elastic ‘“‘diffraction”
scattering at small momentum transfer. The dis-
tortion of the incident waves caused by absorption
also includes the mixing in of inelastic states to
which the incident particles are coupled, giving
rise to production of these states via “‘diffractive
dissociation.”* Diffractive dissociation can in-
volve no change in the internal quantum numbers,
except for spin and parity. Like elastic scattering,
it is expected to be large and approximately en-
ergy-independent at high energy.

To illustrate these ideas from the point of view
to be taken in this paper, consider a deuteron
scattering from a nucleus.? The incident deuteron
can be thought of as a superposition of neutron-
proton plane waves, with amplitudes given by its
wave function. This superposition is spherically
symmetric in the deuteron rest frame, if one ne-
glects the D-state admixture. Scattering from the
target will remove a cylindrical piece from the
superposition, so that the final state will have
finite overlaps with deuteron states at nonzero
momentum transfer (diffraction scattering), and
with np continuum states (diffractive dissociation).
Because the scattering destroys the spherical
symmetry of the superposition, it is clear that
some np states with nonzero angular momentum
will be produced.

Diffractive dissociation produces low-mass en-
hancements in processes such as 1A-prA, KA
~K*(890)1A, pA~nr*A, where the target particle
A may be a proton, or a nucleus which remains in
its ground state. Previous calculations of these
processes have been based on the “Deck effect”

[

diagram of Fig. 1(a).>** It has become customary
to employ a Reggeized form for the pion propaga-
tor, and to identify the elastic-scattering vertex
with “Pomeranchukon” exchange, resulting in a
double-Regge interpretation [Fig. 1(b)].5® This
procedure stands on shaky ground, since one is in-
terested in small 7p invariant masses, rather than
in the kinematic region in which the double-Regge
model is most plausible. Furthermore, there are
good reasons to believe that the Pomeranchukon,
and perhaps the pion as well, are not ordinary
Regge poles.

In the double-Regge model, only the 7 is allowed
to scatter on the target. Aside from form-factor
effects, the amplitude for the p to scatter instead
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FIG. 1. (a) Deck-effect diagram for n*p —p'1%p; (b)
The same diagram, with off-shell elastic scattering
represented by Pomeranchuk exchange (wavy line).

3482



4 OPTICAL MODEL FOR DIFFRACTION DISSOCIATION 3483

of the 7 is just as large,* and with reasonable form
factors, its contribution remains significant, par-
ticularly in the kinematic region where the 7 is
forward in the 7mp rest frame (p slow in lab).
Moreover, if the target is a large nucleus, both

7 and p are likely to scatter on at least one nucleon.

In this paper, I develop a procedure for including
such effects. The procedure has a simple and in-
tuitively appealing interpretation in the “infinite
momentum” optical (eikonal) limit.

The eikonal picture (derived in Secs. II and III)
leads one naturally to conjecture that off-shell
effects be accounted for by a cutoff in the distance
off the energy shell, in old-fashioned perturbation
theory, rather than in the distance off the mass
shell, as is done in the double-Regge model (Sec.
IV). This conjecture is supported by a calculation
involving a nonrelativistic system, and ways to
test it experimentally are suggested.

The question of resonance effects in diffractively
produced 7p, 7K*, mN systems is an interesting
one, but will not be addressed here. The possibil-
ity still appears open that Deck effects can by
themselves explain the observed mass distribu-

FIG. 2. Single- and double-scattering diagrams for
diffractive dissociation. The wavy line represents
elastic scattering.

tions, even in the case of 7N,*” where resonances
with appropriate quantum numbers for diffractive
production are known to exist from phase-shift
analysis. It has been suggested that the Deck ef-
fects might perhaps be related to resonance pro-
duction in some extended form of “duality.”®

II. SINGLE AND DOUBLE SCATTERING AT HIGH :WERGY

In this section, I derive the amplitude for a 2 -3 diffraction-dissociation process, corresponding to the

single- and double-scattering diagrams shown in Fig. 2. Effects due to form factors, and nonzero spins,
are ignored until Secs. III and IV.

The four-momenta, to leading order in the energy, in the over-all c.m. frame are given by
ko= (0, &, k+mg?/2F),
p=(0, =k, b+ M2/2F),
kl=(§_A.+ﬁ, xk', xk’+[(§K+d)2+m12J/2kx), (1)
ky= (3R -G, (1= 0k, (1= )k’ +[ (34 = §)*+ m,2]/2k(1 = %)),
p'=(=8, =k, k' + (B2 + M?)/2F),

where the first component is the transverse momentum vector, the second is the longitudinal momentum,
and the third is the energy. The longitudinal-momentum fraction x lies in 0<x<1. Useful invariants are

s=(ky+ pP=4k2,

t=(p' - p?=-22,

3= oyt Ry =[S+ @+ my?) /4 [(BR =) + 2] /(1 = ) = A2, @
B = k=(m? — m*2 = 2A%)/4k.

In (1) and (2), and in what follows, terms which become unimportant as s -« have been dropped. The tar-

get particle has been assumed for simplicity to be relativistic in the c.m. frame, but this is not essential.
One could also use the lab frame.

Denote the elastic scattering amplitude for particle i by f;(¢), normalized so Imf,(0) is the total cross

section, which is assumed for simplicity to be energy-independent. In the high-energy limit, with no form
factors or spin, and the coupling constant set equal to one, the amplitude corresponding to Fig. 2(a) is
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@ l(kz +p )sz(t)
AR ey g
- isfal) (3)
[CA+aqF +m?]/x+[GA+ QP +m?]/(1 = x) -
Similarly,
?)
M®= s . @)
[GE=aP+m?2l/x+[GA-qF +m,?]/(1 = x) = my?
The normalization is such that
3
do = (5121°s)" fﬁi—@—lw—p-é(4)(ko+p-kl —ky=p) | M. )
The propagators in Figs. 2(a) and 2(b) lead to energy denominators in (3) and (4) which are best inter-
preted in old-fashioned perturbation theory wherein all particles are on the mass shell [E = (52 + m?)/2],
and momentum, but not energy, is conserved at vertices. For instance, in Fig. 2(a), the energy differ-
ence between intermediate and initial states is
(i = mc?)
- int 0 6
AE 3% , (6)
where
Ly o1 2 1Yy 2 2
in[2=(2 +q) +my +(2 +ﬁ) + My )

x 1-x

is the invariant mass squared of the 1-2 system in the intermediate state, calculated with these particles
on the mass shell.

The double-scattering terms involve integration over a loop momentum,
ME D= —s2x(1 - x)(21r)'4f d*uf ([3(p' = p)+ ulP)f L[5 = p) = ul?)

1 1
X[k1+§(p’ =p)+ulP =mz2+ic [Ry+5(p' = p) = ul? = m2 +ie

1 1
>(([%(‘b’+‘t))+u]2—M"’+ie +F§(p’+p)—u]2—M2+ie>' (8)
Possible off-shell effects in the elastic amplitudes are neglected here. This is a self-consistent approxima-
tion, in that it will lead to the appearance of & functions which limit the off-shell distance. Similarly it is
assumed that the transverse momenta remain finite as s —«~. Analogous to previous work with the eikonal

model,® let #,=u,+ u,. Then in the high-energy limit, the term in the large round parentheses in (8) be-
comes

L( 1 . 1 _ =2mid(u,) ©)
2k\u, +O(1/Vs)+ic  -u,+0(1/Vs)+ie/ Vs °
The remaining two propagators can be combined to give
1 1
sx(1 = x) u_+(my? = m*2 = &) /2V's +[(q+5A)° = (q+1,)?)/xvs + O(1/s) +ie
1
YR (my2 = m*® = A2)/2Vs +[(@ = 3A)° = (@+1,)?]/(1 = x)Vs + O(1/5) + e
2726 (u- -1
= -;(Ilrl—%\/:{ (q+U0, )2+ m2]/x+[(§+0,)2 + m2)/(1 = x) = mZ} L.
(10)
Letting V=4 +1,, and using the 6 functions, we are left with the fwo-dimensional integral
M(c+a)_ fd x 2 - - - _ ~ 1 )
VAGGA+G -V f(-(A q+V)2)(v2 T m B x+ @G+ mE) /(1= x) = mg? (11)
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Note that only one energy denominator remains, which, as in the case of single scattering, is equal to

m

w2 =m2=Vs AE, where AE is the difference in energy before and after dissociation.

The amplitude M =M@+ M®+ M©*D contains all multiple-scattering effects, since f,, f, are full elastic
amplitudes. If one represents these amplitudes as sums of exchanges of a fictitious spin-1 particle, in-
cluding crossed exchanges in the eikonal limit as done in Ref. 9, then the similar sum of all possible ex-
changes to the two-body system leads to the same M found here.

III. EIKONAL PICTURE

Let us express the elastic amplitudes in an impact-parameter representation:

1(~E%)=-2i [ ab e Hexplin, G))- 1. (12)
Then
M= [ i [ 4B expliB, - (GE+q-)] [ db, expliB, - (2 - G+ ) {explix 6,)+ ix,B))- 1}, (13)
int 0
where
V2 4+m,? v +m
mint2= x 1 1—x 2 (14)

is the squared invariant mass of the 1-2 system after dissociation, calculated with these particles on the
mass shell. This simple form is obtained by applying a Fourier transform to the single-scattering terms,
after which the curly bracket in (13) results from adding the double -scattering term {exp| ix, (0,)]-1}

x{exp[ Z)(2(‘3 )=

1} to the two single-scattering terms {exp[iy, ®,)]-

— 1} +{exp[ix,(0,)]- 1}. In the result (13),

the phase shifts x, (b,), xz(b ) to the two-body system simply add, as in the Glauber theory for scattering of

nonrelativistic systems.®

The simple dependence on the off-energy-shell distance,

Vs AE,

2 2_
Miny” =My =

suggests that form-factor effects be included by means of a damping in this variable, rather than by damp-

ing the off-shell Feynman propagators.

This suggestion will be pursued in Sec. IV. Even with such off-

shell effects, it is easy to generalize (13) to allow dissociation into more than two particles.
Performing the transverse-momentum integral in (13) yields

M_i’ufdbdb expliZ - 1 (B,

where
=[(1 = )m2 + xm,? = x(1 = X)m2] /2. (16)

Equation (15) is worthy of careful study. The in-
tegration variables 51 and 52 are the impact pa-
rameters of particles 1 and 2. One can see that
the average impact parameter, (b, +b,), is con-
jugate to the total momentum transfer A, while

the relative impact parameter, b, -b,, is conjugate
to the transverse momentum difference q. The
modified Bessel function K,(|b, - b,|#) is the same
function which gives the impact-parameter distri-
bution for exchange of a particle mass # between
spinless particles in a two-body reaction at hlgh
energy. Just as in that case, the large- Ib -b N
region, where K, (z) (1r/2z )1/ 2¢”% corresponds to
the pole, at m;,*> - m,2=0; while the small-|b, - b,|
region is probably modified by form-factor and ab-
sorption effects.'! Absorption in the small-separa-

b,)] explid « (b, = b,)]K,(|b,

b, | #) {explix, ®,) + ix,(b,)]- 1}, (15)

T

tion region probably accounts for the apparent
“conspiracy” of the pion coupling noted by Berger
in pp = nn’p,° in a way which is analogous to two-
body reactions like np - pn, where it produces
sharp forward peaks.!! The scale for the separa-
tion of particles 1 and 2 in the dissociation process
is set by 1/ (T=c=1). For example, in yA
-7n'1"A, m=m,, sothe m’s are separated by 1/m,
in the transverse direction for all x. In nA—- p7r~A,
m=[xm,?+ (1 =xPm,z2[*2 so for x~1 (p forward
in the p7n~ rest frame), the separation is ~1/m,,
while for x~0, it is only ~#1/m,. Taking into ac-
count the spins of the particles in these examples
would not change the picture. For example, in
nA- pm- A there is a helicity-nonflip amplitude
< Ko([B, bzlm) and a helicity-flip amplitude
<K, ([b, =b,|#), but K, has the same asymptotic
behavior as K.

It is instructive, and also relevant to diffractive
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production on a large nucleus, to consider (13) in
the special case where the elastic amplitude cor-
responds to absorption on a “grey disk,”

explix;®)]-1=(~0,/27R?)8(R - [B]). 1

If the radius R is large compared to the impact-

parameter separation 1//, the important contri-
butions to the integral in (13) come from the re-

gion V~q. The variations of m;, % — m,* from the

value at v~q can be neglected, to obtain

M =(0,+0,=0,0,/2TR?)[ =2s(m*? = m?)]
xJ,(|A|R)/|&|R. (18)

In (18), the double-scattering term appears as a
typical Glauber-theory-type shadow correction
-0,0,/27R®. 1f 0, =2mR?, which corresponds to a
totally absorbing disk for particle 1, M becomes
independent of 0,, as would be expected in an opti-
cal model in this limit, where on the scale of R, 1
and 2 have essentially the same impact parameter.
The dependence on IZi =V=t is the same as for
elastic scattering of a single particle from a grey
disk. A picture similar to this one has been given
by Bauer for yA—-n"71"A.!2

IV. OFF-ENERGY-SHELL FORM FACTORS

Results like (13) which are derived using elemen-
tary Feynman propagators, but without including
“all possible diagrams” in a field theory, overesti-
mate amplitudes in which the virtual particles are
far off shell, and must be corrected for this by
introducing some kind of damping of the off-shell
effects. This notion is well known in 2 -2 reac-
tions, where elementary exchanges predict a
grossly too-slow decrease with momentum trans-
fer. In 2 -3 diffractive dissociation, bare propa-
gators lead to transverse momentum and invari-
ant-mass distributions which are much too broad
to agree with experiment, particularly when the
extra factors of transverse momentum required
by spin are included. Moreover, independently
of specific models, if the dissociation process
were as strong away from the pole as given by
elementary propagators, it would be impossible
to understand the observed limiting of transverse
momenta in the inclusive reactions a+b - c +any-
thing, in the face of the processes shown in Fig.

3.13

The “form factor” which damps out far-off-shell
dissociations in (13) might in principle be a func-
tion of both x and

V24 my?
x 1-x

o2 2
2 VI
int <

m

For example, in the double-Regge approach, the

('S

any

)

FIG. 3. A diagram which contributes to the inclusive
process a ~ b —c + anything. Without form-factor effects,
it would be unreasonably large.

vertex function for M would depend on (k, — k,)?
—my? == (1 =x)(m;p2 = m?); for M® it would de-
pend on (k, = k,)? = m % = = x(m;,* = m,?); while for
M©*®9 the situation would be complicated by the
presence of two off-mass-shell particles. It seems
promising to conjecture, instead, that the “form
factor” depends only on m;,,% — m,?, which is pro-
portional to the distance off the energy shell in old-
fashioned perturbation theory, at “infinite” mo-
mentum.

I therefore propose to include in (13) a function
F(m;,®-my?), where F(0)=1 so as not to alter the
residue at the pole, and F becomes small as
Min 2 = my? becomes large. Roughly, F might be-
have like exp[—A(m;,2 —m,?)], where A~1 GeV~2,
This conjecture is motivated by simplicity, and by
the idea that the damping results from higher-mass
intermediate states. In addition, it is supported by
a calculation involving diffraction dissociation of a
nonrelativistic system, which is discussed below.
The conjecture can be tested experimentally by
studying the decay angular distributions; e.g., it
predicts that large values of m* are suppressed
even in the region for which (1 = x)(m*? = m?) is
not large, contrary to the double-Regge model.

Diffraction dissociation of a nonrelativistic sys-
tem, such as a deuteron, which was discussed
qualitatively in Sec. I, can be calculated by ex-
tending the Glauber theory!® to include continuum
final states. Neglecting final-state interaction
effects by approximating the final wave function by
its plane-wave part,

Mo f ¥ ¢, qzj db,db, expli(, +5,) - 1A]

xexpli(b, =b,) - (§ = V)| {explix(B,) + ix (0,)]- 1}
(19)

in the 7es! frame of the deuteron. The final mo-
menta of the constituents are A+, where A is
purely transverse to leading order in energy. All
off-shell effects are included in ¢, ¢,), which is
the ground-state wave function in momentum space.
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For an s state, ¢ is a function of V2 + ¢,? only,
which means it is a function of m;, 2 = m2=4(V?>
+¢,2+mB), where m is the nucleon mass and B the
binding energy. Note that m;,.* - m,® is Lorentz-
invariant, so it is correct to calculate it in the
deuteron rest frame. Further, ¢V, ¢,) has a pole
at m;, 2= m,>=0, corresponding to the asymptotic
behavior exp(- VmB 7)/7 of the coordinate space
wave function. These results support the conjec-
ture made above, that off-shell effects are ac-
counted for by some F(m;, % = m,?), where F(0)=1.
In the relativistic problem, of course, the “wave
function” is not known, and there is more than one
channel into which dissociation can take place.

V. CONCLUSION

In this paper, I have presented a theory for dif-
fractive dissociation which seems intuitively ap-
pealing. The next step, to be undertaken in a forth-
coming paper, is to compare this theory with avail-
able data for 1A -prA, NA-NwA, where A is a
proton or nucleus. Hopefully, it will be possible
to choose between this theory and the traditional
double-Regge one, for example by studying mnp
—~pmp events for which the p has a relatively large
transverse momentum, but the 7 does not, thus
favoring the diagram in which the p scatters. Or
one could study events for which the p has a large-
momentum fraction x, and attempt to determine
whether the form-factor effects vary with m;,® - m?
as given by the optical picture, or vary with
(ko = Ry P = my? = =(1 = x)(my, 2 — my?) as given by
double-Regge theory.

One could try to extend this work theoretically by
searching for a way to allow for resonances of the
diffractively producted pair. An interesting at-
tempt has been made to do this for the reaction
yp ~w'n"p, by identifying F(m;,.% — m?) with the 7
spectral function measured in e"e” - 777,

A second direction to extend this work would be
to try to use the picture, in which an incident par-
ticle dissociates into low-mass states with an
amplitude ocF (m;, ® = m?)/(m,,> = my?) in old-fash-
tioned perturbation theory, for calculating one-
particle inclusive distributions a+b - c +any-
thing.'®!5 In this regard, the assumption that F
is reasonably independent of the particles involved
offers a way to relate the observed transverse
momentum cutoff to the ratios for 7:K: p produc-
tion.!¢

The authors of Ref. 4 add to the diagrams of Figs.
1(a) and (b) a contribution in which the incident
particle first undergoes elastic scattering, and
then dissociates. Some such contribution is prob-
ably present, since it is needed to fulfill the physi-
cal requirement that there be no diffractive dissoc-
iation if the initial and final systems are absorbed
equally by the target. Further analysis of this dia-
gram is in progress.
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