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It is shown that the exact Lorentz-Dirac equation of motion for a strictly point charge is
nothing more than the usual Lorentz force law when the retarded self-field of the particle is
properly taken into account, as required for the very consistency of the idea of energy-momen-

tum localization in the field.

In two previous papers''? an approach to the
classical theory of radiation reaction that uses no
advanced fields has been presented. It was shown
that the decomposition of the retarded Liénard-
Wiechert field of a classical point charge into a
velocity field F}'V and an acceleration field F}}
(both retarded) induces a splitting of the energy-
momentum tensor of such a field into a bound
part T{" and an emitted part T}/, the divergences
of which are given by

3,TH"(x) = —fwdTG(‘*)(x -z(7)

XMy a"(1) = 3e2a*(7)] (1a)

(here, m,, is the linearly divergent electromag-
netic mass of the particle), and

8,T{{(x) = —fm d7 8x = z2(1) 22a®(Dv" (7).

(1b)
These results were used to obtain the Lorentz-
Dirac equation of motion,

mat =% (d" - a®v¥) + F¥, (2)

for the point charge under the action of an external
force F¥. This was accomplished by writing down
the energy-momentum balance relation

BUT“U +3UT{JU= _avTilly _f“:

bare

where T}" is the mechanical energy tensor for a
point particle of mass m,, such that m,, +mg,
=m (m is the observed mass of the particle), and
f* is the force density corresponding to the exter-
nal force F*,

The procedure sketched above to obtain the equa-
tion of motion presents a feature common to most
derivations of this kind,® namely the main emphasis
lies in the action of the particle oz the field. In
fact what one does is to compute the variation of
energy-momentum in the field (which is due to
changes in the state of motion of the source), and
then to postulate that the field has to react back on
the source in such a way that the sum of the change
in the energy-momentum of the particle per unit of

4

time and the corresponding change in the field is
equal to the external force.

Our purpose in this note is to examine in more
detail this reaction of the field on the particle. We
shall show that the equation of motion (2) is noth-
ing more than the usual Lorentz force law (with an
external force F* included),

ma'=eF"y,+ F*, 3)

when the field F*” is taken to be the average re-
tarded field produced by the particle itself on the
the world line.* Before going into the proof we
want to emphasize that the need of taking into
account the self-field is by no means an ad hoc
assumption but a necessary consistency require-
ment. In fact, if one wants to maintain the idea
that there are energy and momentum localized in
the field, and that these quantities are described
in the usual way by means of an energy-momentum
tensor T"¥, then because of the relation

81" = F"j, (4)

he is forced to conclude that F"j, is the electro-
magnetic force density acting on the charge distri-
bution.® The point now is that as long as one stays
within the framework of continuous charge distri-
butions, there is no distinction between the field
at a given point produced by all charges except the
one at the point in consideration and the field ob-
tained when the contribution of the point itself is
added, because the amount of charge at one point
is always zero for a continuous distribution. How-
ever, if point charges are introduced into the
theory the situation changes drastically, and the
inclusion of the self-field becomes unavoidable,
because Eq. (4) is valid only if the field is a solu-
tion of Maxwell’s equations with the current j*,
and if the self-field is subtracted out, what is

left is a solution with j* =0,

Having made clear that the self-field has to be
included, the next step is to include it. The prob-
lem arises immediately that the retarded field
diverges on the world line. Moreover, it does not
only diverge, but the “limit” depends on the way in
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which the singularity is approached. However,
this last feature suggests a way out of both prob-
lems: Since there is no preferred direction of
approach, we define the field at the singularity as
the average value over all possible directions.
More precisely: At a given time, in the instanta-
neous rest system of the particle, we take the
integral of each component of the field F; over
the surface of a Sphei'e of radius € centered at
the position of the particle, divide it by 47€®, and
let € go to zero.at the end. The value of the limit
in an arbitrary Lorentz frame is defined by a
Lorentz transformation from the rest frame.

In geometrical terms, in Minkowski space this
translates into an integration over the two-dimen-
sional intersection ¥(¢) of a tube of radius € around
the world line with a hyperplane orthogonal to the
four -velocity v*(7) that intercepts the world line
at z(7), as shown in Fig. 1. With the notation ex-
plained in Fig. 1, the value FX!(z) of the retarded
field at the point z on the world line is therefore
defined as®

Frlz)= h S0 4Te

f &0 FEU(z + eu). (5)

The above integral is readily evaluated with the
help of the following expansion found by Dirac”:

time

FIG. 1. Minkowski geometry used in averaging the
field. 2(e) is the intersection of a tube of radius € that

surrounds the world line and a spacelike hyperplane orth-
ogonal to v# (7) that intercepts the world line at z(7) (three-

space proper to the particle at the time 7). The vector
from z(T) to a generic point on 2 (¢) is written as ex",
with #,u%=+1.

1 1
FEz + eu) = 2e [—gv[“u”] -i—é(v[“a“] +a, ot u”)

+3a,0" a1+ 50?0 "]
_LaTig) Z 2qThp), 0(6}

(here a,=a,u®), and the relations

. dou®=|. douuPur=0,
(e (e)

1 PouP =10 +9 %8,
4re® o 8

The result is
.2 .
F'(z)=2¢ [— (212% E)v“‘a"] - %a“‘v”]] , (6)
and consequently we get for the Lorentz force

. 267 .
eFily,= - <1€1_13}’ 3—ee->a“ +22(a" - a®oM). (N

The first term of the right-hand side diverges,
and it represents the infinite Coulomb mass of the
point charge which is to be absorbed in the usual
way into the observed finite mass m of the particle.
We see then that when the result (7) is not intro-
duced in (3), the equation of motion (2) is obtained,
as we stated at the beginning.?

As a last point, it is interesting to remark that
in spite of the fact that the energy-momentum of
the acceleration field is totally radiated away, it
would be erroneous to expect that the coniribution
of F¥! in (7) would give the negative of the emis-
sion rate, -2¢%¢?v*, and one can indeed verify
without any detailed calculation that this is not the
case by noticing that F¥/ Yy equals zero, whereas

§e2azv“v,‘— 2224 does not vanish. The reason is
that F is not a solution of the Maxwell equation
a,,F”“= —41rj“, and therefore a relation analogous
to (4), with T"¥ replaced by T}/ and F*’ replaced
by F{{, does not hold. This means that even
though eF}}v, is the force that the acceleration
field exerts on its own source, its negative is not
the rate of change of the energy-momentum of
that field. Similar arguments hold for the velocity
field, and one sees that in order to find out how
the total energy-momentum lost by the particle
splits into an emitted and a bound part, one has to
make a detailed analysis of the properties of the
field, as has been done in Ref. 1. On the other
hand, if our approach is going to be consistent,
Eq. (4) should hold for the full retarded field, and
this is what actually happens. In fact, adding (1a)
and (1b) and performing the time integration, we
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get

0, T (x) = = 6€XX - Z(x°)

X[mg,, a* - 3e*(d" - a*v*)]/v°.

Next, recalling that

i*(x) = e8®X = Z(x" 0" /2°,
and using Eq. (7), we find

FEAx)j(0) = = 64X - Z(x%)

X[mg,, a* -3e*(@" —a*v")]/v°.

This shows that with our definition of F*¥ on the
world line, the relation

aUTlW = Ful./ju

holds everywhere.
Note added in proof. It is natural at this point to
ask whether F". given by (6) is the only possible

solution (at x=z) to (4) regarded as an equation for
the unknown F"(z). This is a meaningful question
because, on account of Gauss’s integral theorem,
the divergence 9,7"Y(z) can be evaluated with a
knowledge of the field off the world line where it
is well defined and not singular. The answer is in
the affirmative® provided that a quite natural as-
sumption is made. In short, the assumption is
that the field on the world line should have as much
in common as possible with the retarded field that
exists off the world line (“maximal matching”). In
other words, the field existing off the world line
and Maxwell’s equations determine completely the
field on the world line. The equation of motion for
the particle then follows uniquely.
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