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It is shown that the exact Lorentz-Dirac equation of motion for a strictly point charge is
nothing more than the usual Lorentz force law when the retarded self-field of the particle is
properly taken into account, as required for the very consistency of the idea of energy-momen-
tum localization in the field.

In two previous papers" an approach to the
classical theory of radiation reaction that uses no
advanced fields has been presented. It was shown
that the decomposition of the retarded Lienard-
Wiechert field of a classical point charge into a
velocity field E,"' and an acceleration field I',"I'
(both retarded) induces a, splitting of the energy-
momentum tensor of such a, field into a bound
part T,""and an emitted part T,",", the divergences
of which are given by

V.t'("(x) = fdv V-'~(x -x(v))

X [mc.„(a"(T) —3e'a "(~—)] (1a)

ma" = —', e (a" —a v")+E") (2)

for the point charge under the action of an external
force I'". This was accomplished by writing down
the energy-momentum balance relation

where Tb', is the mechanical energy tensor for a
point particle of mass m„, such that m„„,+mc,„,
=m (m is the observed mass of the particle), and
f" is the force density corresponding to the exter-
nal force E".

The procedure sketched above to obtain the equa-
tion of motion presents a feature common to most
derivations of this kind, ' namely the main empha, sis
lies in the action of the particle on the field. In
fact what one does is to compute the variation of
energy-momentum in the field (which is due to
changes in the state of motion of the source), and
then to postulate that the field has to react baqk on
the source in such a way that the sum of the change
in the energy-momentum of the particle per unit of

(here, mc, „( is the linearly divergent electromag-
netic mass of the particle), and

v t'x(x) = fdv V-+(x-x(v))lx'x'( )v"(v).

(1b)
These results were used to obtain the Lorentz-
Dirac equation of motion,

time and the corresponding change in the field is
equal to the external force.

Our purpose in this note is to examine in more
detail this reaction of the field on the particle. We
shall show that the equation of motion (2) is noth-
ing more than the usual Lorentz force law (with an
external force F" included),

ma" = eE""v,+ I'",

when the field I'"' is taken to be the average re-
tarded field produced by the particle itself on the
the world line. ' Before going into the proof we
want to emphasize that the need of taking into
account the self-field is by no means an ad hoc
assumption but a necessary consistency require-
ment. In fact, if one wants to maintain the idea
that there are energy and momentum localized in
the field, and that these quantities are described
in the usual way by means of an energy-momentum
tensor T"', then because of the relation

(4)

he is forced to conclude that I'"'j, is the electro-
magnetic force density acting on the charge distri-
bution. ' The point now is that as long as one stays
within the framework of continuous charge distri-
butions, there is no distinction between the field
at a given point produced by all charges except the
one at the point in consideration and the field ob-
tained when the contribution of the point itself is
added, because the amount of charge at one point
is always zero for a, continuous distribution. How-
ever, if point charges are introduced into the
theory the situation changes drastically, and the
inclusion of the self-field becomes unavoidable,
because Eq. (4) is valid only if the field is a solu-
tion of Maxwell's equations with the current j",
and if the self-field is subtracted out, what is
left is a solution with j"=0.

Having made clear that the self-field has to be
included, the next step is to include it. The prob-
lem arises immediately that the retarded field
diverges on the world line. Moreover, it does not
only diverge, but the "limit" depends on the wa.y in
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get

& [mc.„, a" ——',e'(d" —a'v')]/v'.

Next, recalling that

j"(x)= ea")(x —z(x'))v "/v',

and using Eq. (7), we find

x [mc,„, a" —3e'(a" —amv")I/vo.

This shows that with our definition of F"' on the
world line, the relation

TPv FPv~

holds everywhere.
Note added in Proof. It is natural at this point to

ask whether F"" given by (6) is the only possible

solution (at z= z) to (4) regarded as an equation for
the unknown F"'(z). This is a meaningful question
because, on account of Gauss's integral theorem,
the divergence B,T""(z) can be evaluated with a
knowledge of the field off the world line where it
is well defined and not singular. The answer is in
the affirmative' provided that a quite natural as-
sumption is made. In short, the assumption is
that the field on the world line should have as much
in common as possible with the retarded field that
exists off the world line ("maximal matching"). In
other words, the field existing off the world line
and Marvell's equations determine completely the
field on the world line. The equation of motion for
the particle then follows uniquely.
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Phys. Rev. 57, 797 (1940); L. Infeld and J. Plebanski,
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4It is worthwhile to emphasize here that the particle is
regarded strictly as a point charge. It is therefore mean-
ingless to speak of a charge distribution inside the parti-
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The Theory of Electrons and Its Applications to the Phen-

omena of Light and Radiant Heat (Tuebner, Leipzig, 1909),
who thought of the particle as having a finite extension,
inside of which some continuous charge distribution ex-
isted, and derived the radiation-damping formula by
looking at the retarded action of each piece of the charge
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of as a self-interaction approach, because no part of the
charge interacts with itself [see discussionbelow Eq. (4)].
The procedure used in this paper to define the field pro-
duced by the particle on its world line involves an average
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5See for example F. Rohrlich, Classical Cha~ged Par-
ticles (Addison-Wesley, Reading, Mass. , 1965), pp.
92-93.

~It is evident that for a point where the field is not sin-
gular, such an averaging procedure gives exactly the
value of the field at that point, for any choice of the
slicing spacelike plane. Therefore the integral (5) can
be taken as a redefinition of the field at every space-time
event.

~P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148
(1938). See also Ref.. 5, p. 143; we use the same nota-
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It might seem strange to see a self-energy 2e /3e in-
stead of the e2/2e usually arising in the calculations of
electromagnetic mass. However, there is actually no
difference between the two expressions, since the limit

0 is to be taken. The e here does not have any physi-
cal significance (the particle is strictly a point charge;
see Ref. 4), and the quantity 2e2/3e' is not meant to bethe
electromagnetic-field energy outside a sphere of radius'
in the case of a Coulomb field.
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