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27, 765 (1971).
~4R. P. Feynman, in High Energy Collisions, Third

International Conference held at State University of New

York, Stony Brook, 1969, edited by C. N. Yang, J.A.
Cole, M. Good, R. Hwa, and J. Lee-Franzini (Gordon
and Breach, New York, 1969).

The question of the ultimate fate of the fractional
charge may be a difficulty of the quark-parton model.
B. Ioffe [Phys. Letters 30B, 123 (1960)] estimates z,
the important longitudinal distances in configuration
space for electroproduction, to be of the order M&

where ~ is the usual sc'aling variable. This may imply
that the active parton tends to travel a considerable
distance without interaction before disintegrating into a
jet of hadrons. Thus, there can be a separation of
fractional charge over large distances in configuration
space as well as momentum space. However, this does
not mean that partons must "backflow" that distance to
provide the necessary neutralization of fractional charge.

This can be accomplished, for example, by a polarization
current created by parton-antiparton pairs created from
the vacuum by the field of the active parton. This is
also related to a problem raised by R. Dashen [cf.
M. Gell-Mann, invited talk at the International Conference
on Duality and Symmetry in Hadron Physics, Tel Aviv,
1971 (unpublished)] ..6For example, see N. Bali, Lowell Brown, R. Peccei,
and A. Pignotti, Ref. 4.

L. Caneschi, C. H. Mehta, and H. J. Yesiax, Stanford
University Report No. ITP 380, 1971 (unpublished).

This happens, for example, with the CKP distribution
(cf. G. Cocconi, L. Koester, and D. Perkins, Ref. 4).
2~J. D. Bjorken, invited talk at the International Confer-

ence on Duality and Symmetry in Hadron Physics, Tel
Aviv, 1971 (unpublished). This particular quar k-parton
model has also been discussed and used in several
calculations by J. Kuti and V. Weisskopf, this issue,
Phys. Rev. D 4, 3418 (1971).
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We discuss the interaction of hadrons with leptons in the limit of large momentum transfer.
A special parton model will be used for the hadrons in which the partons are identified with
quarks. The relativistic quark model with which we interpret recent observations is form-
ulated as follows: (1) The baryons are composed of three valence quarks and a core of an
indefinite number of quark-antiquark pairs. (2) The lepton "sees" the nucleon in the limit
of large momenta in the c.m. frame as an assembly of freely moving constituents with point
charges. (3) The scattering of the valence quarks is interpreted as the nondiffractive com-
ponent, the scattering of the core is interpreted as the diffractive component of the cross
section. (4) The nondiffractive scattering is assumed to be mediated by suitable meson ex-
changes, and this assumption determines the momentum distribution of the valence quarks.
The (qq) pairs in the core are assumed to be distributed statistically in the available phase
space. (5) It will be necessary to include "gluons" among the constituents of the nucleon.
They are supposed to be the uncharged quanta of the force field between quarks and are
assumed to be distributed statistically over the momentum space. There is only one con-
stant adjustable in this model, which is the ratio of gluons to core pairs. All other constants
are fixed by simple considerations. This model is used to calculate the deep-inelastic scat-
tering of electrons by protons and neutrons and its dependence on the relative spin orien-
tations, the inelastic scattering of neutrinos by nucleons, and the creation of massive muon
pairs by proton-proton collisions. After adjusting the open constant to the data of electron-
proton scattering, the theory predicts unambiguously the other results. They are in reason-
ably good agreement with the observations as far as they are known.

I. INTRODUCTION

The ideas presented here are inspired by efforts
of many authors who have faced the challenge:
What is the nucleon made of? Much in this paper
has a considerable overlap with the work of others
in the field, and we have included some well-known

ideas in the interest of clarity and completeness.
In studying the substructure of a hadron, one

must keep in mind an essential difference between
hadrons and systems such as the nuclei or atoms.
In the latter cases the relevant energies —binding
energies, excitation energies, etc. —are much
smaller than the rest masses of the system as a
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whole or of the constituents; in the case of had-
rons, however, they are of the same order as the
mass of the system; obviously the mass of the con-
stituents is not known. This difference is a funda-
mental one; it puts the use of the concept "con-
stituent" into question. In the nuclear and atomic
systems the number and nature of the constituents
is well defined, particle-antiparticle pairs play a
subordinate role such as in the effect of the polari-
zation of the vacuum. In hadrons, however, there
is no well-defined number of constituents, since
the interaction energies are so strong that virtual
pairs of fermions or virtual single bosons are
abundantly present. This is certainly true of me-
sons which make up the "meson cloud" of the nu-
cleon. The description of the nucleon, therefore,
cannot be formulated in terms of a fixed number
of constituents.

Nevertheless, in hadron phenomena a number of
remarkably simple properties have been realized
in the past few years. Beyond the well-known
agreements with relativity, analyticity, unitarity,
etc. there are the conservation rules of isospin
and strangeness and an approximate agreement
with SU(3) symmetry. In addition to these concepts
we realize other empirical regularities in ex-
treme high-energy collisions which might lead us
toward a dynamical understanding of the hadron
structure.

We begin by listing a partial list of regularities
which are more or less established experimentally,
and which will be used in this paper as indications
of hadron structure.

(I) SU(3) is an approximate symmetry in nature.
Baryons and mesons belong to SU(3) multiplets;
strong-interaction cross sections and current
matrix elements in electromagnetic and weak in-
teractions yield further evidence for this symme-
try scheme. No exotic hadrons seem to exist. The
hadron spectrum is similar to the orbital and radi-
al excitations of oscillator-like bound quark struc-
tures.

(2) The total cross sections become diffractive
at high energies, the object exchanged in the
t channel to explain the diffractive behavior has
vacuum quantum numbers.

(3) Exchange-reaction cross sections fall with a
power of the energy s . This empirical fact will
be used to determine the momentum distribution of
valence quarks, assumed to be associated with the
nondiffractive mechanism of the scattering process.

(4) Cross sections fall rapidly with transverse
momentum transfer. The average transverse mo-
mentum of the particles in inelastic collisions is
limited (to about 0.35 GeV/c). This fact is relevant
in learning about the transverse momentum distri-

bution of constituents inside the nucleon.

Feynman' suggested that many of the observed
regularities might fit an underlying parton picture.
We identify the partons with the Zweig-Gell-Mann
quarks. Certain observations under (I) have made
this picture attractive. It is the purpose of the pa-
per to show that the quark model has some degree
of organizing and predictive power when applied to
deep-inelastic electron-nucleon scattering, to
neutrino induced reactions, and to p,

'
p. production

in proton-proton collisions.
A truly relativistic quantum-mechanical theory,

appropriate to deal with both short-distance be-
havior of current matrix elements and with pure
hadronic reactions, seems today available only in
field theory. Its mathematical description is so
complex that no dynamical regularities can be ex-
pected, other than those following from symme-
tries and lucky guesses about extreme asymptotic
limits. We choose to make use of the parton model,
sacrificing detailed theoretical adequacy for sim-
plicity.

Bjorken, Drell, Feynman, and their collabora-
tors have in the past discussed simple parton mod-
els in the impulse approximation. ' ' They have
shown that the main qualitative features of the data
seem to be reproduced in that extreme asymptotic
limit.

To apply the impulse approximation, we analyze
the bound system —be it a nucleon, nucleus, or
atom —in terms of its constituents, called partons.
Nucleons and electrons are the partons of the nu-
cleus and atom whereas in our model the partons
of the nucleon are quarks. If the kinematics is
such that the partons can be treated as instantan-
eously free during the sudden pulse carrying a
large energy transfer from the projectile, we can
then hope to neglect their binding effects during the
interaction. We conjecture that in deep-inelastic
electron scattering the virtual photon takes a snap-
shot of the instantaneous nucleon substructure
when the momentum transfer

~ q ~
of the virtual

quantum is large compared to the momentum
transfers between partons in the internal motions.
We assumed the latter to be of the order -M.
Hence, the condition for the validity of the impulse
approximation is

~
q~»M.

In that way, for reactions involving massive cur-
rents, we choose a relativistic theory which is
naive and inadequate in its simplicity, but one
which is definite and in which we can calculate
many processes in order to see how closely our
approximation in the extreme asymptotic limit
gives a partial reflection of reality.

The paper is organized as follows. In Sec. II we
formulate the specific details of the relativistic
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quark model, which we propose to be probed in the
impulse approximation. In Sec. III we analyze the
high-energy inelastic electron-nucleon scattering
experiments within the framework of the parton
model. Section IV presents a test of the quark-
parton model, the spin dependence of inelastic
electron- (muon-) proton scattering. In Sec. V we
calculate the massive p,

'
p. pair production in

nucleon-nucleon collisions. In Sec. VI we discuss
some implications of the model in high-energy in-
elastic neutrino-nucleon scattering. The detailed
analysis of this process will be published else-
where. Finally, concluding remarks comprise
Sec. VII. Here we list some well-known difficulties
such as the absence of free quarks. The expecta-
tion to "see" them as free particles may be based
on our unlimited extrapolation of present-day laws
to those enigmatic objects.

In Appendix A we rederive the well-known ex-
pressions for the inelastic structure functions in

the c.m. electron-proton coordinate system in
terms of the single-particle momentum distribu-
tions. The derivation of the spin-dependent struc-
ture functions is new here. Appendix 8 contains
the calculation of the parton momentum distribu-
tions on the basis that the probability distribution
of core quarks is proportional to the relativistic
phase space, and the distribution of the valence
quarks is given by a Regge-pole consideration.
Appendix C contains arguments for the presence of
uncharged gluons in the nucleon. Appendix D con-
tains a discussion of the behavior of the structure
functions at threshold and the relation of this be-
havior to the elastic form factor.

II. THE QUARK MODEL AND ITS IMPULSE

APPROXIMATION

We consider the nucleon to be a three-quark
structure accompanied by a core of virtual quark-
antiquark pair s:

N- qqq+q(qq) .
The valence quarks carry the internal quantum
numbers of the nucleon, whereas the core has
vacuum numbers. The number q of virtual qq pairs
depends on the frame of reference. We assume
that the masses, binding energies, and internal
momenta of the quarks (in the rest frame) are of
the order M (proton mass) or less. This assump-
tion is suggested (but not proven) by the experi-
mental fact that the lateral momenta of collision
products are small, which may point towards small
internal momenta among the constituents. Under
these assumptions, a nucleon moving with a mo-
mentum P»M could be considered as composed
of n almost free particles, —,'(n+3) quarks, and
—,'(n —3) antiquarks, all moving almost parallel in

dx
dPg(x) g

(
2 2/pg)1 /2 7l (2.1)

where p, -M is the effective mass of the quarks.
As (2.1} shows, the calculation in this paper will
be carried out with a sharp 6-function cutoff
[f(k, ) -5(k, )) in the transverse momenta k;, al-
though the essential features of the model remain
unchanged introducing a smooth cutoff function

f (k, )in the prob.ability distribution.
Qualitative arguments might indicate that g is of

order unity. The spectrum for core quarks in (2.1)
implies that their total number is logarithmically
increasing a.s In(P/p, ). If core quarks are some-
how converted into real particles in the collision
process, then g - 1 is suggested from the observed
logarithmic energy dependence of pion multiplicity
in high-energy collisions.

The longitudinal momentum distribution (2.1) is
strongly reminiscent of the apparent photon distri-
bution in the field of a fast-moving electric charge
according the the WeizsKcker Williams method.
The constant g is then replaced by a constant of
the order e'/hc. The analogy with the Weizskcker-
Williams method is instructive for the understand-
ing of the virtual nature of the qq pairs. The num-

the direction of P. The idealized picture of a nu-
cleon as a parallel stream of free particles is
called the impulse approximation and the devia-
tions from this idealization can be neglected when
interactions of large momentum transfer (Q'»M')
are considered.

What can be said about the number g of particles
and their momentum distribution?

(a) In the decomposition of the nuclear wave func-
tion the total three-momentum P is conserved. In
the longitudinal direction we get

QP, =P or Qx, =1, x; =P;/P

where P, is the longitudinal momentum of the ith
parton. It is easy to see that P,. must be positive
if it is much larger than M. In this case the parton
moves essentially with light velocity and its energy
e; —~P; ~, since both its mass and its transverse
momentum is of the order M or smaller. If all P;
are positive, the sum of all the energies will be
about equal to the energy P of the proton, to the
order M'/P. If one P, or more are negative,
p(e I

—P;}&M; such a state would be much further
from the mass shell than those with all P, positive
and therefore will be highly improbable.

(b) In dealing with qq pairs in the core, we have
to describe a system with an infinite number of
degrees of freedom. Statistical considerations are
suggestive here; therefore, as a first try we as-
sume that the probability distribution of quarks in
the core is proportional to the phase space,



INE LASTIC LEPTON-NUCLEON SCATTERING. . . 3421

ber of these pairs is not invariant, in the same
sense as the number of photons accompanying the
moving charge is not invariant. It is the number
of virtual pairs or photons which are near enough
to the mass shell to be treated as quasi-free. This
is why the following two statements are not con-
tradictory: (1) There are very few partons with
momenta much larger than M in a, nucleon at rest;
(2) The most probable momentum of a, parton in a
fast-moving nucleon is a small momentum (-M).

(c) The longitudinal momentum distribution of
valence quarks is given by

q(x)dP„(x) —(, ,/p, )„, dx, (2.2)

where g(x) depends on the special dynamics of the
valence quarks. They are not assumed to be dis-
tributed statistically. We will show later that
g(x)-x' "/" follows from an application of Regge
theory. Here o.(0)- —,

' is the intercept of the im-
portant nondiffractive trajectories in inelastic
lepton-nucleon scattering. A„P' are exchanged
in inelastic electron-nucleon scattering, whereas
vector trajectories contribute to the neutrino-in-
duced reactions. A common o.(0) - —,

' will do the
job for both types of processes.

It is true that P(x) —x' '" is dictated by Regge
lore only for x near zero, in the asymptotic re-
gion. (In Sec. III we will show that x- 0 for fixed
virtual photon mass corresponds to S'- ~, where
W is the invariant mass of hadrons created in the
virtual photoabsorption process. } We kept the
form t!/(x) —x' !0~ in the whole (0, 1) interval for
the sake of simplicity. Evidently, any sophistica-
tion in t!t(x) might lead to better results. Ignoring
complexities in the valence structure is not unrea-
sonable if we want to keep all of the model assump-
tions on the same level of simplicity.

On the basis of these assumptions the probability
distribution of an n-quark state is

n

dp„(x, x„)=Z —, 5 1-+x,.
/=1

3 nX~ 1 a(0) TT
LL xi LL

( 2 2/P2)1/2

There is one modification that we have included
in the actual calculation (Appendix B). To distin-
guish the three different quarks (6', 31, X) in the
core, we replaced the simple factor g~/k! by

4g)"(3g)"(3g)"
k& kx'. k, t k31

(2 4)

with k = ky + k2 + k3 where k„k„and k, are even
positive numbers. We still do not distinguish
quarks from antiquarks for simplicity reasons
only. The replacement (2.4) does not bring any
change in the final result.

We have not discussed the mediator of interac-
tion between quarks. Nothing is known about that.
If we want to manifest the interaction in terms of
field quanta, then neutral mesons (gluons) are the
obvious candidates. Indeed, there are indications
from the MIT-SLAC experiments' that the average
squared charge per constituent is less than ex-
pected in a quark model without neutral quanta
(see Appendix C). It is plausible to assume that the
momentum distribution of the gluons is the same
as for core quarks, apart from replacing the con-
stant g by g". To include gluons, we replace Eq.
(2.3) by

k,!k, !k, ! l!

3 n

X TT j.-n(o)~ dXix) LL
( 2 2/p2)1/2 &

(2.5)

with n = 3 + k, + k, + k, + l, where l = 0, 1, 2, . . . is the
number of gluons in the n-particle state.

The expression (2.5) can be used to determine
the following probability functions, which are of
importance in our discussions of actual processes:
G~ "(x)dx, i =0, 1, 2, 3 is defined as the probability in
a proton (p) or a neutron (n) with momentum
P»M to find a parton or its antiparticle of type i
with a momentum between P x and P (x+dx). The
labels i =1,2, 3 refer to quarks of the 6', 0t, X type,
while i =0 refers to the gluon. The following rela-
tions follow from SU(3) considerations:

(2.3)

where Z is an over-all normalization constant,
n = 3 + k (k = 0, 2, 4, . . . counts the quarks and anti-
quarks in the core). Z is not a free parameter in
the model since the total probability has to be
normalized to unity. The factor g~/k! in Eq. (2.3)
is the statistical weight appropriate to symmetric
particles, as suggested by the analysis of the
SU(3) multiplets.

G~(x) = G,"(x), G,'(x) = G",(x), G~(x) = G,"(x),

G',(x) = G",(x).
(2.6)

We divide these functions into two parts:

G',.(x) = Gf„(x)+ G', ,(x),

where the first term refers to the valence quarks
and the second to the core quarks. These functions
are connected with (2.5) in the following way:
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1-n (o) (lg)"(kg)"(rg)'&g"
(x'+ V, '/P')'" ~ k, !k, !k! l!

I 0 ~ ~ ~ & ~ ~ ~ ~

G,„(x}=G„(x)=0,

1
k

(kg)"'(3g)"'hg)"g"
Glc(x) G2c( } G3c(~) g I 2 2 IP2'l&I2 M & k 1 k f k/ j Q'=0 2 ~ ~ ~ ~ 'sl =Orl s2t ~ ~ ~

~ 2 0 3 ~ ~

(2.7)

n-1 n-1
x 1-fy(O) 1-n(O) 1-c (O)~

I

G'„(x) = 3 —G'„(x) .

The integrals and summations are carried out in Appendix B and yield for x& V. /P

Ny+3[1 —o(0)]) „(o)(1 )
„„(,„(„g

I {1—n(0})Ny + 2 [1 —n(0)]}

G'„=G'„=G,', = g, G'„(x) =-'gx-'(1 —x)-"»"'- '"',
(2.8)

with y =g+g'. Obviously we have

G„x)dx = G„x dx = 1 . (2.9)

The only undetermined constants are g and g'. n(0) is determined by Regge considerations as will be
shown later.

In the limit x-0 the core contributions are dominant,

const
G, (x) = G, ,(x) = for x- 0. (2.10)

In the limit x- 1 the valence contributions are dominant for i =1, 2,

Ny+3(1 —o)) 1 „»„(, )G~(x) =G~.(x) =2 1(I o)1( +2(1 ~)) ( —x)

G, (x) =G„(x)= —', G,„(x) for x- 1.
(2.11)

III. DEEP-INELASTIC ELECTRON -NUCLEON

SCATTERING

A. Kinematics

The kinematics of the spin-averaged process is
well known. We recite the most important kinema-
tic relations to keep the paper self-contained. The
cross section for a proton (of mass M) with mo-
mentum P„ to scatter a high-energy electron (of
mass m) from initial momentum k,„ to final mo-
mentum k2„ in the range d'k2 can be written as fol-
lows:

do= —q '[(k .P)'-m'M'] '"L W"' d 0
4& 1 pp E2

(3 1)
In Eq. (3.1) an average over the initial electron and
proton spin is understood; also we sum over had-
rons and the electron spin in the final state. The

virtual photon transmitted has four-momentum q„.
I„, is defined as the contribution of the electron-

photon vertex,

L„,= 2(k, &k»+ k, „k» —k~ kag&, +m g&„), (3.2)

whereas the hadronic current amplitude W„„(P,q)
can be expressed in terms of the two famous struc-
ture functions W, (q', v) and W2(q', v):

W„„(P,q) =4vM ", -g„, W, (q', v)

4g P q ~ I

(3.3)

W„„(P,q) is the commutator function of the elec-
tromagnetic current for spacelike q„,
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t»„.(»)»=-'EJ&'» '-(»t)I), ( ),).(0))ll»t)

(3.4)

where $„denotes the covariant spin of the proton.
Equation (3.4) has triggered a great deal of work
dedicated to the light-cone behavior of current
commutators.

Next, we give the cross-section formula in the
rest frame of the proton (where the electron scat-
tering angle is 8):

d2 M"' [W2(q', v) +2 tan'(-,'8)W, (q', t )]d QdE2
(3.5)

The quantity R, often cited in both experimental
and theoretical papers, is defined as the ratio of
the probability for longitudinal photon absorption
to that for transverse photons,

Wz(q', v)

Wr(q, v}
(3.11)

B. Results from the Relativistic Quark Model

Now we are ready to calculate the structure func-
tions W, (q', v} and W, (q', v} in the relativistic quark
model in the impulse approximation.

For fixed and large q' and v, the electron scat-
tering angle g, in the center-of-mass frame is
small,

with
8, -Q/P, (3.12)

AM n cos (2 8)
d 0 4E, ' sin (—,

' 8) '

0' =9'p —q g

-Q' =q'=-4E,E, sin'( —,'8) in the lab system,

and v being the energy loss of the electron in the
lab system, v=M 'P ~ q.

In Eq. (3.5) the mass of the high-energy elec-
tron is neglected. Hand expresses the cross sec-
tion in terms of total absorption cross sections
for transverse and scalar virtual photons,

2oi 2 oMott ~~'
5(x x )

dQ d ' dQ' (3.13)

in the P- ~ limit, so we can work close to the
forward direction. According to the parton hypoth-
esis, the proton in the c.m. frame is an assembly
of fast-moving constituents with given momentum
distributions. Suppose the quark "i"with charge
e,. in electron units has a three-momentum P,. =x,P;
then it scatters the electron into the angle 6,
with a cross section

= I'(or+ ea 2),
d 0

2

where

(3.6)
where x= Q'/2Mv is the invariant scaling variable
in the scattering process. In Eq. (3.13) we intro-
duced the covariant pointlike cross section

4m'a
g~= W~,

dOMoI I 4~&
dQ2 Q~ (3.14)

4m'a
&s=

(3 7)

with

W~ =W~,

WL =W2(1 —v'/q ) -W, .
(3.8)

I' is the flux of virtual photons and K their effec-
tive momentum,

2EjC
4v E,q (e —1) '

W -M
, W2=(P+q)2.

2M

(3.9)

1
1 + 2 tan'(-,' 8}(1—v2/q') ' (3.10)

The quantity e lies in the range 0 to 1 and is the
longitudinal-transverse polarization ratio of the
source of virtual photons provided by the scatter-
ing electron,

The 5 function ensures that the fraction x, which
determines the quark momentum is identical with
the value of the scaling variable x=Q'/2Mv when-
ever a quark scatters an electron.

The inelastic cross section of a nucleon can be
derived from (3.13) by integrating over the proba-
bility distributions of the quark momenta,

doMn~r ~ 2 X P,n

dQ'dv dQ ~ '
t)

t —1
(3.15)

Obviously we have e,'=-,' and q2'=e, '=9.
In the form (3.5) only the first term survives the

limit P- ~, 8, 0, and by comparison with (3.15)
we get the scaling result,

3

vW„„(q', v) = xge, 'G2("(x) = P, „(x), -(3.16)

where x is the scaling variable. The fact that vW,
is a function of only x is intimately connected with
the pointlike structure of the partons. Indeed, the
experiments have shown that, for fixed W, the
cross section varies at high energies as q, indi-
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F;(x) = .' F"„(x)—

&(y + 3(1 —n)) „(1 )I (1 —n)r(y+2(I —n)}

FN:(x) —2g(I x)-I+ +(3(1-n)
(3.17)

The asymptotic properties (2.10) of the G,. 's insure
a finite value for F~ „ in the limit of x- 0, in agree-
ment with experiments. In addition, we find F~(0}
=F„(0). For x= 1, the valence quarks only contri-
bute, and we see from (2.11) that

F„/F, = —', for x-l. (3.18)

(See Note added zn proof )The val. ue -', is easily
understood: The scattering intensity should be
proportional to the squared charge of the scat-
tering quarks. For x - 1, only the three valence
quarks contribute; hence the ratio of the cross
sections for the two nucleons ought to be equal
to the ratio of the sum of the squared charges of
the three quarks which make up the nucleon in
the primitive quark picture.

The result (3.18) is characteristic of the quark
model. Bloom and Gilman' obtain a different re-
sult from duality considerations. In their case this
ratio is equal to the ratio of the squares of the
magnetic moments: F„/F, —(-', )'. In quark-model
language, their result is the ratio of the square of
the geometrical sum of the quark magnetic mo-
ments, whereas our result is the ratio of the sum
of the squares of the quark magnetic moments. In
our case the quarks scatter incoherently even in
the limit x- 1; in their case the scattering is co-
herent in that limit.

The form of F(x) near x = 1 can be read from
(3.16) or (3.17). We obtain

8= r(l —n) r(y + 2(1 —n))
r(y + 3(1 —n))

(3.19)

It is interesting to compare this with a conjecture

cating pointlike structures inside the nucleon.
This is in full analogy to Rutherford's experiment
which found a q

' dependence in the high-energy
scattering of e particles in atoms. The scaling of
vW, (q', v) does not prove the existence of pointlike
constituents, but pointlike constituents necessarily
lead to scaling.

We now write

F,„(x)=F,"„(x)+F'(x),

where F~„contains the contributions of the valence
quarks and F' those of the core quarks which are
the same for p and n. With help of expressions
(2.8) we get

of Drell and Yan' and also Bloom and Gilman, ' who
showed that the exponent of the asymptotic behavior
of F(x) near x=1,

F(x) -(1 -x)", (3.20)

is correlated with the asymptotic q' dependence of
the elastic form factor F,(q'),

F (q2) ( I/ 2)(n+ I (3.20a)

-1+y + 2[1 —n(0)] = 3 . (3.20b)

With n(0) = —', from Regge considerations, the num-
ber of free parameters is now reduced to one only.

To extract W, (q, v), we have to calculate the
cross sections for backward scattering. In the
scaling limit we get a relation between the two
structure functions. From the direct calculation
we have found

3

2M W', "{q',v) =pe, 'G', "(x). (3.21)

Therefore, by combining (3.21) with (3.16), we get
a relation

2MxW, (q', v) = vW2(q, v) . (3.22)

It follows from (3.22) that the ratio of the probabil-
ity for longitudinal photon absorption to that for
transverse photons is

R = Q'/v' = x2M v ', (3.23)

which is vanishing in the ideal limit when x is fixed,
and v- ~. For finite q' and v, Eq. (3.23) is com-
patible with the data and provides some evidence
for the spin--,' nature of the nucleon constituents.

We now come to the Regge considerations which
will determine n(0). We base our considerations
on ideas put forward by Harari. ' Let us look at the
limit of F~„(x) and F'(x) for x=0. The functions
F~ „(x) correspond to the amplitudes of a reaction
between the virtual light quantum q„and the nu-
cleon. By introducing the variable (o =x ' =2Mv/Q',
it is seen that the limit cu-~ is equivalent to the

A further analysis within the framework of our
quark model (see Appendix D) reveals that the
behavior (3.20) of F(x} near x = 1 is related, not to
the elastic form factor, but rather to some average
of the form factors (G(q')}„of inelast c scattering
leading to states of low excitation energies 8'
[W' —M'&(1 —x)Q']. It is this average which
should figure at the left-hand side of (3.20a). How-
ever, it is reasonable to expect that the q' depen-
dence of the form factors of lowly excited states
are not very different from the elastic one, namely,
F,(q') —q '. Experimental evidence (see Ref. 4) has
borne this out. We therefore conclude that n=3.
This establishes another connection between con-
stants,
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limit of large laboratory energy v with fixed
squared momentum transfer Q'. This corresponds
to the Regge limit v- ~, for which we expect a
dependence )d' "&~o' where ar(0) is the value at t =0
of the Regge trajectory of the exchanged particle.
The core contribution F' becomes constant for
&- ~, suggesting it to be the "diffractive" part of
the scattering with n(0) =1. The valence contribu-
tion F' is different for the proton and for the neu-
tron. In fact, the cross-section difference between
neutron and proton F~ —F"„=-3F~ shoul. d be mediated
by the exchange of a meson w'ith the quantum num-
bers C =1, P = (-)', f = 1 which are those of the A,
meson. The trajectory of these mesons at t =0 has
the value n(0) =-,'. Hence we may use this relation
at least for the limit x- 0. We adopt the simplest
generalization of this result by extending the valid-
ity of (2.5) to all values of x.

The assignment of the valence-quark scattering
as nondiffractive and the core scattering as diffrac-
tive can be used to localize the different quarks
within the nucleon. It is known that the nondiffrac-
tive scattering is mostly "peripheral, " taking place
near the radius R of the nucleon, whereas the dif-
fractive scattering (shadow scattering) comes from
all impact parameters between zero and R. Hence
we may localize the valence quarks at the surface,
and the core-quark pairs anywhere in the interior
of the nucleon.

Several sum rules can be derived from our ex-
pression for F~„(x). We get the integral

1

I,'" = F, „(x)dx
0

1fG { )d,*',:"*
0

(3.24)

This rule can be interpreted by observing that

f1

x G", ~ xdx=1,
i=0

(3.25)

this being the expectation value of the total mo-
mentum in units of P. Hence we may consider I,
to be an average squared charge of the partons
weighed by their momenta. Another integral is

3

I2"' = F„p x —= e 2 G". & x dx.
i=1

(3.26)

It represents the sum of the squared charges of all
partons. Since the number of partons goes like
ln(P/M}, this integral diverges for P- ~. The
diff erence

3

I, —I,"=gf{G,.{*)—G",.{ )],.d'

i=1
does not diverge. We conclude from (2.6) and (2.9)
that

I, -I, =e, —e, =-, .P n 2 2 (3.27)

This very simple and definite sum rule is based
upon our most radical simplification: the assump-
tion that the core carries vacuum quantum numbers
so that the isotopic spin of the nucleon is complete-
ly carried by the valence quarks.

C. Comparison of the Model Predictions with the

MIT-SLAC Experiment

We expect on very general grounds that scaling
holds in the limit Q', v- ~. Assuming a small val-
ue of R, the quantity vW2 was found to roughly fall
on a universal curve as a function of a single vari-
able x= Q'/2M)d. The scaling of {)W, was found to
be improved, particularly for smaller values of
Q' by another choice of the scaling variable,

Q'
2Mv+M' (3.28)

One observes that x' and x are identical in the infi-
nite limit. Empirically, the new variable x' allows
a better determination of the scaling function vW2

from the data at finite Q'.
Bloom and Gilman' discuss the theoretical signif-

icance of the new variable in terms of finite-en-
ergy sum rules. The parton model contains many
reasons for expecting a deviation from the exact
scaling behavior of the kind indicated by (3.28),
particularly for smaller Q' values. The scattering
becomes coherent for Q' comparable to the size of
the nucleon. Therefore, particle correlations may
play an important role. In addition, a smooth cut-
off function f(k') for the transverse momentum
distribution gives corrections to the scaling vari-
able x depending on the dimensional parameter
(k'). Scaling sets in much fa.ster than we would ex-
pect in any currently discussed theoretical model.
We cannot give any reasons for this in our model
except for a suggestion recently made by Lee. '
We will take the point of view that the theory pre-
dicts the scaling function in the ideal limit; the
variable x' is used to provide a smooth extrapola-
tion of the function to finite data.

Let us compare the experimental scaling func-
tion F (x) with the predictions of the relativistic
quark model. We set o{(0}equal to —,', which is the
accepted value of the intercept of the A2 and P'
trajectories. Then Eq. (3.20) gives y =3. We are
left with the only free parameter g, which must
lie between 0 and 3.

Figure 1(a) shows that a very good fit is obtained
with g=1. It is surprising that the adjustment of
one constant only yields a function which is so
close to the observed values in the whole observed
region. The figure g = 1 must be interpreted by stat-
ing that there are twice asmany gluons as there are
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FIG. 1. (a) The inelastic structure function vW& as plotted versus w'. The solid line is a fit with n(0) = ~, y = 3, and
g= 1. The dashed line is the valence-quark component, the dotted-dashed line is the core contribution. (b) vp'& as
a function of x . The solid line is the best experimental fit. The dashed line is our best fit. We plotted the two com-
ponents of the structure function separately. The dash-dot line is the valence-quark, the dash-dot-dot-dot line is the
core contribution. The curve with g= 3 is too large, particularly for smaller x.
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FIG. 3. The neutron-proton ratio as a function of cu.

FIG. 2. The proton-neutron difference as a function
of (d.

quark-antiquark pairs in the core. Figure l(b) ex-
hibits the separated contributions of valence and
core quarks. The figure also shows the curve for
g=3, which would be valid if there were no gluons.
For small x it is too large by a factor of 2. The
valence quarks are dominant for larger values of
x. The difference F —F" and the ratio F"/F' of
the scaling function for protons and neutrons are
plotted in Figs. 2 and 3, respectively. It was con-
venient here to use the variable e=x '. The ex-
perimental values of E" are very preliminary, and
it is not clear at this time whether the model pre-
diction of -', for the ratio near cu-1 is borne out or
not.

Let us compare the values of the integrals I~~ and

I," as defined by (3.24). Inserting g=1, o.(0) =-,',
and y = 3 into (3.19), we get

1 1

I,~= F~(x)dx=0. 16, I,"= F"(x)dx=0.12.
0 0

This compares satisfactorily with the integrals
over the observed values' which are known only
for x&0.08. They are

r
1 1

F~ (x)dx-0. 14, F "(x)dx-0.10. (3.29)
0.08 0.08

The situation with the difference I, —f~ (3.27) is
less satisfactory. This value does not depend on
the choice of constants in our model and should
be —,'. It is difficult to extract the correct value
from the experiment, since the behavior of F(x)
at small x is important. If one extrapolates the

difference E' —F" towards x-0 with the expected
asymptotic dependence x '~', one obtains a rough
estimate of I~~ -I,"=0.2~0.1. This is somewhat
below the expected value. It is not clear, however,
whether the extrapolation is correct. The leading
Regge term may not yet be dominant at x-0.08.
If this were so, our assumption of the validity of
P(x) = x' ' in (2.2) for the whole region 0& x& 1
would be a qualitative approximation only.

IV. SPIN DEPENDENCE OF INELASTIC

ELECTRON -NUCLEON SCATTERING

Spin-dependent effects' "in deep-inelastic
electron- (or muon-) proton scattering provide an
important test of any parton model. Let us con-
sider the scattering of a polarized electron beam
with a polarized proton target. The particles are
polarized along the direction of motion. %e com-
pare the cross sections for the case of parallel
and antiparallel spin of the colliding particles.
The measured asymmetry is defined by

dcrt~ —dcrttA=
dcrtl + dcrtt

(4.1)

dcJ~~ is the cross section when the spins of electron
(muon) and proton are parallel and along the direc-
tion of motion of the incident electron (muon); do'&

is the cross section for antiparallel spins. Sum-
mation over the final electron (muon) spin and the
final hadronic states is understood in Eq. (4.1).

First, we review the kinematics of spin-depen-
dent inelastic electron-proton scattering. The
spin dependence of the differential cross sections
is given by

d crtl d crtt Q E2 1—,[(E,+E, cos 8)d(q', v)+ (E, E, cos 8)(E,+ E,)Mg—(q', v)], (4.2)

where E, and F., are the initial and final electron energies, as viewed in the laboratory frame, and (9 is
the electron scattering angle. Spine line up as defined above. The electron mass is neglected in Eq. (4.2).
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d(q', v) and g(q, v) are the structure functions in the spin-dependent current commutator of the electro-
magnetic current sandwiched between proton states with covariant spin $„:

with

~„)+ q)=2 I &'* )(')"'&l)),„) ) ), )0)l)P)) —()- —))t, (4.3)

W„"„(p,q)=e„„,.q'~'d(q', )+(( q) e„„.q'p'g(q', ). (4 4)

Th antisymmetric tensor amplitude 8"„,contains the spin dependence which is linear in („.
The asymmetry at a given angle (9 is

da)) —dc)', M '(E, +E, cos6)d(q', v)+(E,+E,)(E, E, c-osq)g(q', v)

do«+dc)~ 4W, (q', v)+2cot'(-,'e)W, (q', v)
(4.5)

Now we calculate (4.5} in the relativistic quark
model. According to our assumption, the core
has vacuum quantum numbers with zero angular
momentum, and the spin-unitary-spin wave func-
tion of the three valence quarks in the nucleon
ground state is dictated by SU(6). We assume that
this wave function, reminiscent of a nonrelativistic
theory, is appropriate in relativistic models too."
The spin-unitary-spin wave function of the three
valence quarks in the symmetric quark model,

~&~
(2 I

6'&&&6'&) + 2
l
6'&4'&r~&) + 2

l
st&6'&6'&)

1

-
~
6 t6'istt) -

~

6'&stctpt) -
~

4'&st&6'&)

—~SIt6 i6 t) —~sit~I t6 i) —~6 i6 tStt)),

Lim v g(q v)=0.
Q2~ ~; x fixed

In that case

(4.9)

x;P and summation over the different particle
states. The factor —,

' is calculated from the explicit
structure of the spin —unitary-spin wave function in

Eq. (4.6).
In Appendix A we have calculated the scaling

form of the structure functions

lim v [d(q', v)+ M vg(q', v)] =)),—",G'„(x) . (4.8)
Q2~ ~; x fixed

If we ignore every possible angular momentum

complication in the relativistic ground-state
structure, we get that v'g(q', v) vanishes in the
scaling limit

(4.6) vd(q', v)- ~ —,",G'„(~.). (4.10)

G'„(x) = G',„(x)+ G',„(x),
(4.7)

where d'a" /dq'dx, , etc. , are the pointlike cross
sections for a parton with the appropriate spin
dependence (spin —,', charge e, and three-momen-
tum x,P}. Naturally, we work again in the elec-
tron-proton c.m. system at a. given value of the
scaling variable x= Q'/2Mv. G~(x) denotes the
probability density to find a valence quark with
three-momentum xp. In Eq. (4.7) we had to form
the incoherent sum of the elementary cross sec-
tions including an integral over the three-momenta

describes a proton state with spin +-,' in the z direc-
tion (this corresponds to helicity +1 for the state
moving fast in the z direction).

The wave function (4.6) yields a definite predic-
tion for the polarization when we combine it with
the single-particle distribution of the model. The
asymmetry is given by

d2 I& d2

t& + cl(T 2 p d g d 0'

Two sum rules follow from current algebra for
the spin-dependent structure functions. They are
some slight extensions of Bjorken's sum rule for
the spin-dependent cross section. " First, we

observe that field-theoretic models with spin-
fields or smooth Light-cone algebra, , indicate scal-
ing behavior

lim vd(q', v) = cy(x) (4.11)
Q~ ~; x fixed

and

lim v'g(q', v) = P(x) . (4.12)
Q2 ~; x fiXcd

Equation (4.11) implies a leading light-cone singu-
larity -e(x,)5(x') in the Fourier transform of
d(q', v), and Eq. (4.12) is equivalent to a step-func-
tion singularity -e(x0)8(x ) in g(q, v). These ob-
servations lead to two different sum rules if the
algebra of currents is extracted from the quark
model,

1 1
dx o.(x) =Z

27' 0

(4.13}

~~

1

dxP(x) = o.
0
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[j,(0, x),j,(0)j = -2ie, „,j,'(0)5'" (x),

where

{4.14}

j„(x)= gW„Q4,

j,',(x) = ttrs&„Q' j =
9 4'r, W„4+ ~ Pr,&„QA

02

I

~

Finally,

Z+ —,
' G~ G~ proton target

Z = c

Z- —', ~G„/G~~ neutron target.
(4.16)

Here ~G„,iG~~= 1.2 is the ratio of ii-decay coupling
constants and Z is a modeL-dependent isoscalar
contribution. In the free-quark model,

& + proton
)

9

Z=
0 neutron .

{4.17}

Here Z is defined by the matrix element of the

axial-vector current appearing in the space-space
commutator of the electromagnetic current,

chukon pole is decoupled from the spin-dependent
amplitudes, but the cut may contribute. This cut
contribution describes a spin-dependent diffra. ctive
component in the virtual photoabsorption cross
section. It vanishes in our model because we did-
not put any angular momentum dependence in the

core, which has been associated with diffractive
scattering.

Also, P(x) =0 is a consequence of the assumed
simple angular momentum structure of the nu-

cleon-bound state. In other field-theoretic models'

P(x) is a nontrivial function of x reflecting compli-
cated angular momentum effects when spins and

orbits line up in a relativistic bound state.
Taking the explicit expressions for the spin-de-

pendent structure functions, we have calculated
the asymmetry (4.5) in the deep-ineiastic region
where Q' ~ 1 (GeV(c)' and W~ 2 GeV. Figure 4

shows the asymmetry at fixed angle 9 and beam
energy F, as a function of ~. The two different
curves on the same plot are asymmetries using
the scaling function (4.19},E, = 10 GeV, and (9=12'
and 18'.

The polarization is large and positive over a
broad range of the energy loss in the laboratory
system. The sign of the asymmetry is really in-
formative; a negative value from experiment would
inevitably rule out a simple quark model. It should
be kept in mind that the quantitative predictions
depend on our special assumption that the valence

In our quark-parton model Pp „(x}=0 and from
{4.13)

Q4t—
j-"I, symme tt y

proton
1

n{x}dr= .

2n J
~ 0 neutron.

{4.18)

0.3t-

6= IB'

E, = IOGeV

The vanishing right-hand side of Eq. {4.18}for
neutron follows from replacing the wave function
(4.6}by the appropriate neutron state.

In conclusion, the quark current-algebra sum
rules are identically satisfied in the model. This
is not a surprise, since both approaches are es-
sentially free-three-quark structures in the spin-
dependent case if we wa.nt to calculate the Z value
expli citly.

From the valence-particle momentum distribu-
tion in our model, it follows that the functional
form of the scaling function cy{x) is given by

0.2—

O. I—

~ g+}+2a(0} (4.19) l5IO

I i i i i l

Some remarks on the Regge asymptotics of spin
dependence are appropriate here. The Pomeran-

FIG. 4. The asymmetry prediction of the model at
fixed incoming energy E& and angle 0 as a function of cu.
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quarks carry all quantum numbers and the core is
neutral in spin and charge. The sign of the asym-
metry, however, is most informative; a negative
value from experiment would inevitably rule out
any reasonable quark model.

V. MASSIVE p+ p PAIR PRODUCTION

In this section we closely follow the analysis of
Drell and Yan, ' who have shown how to apply the
impulse approximation to massive p. 'p. pair pro-
duction in hadron-hadron collisions at high ener-
gies.

Drell and Yan argue as follows: If we want to
satisfy the kinematical constraints allowing appli-
cation of the impulse approximation in hadron-
hadron interactions, we need to deal with inter-
actions at high energies Ws which absorb or pro-
duce a lepton system of large squared mass Q'

such that the ratio Q'/s is finite. They discuss in
detail an observable process meeting this require-
ment,

p+p- (u'u )+anything.

Their remarks evidently apply to any other collid-
ing hadron pair, and to other final lepton pairs
(e'e ), {p.v), etc.

Drell and Yan conjecture that a process like (5.1)
can be viewed in an appropriate infinite-momentum
frame as the annihilation of pointlike constituents
into p. 'lL(. pairs. On this basis, we will calculate,
in the limit Q'/s finite, Q'- ~, the cross section
for the reaction (5.1) as an incoherent sum of par-
ton-antiparton annihilation processes (Fig. 5}.
The momentum distributions of partons and anti-
partons can be taken from our model of the in-
elastic lepton-nucleon scattering.

The general expression for the cross section to
form a lepton pair of squared mass Q' is

1

([s- (M, +M, )'][s- (M, -M, )']f' ~'

(5.2)

where a spin average is understood, and

Q =X]XpS2=

FIG. 5. Kinematics of the p+p pair-production process.

E(Q, )=-16 'EE,f, Eqq(q —Q)

X d'Xe- P1~2 in j „Xj u P ~1~2 in

(5 3)

In Eqs. (5.2) and (5.3) Z„P„M, and E„P„M,
are the energies, momenta, and masses of the
two initial hadrons; pre„ is the muon mass, and
s = (P, +P,)'. The integral over pair momenta,
d'q, is restricted to the mass hyperboloid q = Q
in the high-energy limit.

We are interested in the limiting behavior of
W{Q', s) when Q'/s is fixed and Q'- ~. The
structure function W(Q', s) is dimensionless;
therefore, in theories in which the limiting func-
tion does not depend on characteristic dimensional
parameters we expect scaling behavior,

lim W(Q', s) = W(T) (5 4)
Bj

with r= Q'/s& 1. Then from Eq. (5.2) we can write
the differential cross section in a simple scaling
form,

$0 4m~ 1
W(~) . (5.5)

In the parton model the scaling (5.5) is obtained
again by applying the impulse approximation, i.e. ,
by assuming that the annihilating partons are mov-
ing as free particles. This assumption is some-
what more far-reaching than in the case of electron
scattering, since the two partons move rapidly
against each other. Drell and Yan investigate the
limiting scaling behavior of W(Q', s} in a field-
theoretic model with transverse momentum cutoff
in the strong-interaction vertices. Future experi-
ments should confirm or disprove Eq. (5.5) by
measuring the Q' dependence of the cross section
at different energies.

After these general remarks we calculate
W(Q', s) for reaction (5.1) in the relativistic quark
model. The matrix element for annihilation of a
quark-antiquark pair becomes

)fq 66(q Q)-fq *''(6-6(q'(*)1'.(6)l'"qq&

e
5(x,x, —r),

10 20

(5 6)
where a spin average over the particles is under-
stood, e, ' is the charge squared of an individual
quark (of type i) measured in the electron units, and
x, and x, are the fractions of the quarks' respective
proton momenta. As expected, W depends only on
the scaling variable 7. The argument of the 5
function indicates that we have used the high-ener-
gy approximation for the momenta. Indeed, in
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the c.m. system of the two colliding protons,

kl xlP y

k =-x2P,

and

x g e,.'G,'(x, )G,"'(x,),
i

(5.8)

where 6,'.(x) and G',. '(x) are the probabilities to find

a quark or an antiquark of type i with momentum
xP. The functions G;(x) introduced in (2.7) com-
prise both particles and antiparticles. In terms
of those expressions, we easily find

G,'(x) = G, „(x)+ —,'G, ,(x),

G,"(x) = —,'G, ,(x),

since antiparticles are found only in the core.

(5.9)

Q' = (k, + k)' = (x, + x )'4 s —(x, —x,)'-,' s = x,x,s .

(5.7)

The differential cross section (5.2) now assumes
the simple form in the scaling limit,

dg 4pe' 1
dq2 3q2 @2 dx, dx, 5(x,x2 —T)

0 0

c

�do
4 p(y2

2 3Q2 q2 E(

with

(5.10)

The derivation of (5.8) is transparent physically.
The differential cross section is the incoherent
sum of elementary annihilation processes weighted

by the probabilities to find a quark of type i with
momentum x,P to annihilate with an antiquark of
momentum -x,P. The elementary cross section is
calculated from Eqs. (5.2), (5.3), and (5.6).

The data" to which we want to compare Eq. (5.8)
were obtained by taking a limited cut of the events
leading to a given lepton pair squared mass of Q'.
Only those events were detected for high-energy
protons incident on a uranium nucleus leading to
muon pairs of total momentum Q & 12 GeV/c and

emerging with Q, /Q & ~~ in the laboratory system.
Therefore, these experimental resolution functions
must be introduced before a detailed comparison
can be made. %e follow Drell and Yan's method
of taking care of that cut and introduce a longitu-
dinal momentum cutoff corresponding to q~,„=12
GeV/c. The experimental constraint that q~&q~
can be expressed as a step function to be inserted
directly into (5.8),

1 1

F (r)- dx dx, 6 „, & " +6 „, ' '" 5(x,x, —r) Qe, 'G;'(x, )G' (x,) .
2 ' s S

(5.11)

In Eq. (5.11) the integrand has been symmetrized

Figure 6 shows the differential cross section as
calculated from Eq. (5.11). We have plotted the
cross section with g=3 (no gluon) and with the g
value which corresponds to the best fit for the in-
elastic electron scattering. Some remarks are
a,ppropriate here:

(a) A large contribution to the cross section
comes from the annihilation of a valence quark with
an antiquark in the core and vice versa. The rea-
son for this is that in the relevant kinematic re-
gion x lies between 1 and —,', and in that range of
the scaling variable there are many more valence
quarks than core quarks [see Fig. 1(b)].

(b) In Fig. 6 we have plotted the differential
cross sections for s =900 (GeV)' and s =2500
(GeV) in the energy range of the new accelerators
(National Accelerator Laboratory and CERN Inter-
secting Storage Rings). The cross sections have
been calculated with the same momentum resolu-
tion as at s = 60 (GeV)', setting q~;„equal to 12
GeV/c.

(c) The total cross section at 29.5 GeV incident
proton energy [s = 60 (GeV)'] in our model is 1.9
x10 "cm', compared to the experimental number
(2.9+0.3)&10 "cm'. lt is no surprise that our
total cross section is somewhat smaller since a
large contribution to the total cross section comes
from the relatively small Q' region where the
model curve is below the data points.

(d) In our calculation we concentrated on the
simple annihilation process and ignored every
other diagram [e.g. , parton+parton (antiparton)
—parton+ parton (antiparton) + p.

'
p, pair].

VI. HIGH-ENERGY INELASTIC
NEUTRINO-NUCLEON SCATTERING

High-energy inelastic neutrino-nucleon processes
provide an independent test of the theoretical de-
velopments for deep-inelastic electron-nucleon
scattering. " The detailed comparison of the model
with available neutrino data will be published else-
where. Here we review only some of the results
which are relevant in comparison with electro-
production.
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We write, for high energies only,

cI'cT O' Ep, v v= ——' P(Q', v) 1+—(L) ——(R),dQ'dv 27' E, ' E, E,

where

(6.3)

FIG. 6. The p, 'p, pair production cross section as a
function of the invariant mass of the j(L' p, pair. The
solid line is g= 1, the dashed line is g= 3. The dotted
line corresponds to g = 2500 (GeV)~, the dashed-dotted
one is s = 900 (GeV}; both are plotted with g = l.

k, =four-momentum of neutrino,
k, = four-momentum of muon,

q = k, —k, = momentum transfered from leptons
to hadrons,

v FI y E2 energy t ransf e r in laboratory fram e,
P= four-momentum of target nucleon,
6=angle of produced muon relative to incident

neutrino,
Q' = -q' =4K,E, sin'(-, 8).

For the hadronic current operator we use the
Cabibbo current

j„=(V&—A&) ' 'cos&c+(V„-A„) "='singe.
(6.1)

The normalization is such that in the quark model

j„=(P y„(1—y, )(&cos Hc + X sin so), (6.2)

where 5', X, A. are the quark field operators. It
is natural to describe the process in terms of
cross sections corresponding to the three helicity
states of the virtual W exchanged between the lep-
tons and hadrons: right-handed (R), left-handed
(L), and scalar (S).

In notation we follow Bjorken and Paschos, who
have derived general sum rules in the framework
of the parton model.

The kinematics of the process is shown in Fig. 7,
where

P(Q, v) = ——,, 1 — (2gs+crR+oi).
2p v 1+@' v' 2Mv

(6.5)

Without the high-energy approximation in (6.8), we
write

, (F-, R.)(" Q')'"
+ '

2
(I. -R) .

1 2

(6.6)

The muon mass is neglected in Eq. (6.6).
We again assume that the neutrino is scattered

incoherently by each parton in a pointlike fashion.
For spin- —,

' quarks, only cri contributes to the
neutrinO CrOSS SeetiOn aS V, Q'-~; CJR =Cr~ =0 in
this limit. Similarly, for spin--,' antiquarks, only
vR is nonvanishing in the asymptotic limit.

For neutrino-induced reactions, we find

vP(R) = 2xG,"(x),

vP(I, ) = 2x[G,'(x) cos'sc + G,'(x) sin' ec] .

(6.7)

(6.8)

(I.) = ' '=1, (R) =(T cr

OR + err, + 2cr s crR+ crz, + 2cr s
(6.4)

crR, p~, and crs are the appropriate helicity cross
sections for "virtual TV"-nucleon absorption, de-
fined analogously to the Hand cross sections used
in electroproduction. p(Q', v) has the same defi-
nition as H~, (Q', v) in electroproduction and can be
expressed in terms of the heiicity cross sections
as



INE LASTIC LE P TON-NUC LEON SCATTERING. . . 3433

vP (R) g (I x)-1+ P +3alol

vP„(R) = vP, (R),

Ny + 8(1 —(('))
r(1 —n) r(y + 2(1 —o.})

x(1 — )
x'~" (') (1 „) x+y. 3 (o~+ 3g

vP„(L)=2vP, (L)-3g(l —~) ""' '" (6.10)

It is straightforward to calculate the integral in
the cross-section formula (6.9) using Eq. (6.10).
We get

o... =0.55x10 "E, cm'/nucleon

to be compared with the experimental value,

(6.11)

o„, =(0.8+0.2)x10 ' E, cm'/nucleon. (6.12)

In calculating Eq. (6.11), we have used a(0) = —,'.
@ =3, and g=1. The detailed analysis of the model
for neutrino- (antineutrino-) induced reactions will
be published in a separate paper.

VII. CONCLUSIONS AND SPECULATIONS

The considerations in this paper show that the
inelastic scattering of electrons by nucleons in
the limit of large momentum transfer q and ener-
gy loss v, but finite ratio (d =2Mv/Q' can be quali-
tatively reproduced by a model in which the nucleon

The G' functions are defined in (5.9). In our
model vp(R) receives contributions only from the

core with antiquarks present, whereas vP(L} has
both valence-quark and core-quark contributions.
The scale-invariant form of vP(R) and vP(L} allows
us to write (6.3} in the simple form

G'MEG ME, vP, +vP„
tot

0 2
(6.9)

where (R) and (L) imply that the appropriate
averages over x have been taken. This formula
exhibits the linear dependence of the total neutrino-
nucleon cross section on the incident neutrino en-
ergy. In (6.9) we included an average over protons
and neutrons in the target.

It is important to recognize that the experiment"
has been done at moderately high energies in a
bubble chamber, so a non-negligible part of the
inelastic events is not "deep-inelastic. " In de-
riving Eq. (6.9), the scaling functions were used
in the whole inelastic phase space. The linear E
dependence of the total cross section in the CERN
experiment is remarkable, and we are tempted to
compare it with the quark model.

Using the definite single-particle distributions
of the model, we have the following expressions
for neutrons and protons:

in the center-of-mass system is represented as
an assembly of free quarks, with fractional
charges and unity form factor. The nucleon con-
tains the three well-known quarks of the naive
quark model (valence quarks) and, in addition, an

undetermined number of quark-antiquark pairs.
The longitudinal momentum distribution of the
pairs is proportional to the relativistic phase space
(-dP/Po) restricted by the condition of small
transverse momentum. The momentum distribu-
tion of the "valence quarks" is dP/P, '(', suggested
from Regge considerations. The agreement can be
made quantitative by adding uncharged "gluons, "
with a phase-space momentum distribution. The
model, with its constants adjusted to agree with
the electron scattering experiments, also repro-
duces the observed total cross section for inelas-
tic neutrino scattering and gives the general fea-
tures of the presently observed high-energy p,

'
p,

pairs produced by proton-nucleon collisions. It
predicts a scaling property of this latter process,
namely, the appearance of a structure function de-
pending only on the ratio s/q'

I
see Eq. (5.4)] .

One special feature of our hypothesis is the as-
sumption that the three valence quarks alone carry
the specific quantum numbers of the nucleon; the
pair core has vacuum quantum numbers. This as-
sumption was made for the sake of simplicity. It
has important consequences in regard to the pre-
dictions of the difference between neutron and

proton scattering cross sections and the predic-
tions of Sec. IV about the dependence of the scat-
tering on the relative spin directions of the part-
ners. Future experiments will show whether this
assumption is sensible or not.

The proposed model implies that the inelastic
scattering of an electron by a nucleon is an elastic
scattering of the electron by a single quark. The
applicability of the free-quark model (impulse ap-
proximation) to presently available energies im-
plies that the bindings between the quarks are weak
compared to the applied momentum transfers.
Hence, one would predict that single free quarks
be produced in the process. The evidence against
this prediction is overwhelming.

One may conclude from this failure that the pro-
posed quark model is invalid and its agreement
with experiments is purely accidental. However,
if the predictions of the model will be estab1. ished
by further experiments, one may be forced to con-
clude that the quark model in its present form is a
reasonable though incomplete model of reality in
the sense that the quark concept in its present form
may be only partially appropriate for the descrip-
tion of what goes on within a nucleon. If one wants
to retain the concept, one would have to introduce
a new principle which forbids quarks to leave the
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bounds of a hadron, except in pairs with antiquarks
or in triplets. The effect on the dynamics of a
single quark would be reminiscent of a potential
tending to infinity for large distances away from
the hadron, like an oscillator potential. When
the single quark is forced by the quasi-potential
to change its momentum, some quark-antiquark
pairs would be created (bremsstrahlung), enabling
the quark to grab an antiquark and to leave the
nucleon.

The same difficulty appears when one tries to
apply the eoneepts of our model to the hadron
production by electron-positron collision experi-
ments. One would conclude that all the electron
pair can do is to create a quark pair; the two part-
ners would move in opposite directions until they
reach the limits of the aforementioned quasi-po-
tential. Then additional quark pairs are produced,
which would allow the appearance of hadrons as the
end product of the process. The total cross sec-
tion for such h.'adron production should be the
quark pair-production cross section, summed
over the three quark types. This is two-thirds
times the muon pair-production cross sections.
It should be valid only in the limit of high energy
(Z»M). Actually, this result is not far from the
value obtained in the Frascati experiments. "

The idea of an effective oscillator potential act-
ing upon the constituents of hadrons has also ap-
peared in different contexts. There are recent
attempts to describe hadron dynamics with quark
oscillators, and the equidistant resonance spec-
trum resulting from the Veneziano approach"
points to a system of harmonic oscillators. Are
these oscillators connected with the nonexistence
of single quarks outside the hadron?

Note added in proof. A recent, more complete,
analysis of the data obtained by the authors of
Ref. 4, taking into account all necessary correc-

tions, has revealed that the values for W2/W~2

shown in Fig. 3 are too high for ~- 1. The inter-
cept at ro =1 seems to be definitely lower than 3

and probably lower than —,'. This experimental
result would raise considerable doubt as to the
validity of our assumptions. Within the frame-
work of our picture of va1.ence and core quarks,
a low ratio of W,"/W~ invalidates the assumption
that the three valence quarks have the same mo-
mentum distribution G(x). J. L Friedman sug-
gested that the following assumption would give
values of W,"/W~2 lower than —',: One would have to
assume that, in the proton, the 6'-type valence
quarks have a higher G(x) than the SI-type ones
for x- 1. In the neutron the situation mould be
reversed according to SU(2) symmetry. In the
extreme case of G~2(1)/G~~(1) = 0, W",/W~2 would as-
sume the value 4 at x =1. A value lower than —,

'

is excluded by any quark model. ISee O. Nacht-
mann, Orsay Report No. LPTHE 71/29 (unpub-
Lished). ] It should be pointed out that a replace-
ment of the valence neutron quark distribution
v x(dx/x) inside the proton by (1 —x)v x(dx/x) re-
produces the new data and does not give rise to
any qualitative changes in the other predictions
made in this paper. However, it would be diffi-
cult to find a simple explanation for such pro-
nounced asymmetries in the distributions of the
valence quarks.
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APPENDIX A

First we derive expressions for the spin-averaged structure functions. In the electron-proton c.m.
system, we write (3.1) in terms of these structure functions as follows:

-qW(q' v)+ ' '+ — ' W( '
v)

d3k

(2.) 2Z,

The electron mass is neglected in (A1). It is
straightforward to calculate the limiting behavior
of dv when the three-momentum P of the proton
goes to infinity, but q' and v are fixed at large
values. In the P- ~ limit (with fixed q' and v),
the scattering angle is small (6-0) which makes
it plausible that W, is the leading term in the as-
ymptotic expression,

do ~ —8n'q 'W, (q', v)d'k, .P
s I (A2)

We evaluate the limiting behavior of the cross sec-
tion in the parton model in which the probability of
electron scattering in a given range is constructed
from elementary processes. Suppose that a quark
of type i with momentum P, = x;P and charge e; (in
electron units) scatters the electron in range d'k, .
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The cross section for this elementary process with

the same q as in (A2) is given by

«, (x)=-. e' e q
& P 5(2q P, +q )

2

1

d3k
x (,'q~+-2P, ~ k,P, ~ k, + —,'p'q')

In the P- ~ limit the 6 function in (A3) becomes

(All)2M W, (q', v) =pe G;(x).

Formula (All) has been used in Sec. III to calcu-
late the ratio for longitudinal photon absorption to
that for transverse photons.

Finally, we extract the spin-dependent structure
functions from the quark-parton model. The pro-
cedure is the same as before. We calculate the
asymptotic form of the spin-dependent cross sec-
tions in the electron-proton c.m. system,

5(2q P;+q') = 5(x, —x),
1

2Mv '

(A4)

—,'(do» —«») n'P '(vM-q')

x[d(q', v)+Mvg(q', v)]d'k, .
(A12)

do, (x,)-—8o.'q 'e —' D(x; —x)d'I", . (A5)

In the physical scattering process we have to
multiply do, (x, ) by G, (x, ) which is the probability
function to find a quark of type i with momentum

x,P. Comparison of (A2) with (A5) gives the con-
tribution of quarks of type i to vW, (q', v) for fixed
.i. with variable x, .'

which tells us that the electron is forced to select
a quark with x, = x by energy-momentum conserva. -
tion.

Asymptotically, we find

The structure functions d(q', v) and g(q', v) have
been defined in Sec. IV. Equation (A12) is valid
under the same conditions as the spin-averaged
limits: q', v are large and fixed, P- ~. Notice
that the spin dependence is of order P ', but this
limit is used and only used to express d(q', v) and

g(q', v} in terms of the probability functions G;(x}.
After having the explicit functions, we calculate
the asymmetry in a realistic kinematic region.

For a quark of type i with momentum x;P and
charge e, , the spin dependence is

(do," -da,")=4a'P 'e, 'Q '5(2P; q+q')d'k, .

(A13)

vW,"(q', v) = e, 'x, 5(x —x, )G, (x, ) . (A6) Using (A14}, we write

We get the complete structure function by integrat-
ing over .~,. and introducing a summation over i,

vW, (q', v) =xone, 'G, (x). (A7)

This is the formula we have used in Eq. (3.16).
Next, we extract W, (q', v). The asymptotic limits

of the cross sections can be calculated in back-
ward scattering J9= v. In that special case IVY(q v}
is the dominant term in the phenomenological ex-
pression,

—,'(der,"—do,". ) = 2n'P 'e, '(MQ'v) -'6(x —x, )d'k, .
(A14)

According to our assumption, only valence
quarks contribute to (A12). The wave function (4.6)
dictates how to calculate the spin dependence on
the three valence quarks with probability functions
G;,(x;). In comparison with (A12), we have to in-
troduce G, „(x,) in (A14) and use the wave function
(4.6). We get

d'k
P~~

2

—
[ vd(q', v) +M v'g(q', v) J, =v5 G, „(x). (A15)

(A8}

The same limit for a quark of type i is

d'k
do (v )- -'e'q e.'q'6(2P ~ q+ q')

(2~j'2S,
(AB }

Again, writing the 6 function in the form (A4), we
get by comparison

2M W~~'~(q', v) =e, '5(x —x;)G, (x, }, (A10)

where we have weighted the contribution of do,. (x, )
to (A8) by the probability function G, (x,). After
summation and integration we find

(A16)

Equation (A16) is a very strong conclusion, in-
dicating that spin dependence of the scattering by
neutrons should vanish in our model asymptoti-
cally.

This form has been used in Sec. IV.
If spins line up parallel and antiparallel along

the direction of motion, then it is clear from
(A12) that only the d+Mvg combination can be ex-
tracted. Equation (A15) is valid for protons with
the valence configuration (4.6), whereas the wave
function (4.18a) for neutrons yields a vanishing
coefficient on the right-hand side of (A15),

v[d(q', v)+Mvg(q', v]„=0.



3436 J. KUTI AND V. F. WEISSKOP F

lim v'g2, (q', v) =()
Q2~~; x fixed

(A17)

This observation has been derived from the as-
sumption that we ignore every possible angular
momentum complication in the relativistic ground-

It is not hard to show that v'g(q', v) does not con-
tribute to the scaling function in (A15),

state structure; that is, the quark spins always
line up to yield the spin of the proton at rest or the
proper helicity combination in the fast-moving
state.

Field-theoretic models indicate that (A17) is not
necessarily true in the presence of orbital angular
momenta.

APPENDIX B

In this Appendix we indicate how to calculate the functional form of the single-particle distributions and

the scaling form of the structure functions. The valence-quark distribution is given by

1-n(0) (I g)"(I g)"(-'g)"(g')' ~

with

n-1
(B2)

Here n=3+)t.', +k'2+03+ l stands for the total number of particles in a state with 3+0, +02+03 quarks and L

gluons; n=3, 4, 5, . . . .
We introduce the representation

n-1
6 1 —x — x,. = —exp i 1 —x — x,. ( d$ .

1 271 j

Using (B3), the (n —1)-dimensional integral can be carried out,

f".-,(x) =2 """'(&)c" '(&)dt,
1

(B3)

(B4)

where

&1-n(0)
(t) e (x2 y 2/f22)1/2

and

(B5)

00 1
C($) -J 8

(
2 2/ 2)1/2 dX (B6)

The integrals (B5) and (B6) can be obtained in closed form consulting integral tables. The calculation goes
then as follows. With the help of (B4),

.1-Cx( 0) (
G2.(x)=Z 2 2 212(») ' e" *"I/'(() ' Q ' ' " ' ' [c(h)]'I+'2+'2+' dt (a7)

The summation over k„k„k„l is carried out before the integration over $. It is a simple exercise to sum,
observing that the power of c($) depends only on the sum of the summation indices. This allows us to re-
duce the quadruple sum to a single one, if we use the simple properties of the binomial series,

(2 g)"(I g)"(2 g)"(g')', 2, -. //„„, I g (g +g )

~i 0'1'2, . . . ;l =0,1,2, . . . ~ 2 ~ 3 t 2 ~ n=0, 1,2, . .. t (as)

(B9)
with y =g+g'. In (89) b is an explicit function of the model parameters: a(0), g, and g'.

Similar procedure applies to G, (x),

It is simple algebra to take into account that k;, i= 1, 2, 3 runs over even integers. The quadruple sum in
(B7) is exponentiating, and we are left with an explicit function of $ which depends on the parameter P
Before we integrate, the asymptotic limit P- ~ of the integrand is taken.

These instructions are complete to get the result on G, „(x):

(x) Z5x -0/(0) (I x}-I+I'+ 2LI-12 (0) 1
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with

&
(3 g)"(3 g)"'(3 a')"'(g')' f.

+9 I ~ 1 a, =02, .. . ;&=0,12, .. ~
1' 2' 3'

n 1 dx' fl

(x) = 3. -a(o) . x-a(o)x &-a(O)6 1n-1
(+ 3+ 2/~3)l/2 1 2 3 yxj + jL j=l

(B10)

(B11)

n=3+0, +02+4', + 1, n &3. With the Fourier representation for the 5 function, we write

(x) = —e" ""~'(f)c" '(5)d&
1

27T . (B12)

After summation and integration we find), r(1 —n)r(y+2(1 —a))
( ),„„,L-, „(,).

r(1 +3(1 —(3))

Z is calculated by normalizing the total probability of finding partons to one:

(Bis)

r(l —o)r(y+ 2(1 —o))
r (~+ 3(1 —o))

Therefore, we can write (B9) and (B13) in their final form,

(B14)

&o&(1 .)-x+)+3L&-a(o)J
r(1 —~)r(~+ 2(1 —a)) (B15)

(~) ——g(1 ~)-1+ )'+3L1'-a (0) 3 (816)

APPENDIX C

Here we discuss the evidence for the presence
of uncharged partons (gluons) within the proton in
addition to the quarks. " The conclusion is based
upon the extrapolated experimental values of I1p
and f,„[see Eq. (3.29)J,

I]p 0 17 + 0 0 1 I1 0 13 + 0 01 (experimental) ~

(C 1)

We use the functions defined in (2.7) and introduce
the following integrals:

0.18 + 0

I, =0.06 +0.03,

I, = 0.76 + 0.06.

This result cannot be excluded on theoretical
grounds, but it seems most implausible that there
should be four times as many X quarks as (P quarks
in the proton. Here, the number of quarks is
weighted by their momentum.

The introduction of gluons changes the situation.
Equation (C3c) should be replaced by

1

f, =xG', (x)dx. .

0

We then get from (3.24)

(C2)

(CSa)

Il +I2+ I3 +IP: 1, (C3d)

where I, refers to the gluons. From our fit in
Sec. III we obtained g' = 2g which means I,= 2I, .
Using this relation, we now obtain from (C3a),
(C3b), and (C3d)

For the neutron we get, because of isospin sym-
metry,

1919293' (C3b)

I, +I, +I, =1. (Csc)

The set of equations (Cl) and (C3a)-(C3c) yield

According to (C2), I, is the expectation value of
x carried by the i-type quarks. If the proton con-
tains only quarks and no other particles, we must
have

I, =0.29 +0.03

I2 =0.19 +0.03,

I, = 0.17 + 0.03,

I0 = 0.34 + 0.03.

(C4)

About a third of the momentum is carried by glu-
ons, and the number of X quarks is slightly less
than the number of X quarks in the proton. This
is a more plausible result.
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It is interesting to perform a similar estimate
under the assumption that the partons are "ordi-
nary" particles with integer charges of isotopic
spin 0, ,'-, and 1. We divide them into four groups,
i = 1, . . . , 4, according to what happens to their
squared charge when the isotopic-spin component
is reversed:

Group What happens to e Example

d v F(x) xF(x)
(G,'(Q')).,p(s) =~.—=2M„= Q

where p(s) is the level density and

x-1 s-M 2

Q2

We restrict ourselves to regions where 1-x«1,
in which F(x) can be expressed by (3.20), and we

get (c is a constant)

l=2

1-0
0-1

2( 2)) (p(s)1 c(s M )

i=4 0-0

Ip:0 7 +0 05 +I3 I4 ~ (C5)

SU(3) symmetry requires that I, )I4. It is seen,
therefore, that Ip) 0.7. Thus partons with integer
charge would require that more than 70% of the
momentum be carried by gluons. This is not a
plausible result.

APPENDIX D

We follow closely the considerations of Bloom
and Gilman. ' We determine the square of the form
factor G, (Q') for the inelastic excitation of a level
with the excitation energy expressed in units of
s = W' as defined in (3.9). The average (G, '(Q')), „
over an interval ds containing several levels can
be expressed in terms of the function W„

We must restrict ourselves to baryons and anti-
baryons, since partons seem to have half-integer
spins. Then category i = 3, 4 must be strange par-
ticles.

Using the same notation as before, we get

I~ =I, +I3,

I„-I2+I~,

Iy+I2+I3+I4+Ip1

and we obtain the following relation:

which shows that the inelastic form factor goes
with Q

'"'" . This is valid as long as (s -M')
& (1 —x*)Q', where x* is the lower limit for the
validity of (3.20). Bloom and Gilman maintain
that the region 1 —x«1 is dominated by the contri-
bution of elastic scattering. This is certainly true
if s is below the pion threshold, M'( s(1.5. This
region corresponds to (1 —x) &0.5/Q'. They pre-
dict that F„( x) /F~( x) = (p, „/)j.~)' in that region. Our
model cannot be applied to that region, as one can
see from the following consideration: When (1 —x)
«1, the quark which absorbs the light quantum
has almost the full proton momentum, whereas
the other "spectator quarks" have low momentum.
After having absorbed the light quantum, the first
quark is surrounded by the spectator quarks mov-
ing in the old direction. Since their momenta are
low, they are able to join with the first quark by
forming a combination of nucleon states of rela-
tively low excitation, among which the ground
state plays only a partial role. Hence, one con-
cludes that our model can be applied only if aver-
ages are taken over several excited states, that is
for (1 —x) )0.5/Q'. We expect the ratio F„/F, = =,

to be valid therefore in the region 0.5/Q' & (1 —x)
«1. We would expect that I ~ is enhanced and I „
depressed for (1 —x) &0.5/Q' because of the coher-
ent effect of the two quarks with parallel spin in
the ground state of the nucleon.
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We present a coupling scheme for the Pomeranchukon which relates its couplings to those
of the f and f' trajectories. In this scheme the Pomeranchukon couplings factorize and trans-
form as a combination of SU(3) singlet and octet in a prescribed ratio. This enables us to ex-
plain the observed deviation of the ratios of SU(3)-related total cross sections from their sym-
metry values and, qualitatively, the difference between mp and Kp diffraction slopes. A cer-
tain "universality principle" concerning the relative importance of Pomeranchukon exchange
to f-trajectory exchange emerges in this scheme. This is tested with and supported by the
available data on Ttp, pp, yp, and Kp total cross sections. The scheme accommodates quite
naturally the observation of s-channel helicity conservation at high energies in ~N scattering
and p photoproduction. On the other hand, it does not predict s-channel helicity conservation
in 7' A&¹ Indeed, we discuss the possibility that the observation of t-channel helicity con-
servation in this process may be understood on kinematical grounds. We stress that our cou-
pling scheme is compatible with a large class of dynamical models which differ in their de-
scriptions of the detailed nature of the Pomeranchukon. Thus, our successful confrontation
with the available data must be credited to the indispensably essential assumptions that are
shared by these different dynamical models.

I. INTRODUCTION

A fundamental fact of high -energy experiments
is that elastic scattering and other processes
which do not involve the exchange of quantum num-
bers are characterized by approximately constant
cross sections at high energies. Such processes
are known as diffraction scattering, as the shape
of the differential cross section bears a distinct
resemblance to that observed in classical diffrac-
tion scattering. They may be accommodated in
the framework of Regge theory by introducing the

concept of the Pomeranchukon, which is by defini-
tion a singularity in the vicinity of J= 1. The na-
ture of this singularity is, however, unknown.
Theorists have proposed moving poles, fixed poles,
moving cuts, fixed cuts, double poles, and com-
plex poles, ' none'of which can be decisively ruled
out by the present data. The advent of larger ma-
chines and the consequent increased interest in
multiparticle phenomena and inclusive experiments
should eventually clarify the precise J-plane
structure. Duality has further underscored the
fact that the Pomeranchukon is most likely a qual-


