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We present a dynamical and fully covariant model for the weak production from nucleons
of the N*(1236) and higher-mass resonances. The analytic structure and unitarity of the
partial-wave helicity amplitudes are incorporated in this model which has a simple N/D
form. Above the mnN threshold, the excitation and rescattering of hadronic eigenstates are
considered. For the excitation mechanism we use pion, nucleon, and vector-meson exchange.
By using the conserved vector-current theory and a previous calculation for electroproduc-
tion, we ascertain beforehand all the necessary normalizations, which result from the final-
state enhancement factors, and thereby perform an absolute calculation for weak production.
Predictions are given for the differential and total cross sections in the first four resonance
regions, and a favorable comparison is made with the existing data from CERN. Our re-
sults for the N*(1236) are considerably different from the predictions made by Adler in a
calculation which treats that one resonance. Since we derive the cross-section formulas
keeping all dependence on the lepton mass, we can examine the interesting behavior as the
forward direction is approached. The partially conserved axial-vector current hypothesis,
its implications for resonance production, and the role of our model in designing a test of it

are also discussed.

I. INTRODUCTION

The experimental programs in progress at such
centers as Argonne,' Brookhaven,? and the National
Accelerator Laboratory?® will provide us in the near
future with a wealth of new data on inelastic neu-
trino scattering from nucleons. In anticipation of
these results, we now present theoretical predic-
tions for the inelastic processes which result in
the formation of an N*(1236) or a higher-mass res-
onance. Since our calculation does not include the
adjusting of any parameters,? it is reasonable to
compare the theoretical results with the currently
available CERN® data on the total cross section for
N*(1236) production. As shown in Sec. V, this
agreement is quite good, but more precise experi-
mental values are needed to provide a stringent
test of our predictions.

In addition to these experimentally motivated con-
siderations, there are theoretical reasons why a
model for the weak production of resonances is in-
teresting and useful. On the one hand, we would
like to see if an approach which was quite success-
ful for resonance electroproduction can be extended
to axial-vector currents and weak production. On
the other hand, we shall see that even the total
cross section for weak production provides certain
tests of our theory not possible in electroproduc-
tion. As a result, models with similar electro-
production predictions can give very different weak
predictions. In a different vein, the conserved-
vector-current® (CVC) theory for inelastic reac-
tions can be studied with the help of such a model.

4

Furthermore, theoretical predictions for reso-
nance production can be useful as input into such
other calculations as the quasi-elastic scattering
of neutrinos by nuclei. By integrating over the
resonance width, we may easily pass to the limit
of a narrow resonance viewed as a discrete par-
ticle.

A feature of the axial-vector current which has
received much attention is its nonconservation. As
Adler” first pointed out, inelastic neutrino reac-
tions are relevant to this subject since the inelastic
cross section for producing a lepton in the forward
direction is dominated by the divergence of the
axial-vector current (assuming the vector current
is conserved). A model like ours is useful in es-
timating the range in angle or momentum transfer
over which the divergence of the axial-vector cur-
rent dominates the contributions from the other
current components. In this work we shall handle
the kinematics exactly and analyze the special be-
havior occuring near the forward direction. Fur-
thermore, we shall examine the PCAC (partially
conserved axial-vector current) hypothesis®® for
elastic and inelastic processes, and discuss its
implications for our model.

In constructing our model, we follow a develop-
ment similar to one previously completed for elec-
troproduction.’®”!? Actually, this previous calcu-
lation does a great deal more for us than just pro-
viding an approach already supported by the exper-
imental electroproduction data from SLAC,?
DESY,' CEA,'® and Stanford.’® From this previous
experience we know the values to use for the w-
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nucleon coupling constant and final-state enhance-
ment factors, enabling us to calculate the weak
production without adjusting any parameters. Our
previous experience also provides us with some
indications on how to handle the pion and vector-
meson elastic form factors, the spin-} resonances,
and a two-channel model. The manner in which our
previous work does these things for us will be
treated in detail in the text of this article and sum-
marized in this Introduction.

Although there have been other attempts!™® to
calculate the weak production of the N*(1236) reso-
nance, we have not seen any other fully relativistic,
dynamical calculations which can predict the weak
production of the higher-mass resonances. For the
particular case of the N*(1236) resonance, our cal-
culation using partial-wave dispersion relations
has much in common with the fixed-momentum-
transfer dispersion relations used by Chew, Gold-
berger, Low, and Nambu,' by Fubini, Nambu, and
Wataghin® (for photoproduction and electroproduc-
tion, respectively), and by Adler'® (for weak pro-
duction as well). All those calculations are de-
signed for the N*(1236) and the nonresonant partial
waves at lower energies and thereby attempt to
avoid the problems posed by inelastic hadronic
channels (which we confront in calculating the high-
er resonances). Since Adler’s'® work is the most
thorough and detailed calculation using that ap-
proach, we have singled it out for further compar-
ison. Appendix D is devoted to this discussion.
Although there are many similarities between our
approach and that of Adler,® there are several im-
portant differences which cause us to give dissimi-
lar predictions for the weak production and for the
high-momentum-transfer electroproduction of the
N*(1236). Our numerical predictions are presented
in Sec. V. Additional references to earlier works
are given in our previous publications,°-12

Section II contains the discussion of the kinemat-
ics of weak production. If all the final hadronic
states are summed over, the cross section given
in Sec. II then has the simple form

d% W G2

TWaE = nE 3 KW+ KW, + K W) (1.1)

where k? is the square of the four-momentum
transferred by the leptons to the hadrons, W =vs

is the total energy of the final hadronic system in
its c.m. frame, m is the nucleon mass, G is the
weak coupling constant, and K, ,; are kinematic
factors given below. The W, ,, are structure func-
tions which describe the hadronic physics, and they
are expressed in Sec. II in terms of the helicity
amplitudes, which our model is designed to predict.
W, and W, are analogous to the W, and W, defined by
Drell and Walecka® for electroproduction, apart

from terms proportional to the lepton mass, m;.
The kinematic factors are given by

(1.2)

2 _,2_ p2\2
k*2=k2+(W—2’”W—k—>, k*>0

where €, and €, are the initial and final lepton ener-
gies measured in the lab frame. k* corresponds to
the three-momentum transferred to the hadrons in
their c.m. frame. Since the W; depend only on W
and k%, Egs. (1.1) and (1.2) explicitly express the
cross section in terms of W, k%, and €,.

Our choice to work with the variables W, k% and
€, rather than a set including the lepton lab scatter-
ing angle 6, for example, is motivated by several
considerations. First we note that our model for
the hadronic physics naturally involves W (the res-
onance mass) and k2. Then we note that €, is an
easily measurable quantity while 6 is not fixed as
in electroproduction counter experiments. Fur-
thermore, we are able to express the cross section
solely in terms of this set of variables using kine-
matic quantities K, ,;, which are not complicated
(considering that all the dependence on the mass
of the final lepton has been included). The limit of
large €, at fixed W and k? is quite interesting, and
from Eq. (1.2) we see that K, and K, go to zero
while K, goes to a constant independent of €,. Asa
result, the cross section becomes independent of
€,, leading to regularities (such as a constant total
cross section for N* production) discussed further
in Sec. V.

The details of the derivation of the cross section
are given in Appendix A; Appendix B summarizes
the more general case when a hadron is observed
in coincidence with the final lepton. To facilitate
comparisons with other notations or with the elec-
troproduction cross section, Sec. II gives the K’s
in terms of the lepton scattering angle in the lab
frame. The analogy with electroproduction is all
the more apparent when the parameter € (corre-
sponding to Hand’s?? virtual-photon polarization)
given by

2 *2 - 2\ -1
w2 2r*? (1 Bcose)) (1.3)

€=<1+7n2— R p*sin’6

is used. B is the laboratory velocity of the final
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lepton, and the fact that # 1 is important when 6
is small.

Throughout this calculation we have kept all the
dependence on the lepton mass m,;, and this has not
necessitated the use of complicated expressions.
All other calculations of which we are aware make
approximations regarding the lepton mass. Know-
ing the dependence on m, is desirable for a couple
of reasons. First, our predictions for dZ%/dW dk?
have large values for k2<0.1 GeV?, and do/dk?
peaks in this small-k? region. For muons, the
case of experimental interest, m,*= 0.01 GeV?.
Second, we are interested in the small-%k? region
because of its bearing on the forward lepton theo-
rem. In Appendix C we investigate this situation
more fully, giving a simple derivation of this theo-
rem and showing the approximations (both kinemat-
ic and model-dependent) needed. For the purpose
of estimating the region in k? where the divergence
of the axial-vector current dominates, the model-
dependent ratio of transverse to longitudinal am-
plitudes is extremely important. Of course all the
“lepton mass corrections” are quite apparent in
our treatment and are important for low neutrino
energies (greater than 20% for the kinematics of
the Argonne experiment, for example).

e "tV sing(W)AW’, k)

In order to account for the hadronic physics, we
make a model for the partial-wave helicity ampli-
tudes. When speaking generally, we denote these
amplitudes by A(W, k%), suppressing the isospin,
spin, parity, and helicity subscripts. A detailed
definition of the helicity amplitudes in terms of the
matrix elements of the weak hadronic current is
given in Sec. II.

For our dynamical model of resonance produc-
tion, we adopt

AW, k?) =A™ (W, k?)/D(W) (1.4)

and shall summarize the advantages of this choice
later on. Here A™(W, k?) contains the “left-hand
singularities” of the amplitude in the complex W
plane while D(W) contains the physical cut. Section
IV describes our model for A™ using a set of sin-
gle-particle-exchange graphs. Section III, on the
other hand, discusses the properties along the
physical cut and shows how this model incorporates
unitarity.

Our basic approach in the discussion of Sec. III
is to write a once-subtracted, partial-wave disper-
sion relation for each amplitude. With the use of
unitarity, these dispersion relations become
Omnés?® integral equations:

A(W, k%) =AM (W, k2) + W ; Wo f
W,

0o

Here we have used unitarity to first order in the
weak coupling constant, with the result that linear
equations emerge. Such an equation has a
known?3~2% golution for the amplitude in terms of
A”‘S(W, k?) and the hadronic-scattering phase shift
£(W). An examination of this solution shows that
when there is a sufficiently narrow resonance in
the final state, simplifications are possible which
result in Eq. (1.4). In this manner Sec. III shows
how our model is an approximate solution to the
Omneés equation.

From that discussion we also find that the en-
hancement function D(W) can be expressed in terms
of the phase shift £(W) by

B W-W (* EW)aw’
D(W)"exp[' m Lo (W’—Wo)(W'—W—ie)]’
(1.6)

DW,)=1.

Unfortunately, the evaluation of this function from
the experimental phase shifts is extremely sensi-
tive to the asymptotic behavior assumed for £(W).%
For our present purposes, however, we can avoid
a calculation of D(W) and still not introduce any
adjustable parameters. First we observe that

(W =W) (W' =W —i€)

aw’. (1.5)

f|A(w, k2)|2d W ~ |A‘hS(WR,kz)IZJID(W)l‘ZdW

= | AMS (W, k)29 , (1.7

where Wy is the value of W at the resonance peak
and g is seen to be an enhancement factor indepen-
dent of k2. Now, as shown in Sec. IV, our model
for the vector part of A™ corresponds to the model
for electroproduction so that we satisfy CVC® by
requiring the value of g for each resonance to be
the same for weak production®” as for electropro-
duction. By comparing the electroproduction pre-
dictions with the data, we have found phenomeno-
logical values for ¢ which are now used as known
inputs for the weak-production calculation.

Although this method for determining g9 depends
on our model for A™ (electroproduction), the good
agreement of this model with the data out to very
large values of k* (k< 6 GeV?) increases our con-
fidence in the resulting value. By way of contrast,
the assumptions needed in obtaining 9 from the ob-
served phase shifts can yield results easily uncer-
tain by a factor of 4.

Before showing how our model for resonances
above the 77N threshold also reduces to a relation



4 WEAK PRODUCTION OF NUCLEON RESONANCES 3353

like Eq. (1.4), let us summarize the desirable fea-
tures which lead us to take this expression as our
model: (i) It has the correct singularity struc-
ture since A™(W, k%) has the appropriate left-hand
singularities in W, and D(W) has the physical,
right-hand cut. (ii) It has built into it the correct
threshold dependence on both the weak current and
final pion three-momenta (a feature retained by
our single-particle-exchange graph model for A™").
(iii) It satisfies the final-state theorem? in the re-
gion of elastic scattering® since, in that region,

D(W)=|DW)| e W), (1.8)

(iv) It is an approximate solution to the Omneés
equation, provided A"(W, k?) is slowly varying over
the resonance. (Nonresonant amplitudes also satis-
fy Omneés equations which express unitarity, but
the solutions are not as simple as the one above.)
(v) D(W)~! has a Breit-Wigner shape when &(W)
passes quickly through 37. (vi) The dependence on
k? enters entirely through A™ (W, k%) and is sepa-
rated from the term that varies quickly over the
resonance. (vii) A"™(W,k?) is needed only in the
resonance region and not over the entire physical
cut. (viii) It corresponds to the simple intuitive
picture presented in Fig. 1. First we produce an
intermediate state of a given spin and parity, J",
with an excitation amplitude A™(W, ¥2). Then,
through rescattering, we build up a resonance
which subsequently decays. For the N*(1236) the
intermediate state is a pion and a nucleon; but for
the higher resonances whose masses are above the
nnN threshold, we shall see below that it is the
hadronic eigenstate which rescatters and builds up
the resonance.

We note in passing that such a simple picture
does not emerge directly from a treatment built in
terms of fixed-momentum-transfer dispersion re-
lations. Since the unitarity statement on the physi-
cal cut is diagonal with respect to the partial-wave
channels, it couples together the various invariant
amplitudes for which the fixed-momentum-transfer
dispersion relations are written. As a matter of
fact, in order to solve this set of coupled disper-
sion relations in his model, Adler makes simpli-
fying assumptions and then chooses an ansatz based
on an analysis of the Omnés equation in the J™ =3"
partial wave.

For resonances above the n7N threshold, we can
still retain the simplicity of Eqs. (1.4)-(1.6) by
viewing each of these resonances as occurring in
one hadronic eigenchannel. Such eigenchannels are
linear combinations of all the purely hadronic
states consistent with the given value of W, and are
obtained by diagonalizing the S matrix among these
states. Since the unitarity relation is diagonal with
respect to the eigenchannels, simple, uncoupled

Omnes equations result whose approximate solution
is again given by Eq. (1.4). Now, however, A(W, k?)
refers to the amplitude for excitation of the had-
ronic eigenstate, and A™ refers to the left-hand
singularities in this helicity eigenamplitude. Fur-
thermore, the phase £(W) is now the eigenphase
shift, which describes scattering wholly within the
eigenchannel.?®

In our previous work on electroproduction, we
considered a two-channel model with 7N and
7N*(1236) as the hadronic channels. As a result,
the first eigenamplitude was a linear combination
with two terms:

AW, k%) =a, (W, k%) cosg (W) + a, y+(W, k) sing (W) ,
(1.9)

with the mixing angle related to the partial width by
cos?¢(Wg) =T, ,/T. (1.10)

After studying the two-channel predictions, we
noticed that an interesting and useful simplification
was possible. For the noncoincidence electropro-
duction cross section (where the different helicities
are added incoherently), the k® dependence given by

AW, k2)~ a3 (W, k?)(T /T, ,)"/? (1.11)

was very similar to the result using an expression
for A™(W, k?) corresponding to Eq. (1.9). For the

separate helicity eigenamplitudes, however, such
an approximation was not found to produce similar
results.

Since the evaluation and partial-wave projection
of a"« is a difficult and intricate matter, the use
of Eq. (1.11) presents a considerable simplifica-
tion. For the purpose of predicting the weak cross
sections, we follow this route and save consider-
able labor on the axial-vector contributions. In
Sec. III some electroproduction curves are shown,
to indicate how well this approximation works in
that calculation. For the N*(1236) final state, of
course, we do not need to make such approxima-
tions on A™ (W, k2) since only a®™ contributes.

y

D>

—

Al w,12) 17D W)

FIG. 1. Model for the weak production of a nucleon
resonance showing the excitation of an intermediate had-
ronic eigenstate which rescatters to build up a resonance
of spin and parity J" and then decays.
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Even for this elastic resonance, however, we do
need a conceptual framework, such as one built on
eigenamplitudes, since the Omnés equation in-
volves an integral over the entire physical cut (W’
from W, to «).

As mentioned previously, Sec. IV contains our
discussion of A", Using the preceding approxima-
tion, we thus limit ourselves to a discussion of
single-particle exchanges contributing to a,. For
the vector part of the current, we have chosen nu-
cleon, pion, and vector-meson exchange as our
model. By G parity, the w° contributes to the vec-
tor current, and the ¢° was found to have small
couplings. In electroproduction, the w-exchange
contribution was significant and helped particularly
for k220.5 GeV?. (We treat this meson resonance
as though it were a single particle being ex-
changed.) In addition we discuss the couplings used
and elastic form factors present at the weak ver-
tex. When possible, we use the experimental re-
sults®® (such as those of Hofstader and collabora-
tors) for these elastic form factors. Although
there are ample data for the nucleon, the pion and
vector-meson elastic form factors are hardly
known. Faced with this problem, we follow the
dictates of simplicity. For the weak vector case
we again invoke the conserved-vector-current® the-
ory and use the same (isovector) form factors as
for electroproduction. In that previous calculation,
we gave predictions for the SLAC!® results. Now
that these results are available we can look back
and see that pion or vector-meson form factors
which asymptotically decrease more slowly than
Gg,(k?) are not consistent with the high-k® data
within the framework of this model. We therefore
continue to make the simple choice and take these
elastic form factors proportional to G, (k?).

A similar approach is also followed for the axial-
vector part of A™. In this case, pion exchange (in
the t channel) is ruled out by parity, and p ex-
change replaces w exchange as a result of G parity.
Since the current elastic data®! suggest a propor-
tionality between the nucleon axial-vector form
factor F,(k?) and the electromagnetic form factors,
we have assumed such a relationship. An addi-
tional input required by our inelastic calculation is
the induced pseudoscalar form factor Fp(¥%). In the
absence of data, we have used the value predicted
by PCAC.%? Additionally, we have investigated the
extension of PCAC to inelastic processes (reso-
nance production in particular) to see what addi-
tional constraints this theory implies for A"s(W, k2).

Our numerical results are presented and dis-
cussed in Sec. V. (Some illustrative examples of
electroproduction had already been included in Sec.
III to show the type of success possible with this
approach.) For weak production we predict that

| >

the N*(1236), N*(1525), N*(1688), and N*(1950)

are the important levels (like electroproduction),
and we present our values for the structure func-
tions W, ,4(W, k2) for the excitation of each of these
levels. Using these structure functions and the
kinematics of Eqs. (1.1) and (1.2), the differential
cross section d%0/dWdk® can be evaluated at all W,
k%, and €,. We have additionally integrated over W
for each resonance (paying careful attention to the
fact that at low €, not all the resonance may be in
the physical region), and we present the resulting
curves for do/dk* at some typical values of €,. The
tendency of these curves to approach a universal
curve as €, increases is quite noticeable, especial-
ly for the N*(1236). As mentioned previously, the
region of k2<0.1 GeV? is of particular interest, and
we investigate the various contributions to the
cross section in this region. In particular, we ex-
amine where and how the %* dependence predicted
by PCAC can be observed and tested.

By integrating the differential cross section over
k%, we obtain the total cross section as a function
of €,. Although we know from general considera-
tions that such a curve (for a resonance) will rise
from threshold and then level off, the height at
which the curve becomes flat (in addition to the
corresponding value of €,) is an important predic-
tion of our theory, since we have adjusted no pa-
rameters. For the N*(1236) we compare our pre-
diction (which is noticeably different from Adler’s)
with the existing data from CERN.®> Curves are
also given for the higher resonances.

In addition to containing a brief summary, Sec.
VI discusses the role of CVC and PCAC in our cal-
culation. In regard to more exacting tests of a
model for N* production, we note that coincidence
experiments are sensitive to the individual helicity
amplitudes.’®3* Since accurate measurements of
the N* decay distributions at fixed W, k2, and ¢,
seem to be far in the future, we have kept the pre-
diction of d%s/dWdk? as our main focus and have
made approximations accordingly. It is our hope
that the forthcoming data will be accurate enough
to provide stringent tests for these noncoincidence
predictions presented below.

Appendix D contains a comparison of our ap-
proach and results with those of Adler,'® who cal-
culated N*(1236) production using a model similar
in many ways to ours. Finally, Appendix E gives
the expression for A'™(W, k%) resulting from the
single-particle exchanges discussed in Sec. IV.

II. PRELIMINARIES

In this section we devote our attention to the gen-
eral features of weak production which do not re-
quire the specific use of a model. Of particular
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importance is the definition of the helicity ampli-
tudes, which are used elsewhere in this work. Al-
though our main purpose is to present a discussion
containing the particular emphasis appropriate to
this calculation, there will be places where the de-
velopment follows familiar lines. Some ways in
which our treatment of the formalism differs from
that of others (such as Adler!®) are that we use
partial-wave rather than invariant amplitudes,
treat the vector and axial-vector contributions
analogously, isolate the divergence of the current
in one amplitude independent of all the others, and
retain all dependence on the lepton mass. When
useful, we will restrict our analysis to the case of
a 7N final hadronic state. For the noncoincidence
cross section, the generalization to any final state
is straightforward.

The isobar rest frame (also called the c.m.
frame since both the initial and final leptons are
represented by an incoming current) is defined by

s .o K-k
€, .2 k s—r—*‘ 2
4 ks I I‘R.ZI

9,=Hkq
¢p= 27-¢

L (k= kalu

kq

k + =
# p’# q/‘+p2#

FIG. 2. Kinematics for the weak production of one
pion. The three-momenta and unit vectors are given for
the isobar rest frame (also called the c. m. frame since
k+P,;=§+P,=0). The initial and final lepton momenta
are given by k£ and k,, respectively, while p; and p, re-
fer to the nucleons. For the pion, we label the momentum
by g and the (Hermitian) isospin state by a. As defined,
k is the momentum transferred by the weak current from
the leptons to the hadrons. Also indicated are the pion
polar angles 6,, and ¢, ¢+ The nucleon angles 6, and ¢,
are defined to be the angles of p, relative to the triad
(—&1, 845, —&,3) and are easily expressed in terms of
the pion angles.

D, +k=§ +f)2=6, as shown in Fig. 2. In this frame
we write® k, = (k*, ik,) and denote the total hadronic
energy by W. By expressing these quantities in an
invariant fashion,

Wi=s
==(p,+k)?
==(p, +q)?,
ko= (W2 -m? - k%) /2w,

k*2 =R+ ky?,

(2.1)

we have extended their definition to all frames as
Lorentz scalars. Some other useful definitions and
relations follow:

t=-(k-q)*
:"(pl'pz)z
=2k-q-k2+p?,
5_(p1_q)2
z‘(Pz_k)z
=2m? -2k -q-W?2,

P,=3(py+Ds), -

2P -k==k-q-W2+m?,

(2.2)

where m is the nucleon mass and u the pion mass.

For the baryon energies in the c.m. frame, we
use £, and E,; the pion has energy w,. By 6, and
¢, we denote the baryon angles in this frame:

51:(07 01 1),

- (2.3)
p.=(sinb,cos¢,, sind,sing,, cosb,) .

Sometimes it is convenient to use the pion angles
6, and ¢,, which measureAthe direction of the
emerging pion relative to £=-p, and are related to
the baryon angles by

0,=0pq
Gp=2T = Pp, .

Our definition is incomplete, however, until the
relation to the lepton scattering plane is specified.
Figure 2 shows our conventions and defines the
unit vectors which will be useful for taking com-
ponents of the hadronic current.’®* According to
these definitions, &, is normal to the lepton scat-
tering plane.3®

We use the laboratory frame (51:6) to describe
the lepton energies and scattering angle, denoted
by €,, €,, and 6, respectively. The final lepton has
velocity B and mass m,. In order to express the
laboratory cross section in terms of W, k% and ¢,,
we need the expressions

(2.4)
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ki =€, - €,
= (W2 -m?+ k%) /2m,
|k, = Ky =WE*/m,
B2 = (ky = y)? (2.5)
=2€,6,(1 - B cosh) —-m,?
=4e,€,B sin*(30) + 2€,€,(1 - B) =m,®.
The laboratory cross section for producing a 7N

final state is given (with L, and J, defined below)
by

d%o w2 gq

__d's W _q_ .
awards:/an - m?® dne? Luvludb (2.6)

where ¢=[q| in the c.m. frame and dQ} is the solid
angle of the pion, alsoin the c.m. frame. In reaching

J

this expression, we have used the density of states
corresponding to the Jacobian

9€,082,
aWak?

W
m €,€,8

(2.7)

for fixed €, and QF. (dQ, is the solid angle in the
lab frame for the final lepton.) For the matrix
elements of the hadronic current, we have intro-
duced the shorthand notation

J

__m_ [2wE E,Q°
T agw m?

1/2 )
) (gb{™ 17,(0) + 7,0 py) »
R (2.8)
T = (F*, i3,

and Q is the normalization volume. The V-A cur-
rent-current theory of weak interaction gives the
form of the lepton vertex, and we have

—%Gzﬁ(kz)y“(l +yshulk,)u(k ) (1-vys)y, ulk,), incident v

(2.9)

=3G?T( =Ry (1= 75 )y, v( =k J0( =k, )7 (1 +v5)u(~k,), incident .

For the weak coupling constant G, we use the value obtained from muon decay:

G=1.023 x10"%/m?2.

(2.10)

Summing over the lepton spins produces traces which are readily evaluated. The difficulty, however,
lies in expressing such dot products as J-k, and J-k, in terms of W, k*, €,, and the c.m.-frame components
of J,. In Appendix A this procedure is carried out, and here we summarize the results. For the noncoin-

cidence cross section we obtain

d%s W G?

W: o 8_11- (K1W1+K2P—V2+K3W3) .

(2.11)

The kinematic factors K, , , are given as in Eq. (1.2). For the sake of comparison with other approaches,
we repeat these expressions for the K’s in terms of W, k?, and ¢,, and also give some equivalent expres-
sions using the laboratory scattering angle 6. Thus we have

R%+m?
K1=2-—————-L6 >
1

=452 (1-Bcosh),
€

2 2 2 3
K2=4[1—k +m (k +my +k{;>]

€, k? 4e,

B2+m? k2+m? W? 2k*® ¢

€,° 2 m® kZ 1-¢
_k2+m® kZ+m?  B*sin’g
€’ PR (1-Bcos6)?

l-¢

m m;?
Zk* W<€1+€2_ k2l ké‘)’
1

(2.12)
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with the parameter € given by Eq. (1.3).

From these relations it is apparent that all the K’s are positive

and that as 6 goes to zero, we have € going to zero, K, going to zero, K, going to half of K,, and K, going

to 4(1 - 5)62/6 1°

The functions ﬁ’l 2,3, on the other hand, depend on the hadronic physics and are given by

WI(W5k2) =

2(W kz)—— 4q)f 417 Zk*z <IJ+1|2 + |+ k*2

44)[ any (lJu’z | + 2 k*z lJcl +'JDIZ>

iJcF) (2.13)

50, k) =Wda) [ GE (s - b i + 22 ReJt o).

with £ =+1 for neutrinos and £ = -1 for antineutri-
nos. In these expressions a spin sum is understood
for the baryons, and other final hadronic states be-
sides 7N can be added incohererntly. Using the unit
vectors given in Fig. 2, we have defined the spher -
ical components of J, as

T =iV (8,4 88,,)d - (2.14)

In the =0 direction we readily see that, of the
transverse components, only J~! is present for
incident neutrinos and only J*! for antineutrinos,
in accordance with angular momentum conserva-
tion. For the helicity-zero components of the cur-
rent, we have defined the following linear combin-
ations:

k*? k
Jo=Tr o= 72 32,5),
k*2 -
( To=T6ss) (2.15)
= —k*J-k/R%.

Since J,/ k| is a Lorentz scalar and since Jo/ [kl

is unaffected by Lorentz transformations along
k=¢,,,%" these combinations help simplify the kine-
matical calculations in Appendix A [as well as
simplifying the result in Eq. (2.13)]. If the current
is conserved, we have the special case

Je=dJ
= k*J 8,4/ ko,

Jp=0.

(2.16)

Furthermore, any contribution to J, which is pro-
portional to k, affects J, but not J.. Since kZ is
never equal to zero, these combinations are always
finite and linearly independent. In the forward
direction, however, k2 can be quite small, imply-
ing that J; and J, become quite large. As dis-
cussed in Appendix C, it is this kinematical be-
havior that leads to the forward lepton theorem.
From Eq. (2.16) we see contrastingly that for the
conserved vector current, J. does not become ki-
nematically magnified in the forward direction. As

T

a result, the divergence of the axial-vector cur-

rent dominates. This last point rests, however,

on an extrapolation following from
lim k2J, = lim k3J .

r2—0 R2—0

(2.17)

Having expressed the cross section in terms of
the current components of definite helicity, we now
proceed to perform the partial -wave expansions of
these components. Following Jacob and Wick,®8: 3°
we write (always in the c.m. frame)

Jue, () = (4k*q) 2 (2T + 1)D {f- s, ay (=05 = 65, &)
J

X<)\2 ITJ(Wa k2) + UJ(Wy kz)lxlxk> .

(2.18)

Here e,(),) is a unit vector which projects out J**
when A, =+1 and J or J, when A, =0.%° x, and 2,
are the nucleon helicities, and the meson helicity
is zero since we are now considering a 7N final
state. In this expression, T’ pertains to the vec-
tor part of the current and U’ to the axial-vector
part.

Since J,(x) and J,,(x) have different properties
under the parity transformation, it is convenient
to introduce states of definite parity. For the ini-
tial helicity states we use

'3*>— l‘/——(l)ﬁ— z,xk” —1>:F "%
29 =3V2 (|3, D% -3, -1),
,L*>E %\/Z—(l%’0> + I_%)(»)a

(2.19)

which have parities (-1)7*/2 for the vector current

(considered to be like an incident particle with
negative intrinsic parity) and the opposite parities
for the axial-vector current. For the pion-nucleon
final state, the combinations with parities
(-1)7#/2 are given by

(2= 3V2 (= 5[ (=3]).

We now introduce a shorthand notation for the
helicity matrix elements involving states of defi-
nite parity.** Such matrix elements will be re-

(2.20)
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ferred to as “helicity amplitudes.” For the vector

current,
T{], o72(W, k)= (5T (W, &3,
T o)W, k)= (BHTI (W, k25D,
T{, (W, k*) =(F*|T7(W,k*|L*,“C"),
T/, o(W, k®)=(3*|T/(W,k?)|L*,“D”)

(2.21)

where the “C” and “D” combinations are defined
in Eqs. (2.15) and {2.18). For the axial-vector cur-
rent, we have corresponding relations such as

ULJy a/a(W, B2 =(5HU7 (W, R2)F) (2.22)

In all cases the final state has parity (-1)7*/2,
When convenient, we shall use the alternate nota-
tion I+ for J", where [ is defined to be J¥ 3 and is
the orbital angular momentum of the pion. The

) . 1+2\1/2
(4k*q)1/2(l+1)Mx+ =—-3iV2 [Ti/z,x/z - (T)

4

signs in I+ always correspond to those of the firal
helicity state. When referring to the helicity am-
plitudes collectively, we will drop the subscripts
and use the notation A(W, &2).

For simplicity and convenience we have chosen
to work with helicity matrix elements rather than
multipole moments. The various phase conven-
tions contained in our definition of the helicity am-
plitudes are most easily summarized by giving the
relation to the traditional multipoles for single-
pion production used by Chew, Goldberger, Low,
and Nambu’® and others. In this comparison the
helicity amplitudes describe an electromagnetic
current. Section IV contains a discussion of how
the weak vector case is related to the electromag-
netic by CVC. We have (apart from a factor of the
charge on the proton)

T1/2.3/2],

1 1/2 .
(4k*¢1)1/2(l+1)E1»— -2 l\/_[ 1/2 /2% <l+2> T{/z,a/z],

(4k*q)* 1M, V2 | T!; L1y T
q z—-"zl 1/2,1/2~ l+1 1/2,3/2 |>»

(@1 B, = + 10T (117, (1) 15
q 1-=%2 1/2,1/2 7\ 77 1/2,3/2|>

(4k*q)1/2Cu = iTUz.C .

(2.23)

Using the preceding definitions, we can insert the partial-wave expansion into Eq. (2.13), integrate over

angles, sum over spins, and obtain

(2.24)

b+ 2k*2 [,Tx/z 3/2]2+ lTx/z 1/2’2 [U1/z 3/2' + ’UI/Z 1/2}2+2k*2 ('Tl/z cF ]Uir;rz.c]z)]a

= J+ 3
Wy(W, k?)= Z : [lTl/z 3/21 + IT1/2 1/2| + |U1/2 3/2| + lU1/2 1/2(
k*2 (ITI/Z C'2+,Ui’/”2,c '2+ ‘Ui,/wz,pfz)] ’

2y M J"’z

Wo(W, k%) W
J"
J+ 5
Wy(W, k%)= WZ 2

Again, £=+1 for neutrinos and -1 for antineutri-
nos. For these relations we have taken the vector
current to be conserved:

Ti];rz.D(W, k?)=0. (2.25)

It is now clear that W, contains the vector —axial -
vector interference, while W, and W, are closely
related to the Drell and Walecka®' structure func-
tions W, and W,. (For the partial-wave expansion
of W, and W, in electroproduction, see Appendix

(25 ReT1/2 3/2 U1/2 3/2 -ZﬁReTl/z 1/zU1/2 1/z+2 k*2 ReU1/2 cUiI/Wz.D>'

r
A of Ref. 33.) In general, the tensor

“,,-4qWZf 498 ;%

spins

(2.26)

can be expanded in terms of six independent struc-
ture functions, three of which are needed only if
the current is not conserved. Our W‘l,z'a are then
the three combinations of these six structure func-
tions which are present after contraction with the
lepton tensor L,.
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Appendix B contains the expression for the cross
section if the pion angles are not integrated over.
Cross sections for polarized baryons can also be
derived using the same procedure and kinematics,
but are not given here.

The isospin properties of the helicity amplitudes
are easily summarized. As in Fig. 2, we denote
the Hermitian isospin state of the final pion by
a. Taken between two nucleon isospinors, each
helicity amplitude (77" and U’" denoted by A) has
the general structure

AW, k?)= (TaT, + T, 7) AV (W, k)
+3[ 70, 7, JAC (W, &%) (2.27)

for incident neutrinos. For incident antineutrinos,
the A™) and A are unaffected, and 7, is replaced
by 7-. Forming final states of definite isospin
then leads to

A(3,vp)=-3V2Z (A=A,
A, vn)= -3V6 (A -AD)),
Ay, vn)= -3V3 (A +240),
A(z,vp)=0=A(3,7n), (2.28)
p)=-3v3 (A +240),
n)=+3vZ (AW -40),

,UP)=+4 V6 (A -4,

> 2 o>

njw  Njw -
<l o=l

A

where we have indicated in parentheses the final
isospin and the initial particles. For isospin-3
final states, the difference between proton and
neutron targets is only a factor V3, while in the
isospin-} case, only one possibility is permitted.
The 7p and Un are the same as the vz and vp am-
plitudes, respectively, except for a sign in the
isospin-% case. All our results will be given for
final states of definite isospin.

III. DYNAMICAL MODEL

In this section we further analyze the dynamical
model given in Eq. (1.4). Having already enumer-
ated in the Introduction the many desirable features
that lead us to choose A™ /D as our model for the
resonant helicity amplitudes, we now focus our
attention on those features pertaining to unitarity
and the Omnés equation. In particular, we examine
the exact Omnés solution and discuss the approxi-
mations that result in A™/D. Since this treatment
is identical to the corresponding discussion for
electroproduction (the differences enter in the
models for A™, which are discussed in Sec. Iv),
we refer the reader to Ref. 12 for a more detailed
discussion. Finally, we evaluate the model by re-
viewing some of the electroproduction predictions
and data.
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For each helicity amplitude a(W, &%), we write
a partial-wave dispersion relation,

- « ’ 2\dw'
aW, &%) = a "™ (W, k?) + W-W, f ,Ima(W , k2)dw'
T, W

—W) (W =W —ie)’

(3.1)
explicitly displaying the physical cut. The singu-
larities located elsewhere are contained in a'™s.
Since we wish to include the possibility that
Ima(W’, k%) does not go to zero at large W’, we have
chosen to subtract the dispersion relation. By
using the fact that

a(Wo’ K?)=a™ Wos k*)=0 (3.2)

in every partial wave, we know we have a zero
subtraction constant. If additional subtractions
are made, the solution is similarly obtained, but
there will be additional subtraction constants to
ascertain.

In order to evaluate the imaginary part along the
cut, we use unitarity. From Jacob and Wick,*®
we know that the unitarity relation for helicity am-
plitudes does not combine different angular momen-
ta. (In contrast, fixed-¢ dispersion relations suffer
from the fact that unitarity relates the imaginary
part of one invariant amplitude to the other invari-
ant amplitudes.) Since the weak coupling constant
is quite small, we may neglect terms in the unitar-
ity relation containing the product of two weak
helicity amplitudes. As a result, the unitarity re-
lation will be linear in the helicity amplitudes and
therefore will not relate amplitudes of differing
injtial helicity. On the other hand, unitarity gen-
erally does relate the amplitudes with different
final helicity states, since above the 77N thresh-
old there is more than one hadronic channel pres-
ent.

In order to solve this problem and obtain un-
coupled Omnés equations, we consider the S ma-
trix for a given partial wave. It will have a row
and a column for each hadronic channel and also
for each helicity corresponding to the weak current
plus a nucleon. Of particular interest to us here
are the entries for a weak-plus-nucleon initial
state and hadronic final state, but these elements
are related to the purely hadronic matrix elements
by the unitarity constraint. Since the hadronic part
of this S matrix is symmetric (assuming time-re-
versal invariance for the strong interactions) and
unitary by itself (neglecting terms proportional to
the square of the weak coupling constant), it can be
diagonalized by a real, orthogonal transformation.
If |e,) is a hadronic eigenstate defined by this
transformation, we then have

(e, 187" (W) | e) =6, exp[ 2i£]" W)]. (3.3)
The eigenphase shift £,(W) defined by this relation



3360 P. A. ZUCKER

is a real function for all W because the eigenvalues
of a unitary matrix have unit magnitude.

Once the hadronic part of the S matrix is in diag-
onal form, the unitarity relation is quite simple.
For the amplitudes corresponding to an initial
weak-current-plus-nucleon state and a final had-
ronic eigenstate [called “helicity eigenamplitudes”
and denoted by AW, £%)|, we have

ImAW, %) =e~ ™ sint (W) A(W, £?) . (3.4)

Since it is the helicity eigenamplitudes which
satisfy a simple unitarity relation, we choose to
write dispersion relations for these quantities
rather than for the usual helicity amplitudes. Thus,
we write relations as in Eq. (3.1) for each helicity
eigenamplitude, A(W, k?). By inserting the unitarity
relation of Eq. (3.4), we obtain

A(W, kZ) =A lhs (W, kZ)

L W=W, f’*’ e Wsint (W) AW, K?)aw’
m Wo W' =Wo)(W' =W —i¢)

(3.5)

for each helicity eigenamplitude. Since the unitar-

ity relation does not relate different eigenampli-
J

| >

tudes, these integral equations are uncoupled.
Since the unitarity relation is linear in the eigen-
amplitude, these integral equations are linear and
can be solved for A(W, %) in terms of A" (W, £?) and
EW).

Although we have obtained such a tractable sys-
tem of equations, we have made very few approxi-
mations or assumptions. In particular, we assumed
that second-order terms in the weak coupling con-
stant could be neglected and that the helicity eigen-
amplitudes satisfy once-subtracted dispersion rela-
tions. Furthermore, time-reversal invariance of
the strong interactions implies that the transforma-
tion from the physical states to the hadronic eigen-
states is real and orthogonal. Subsequently, we
shall make approximations for A™ and &, but
first we present the exact mathematical solution
to Eq. (3.5).

The solution for the unsubtracted form of Eq.
(3.5) has been given by Omnes®® and independently
by Muskhelishvili.?* The latter also includes a
thorough mathematical discussion of the procedure,
making the extension to the subtracted case (dis-
cussed in Ref. 12) relatively simple. With the sub-
traction, the exact* mathematical solution becomes

= singWNA™W’, B?)dwW’

AW, B?) =AM (W, k) + X(W) W;W°f
W,

X(W)EeXp[W;W° j:; (Wr_éz(tgl(;t)/(fivy;/—ie)]'

o [XW W =W W' =W =i€)’

(3.6)

By adding and subtracting A™ (W, £2) under the integral and by using the properties of the Cauchy repre-
sentation of [(z — W,)X(z)] ! in the complex z plane, we obtain'? an alternate form*® of the solution:

singW[A™ W', ) ~A™ W, £%)]

AW, k2)=X(W)[A ths (py, k2)+W'W°fw
s Wo

In this form several important properties are ap-
parent. First we notice that the integral in this
relation has zero discontinuity across the physical
cut, since the numerator is zero when W=W'. As
a result, this integral is real, and therefore
AW, E?) _ XW) e
[Aw, 2]~ [xw)[ "¢

(3.8)

showing that the amplitude obeys a final-state
theorem for all physical W. Second, we note that
this solution has a general N/D form, since the
bracket in Eq. (3.7) has singularities only for com-
plex W away from the physical region (the N func-
tion) and since X(W)~! has the physical cut (the
D function).

Although the expression in Eq. (3.7) is mathema-
tically exact and satisfies unitarity, it is extremely
difficult to evaluate. On the one hand, there is a

[XW) (W =W) W' -W)

dW’] . 3.7

r
complicated integral requiring values for A™ at

all W'>W,, and, on the other hand, our knowledge
of A" (W, £?) and £(W) is limited. When a reso-
nance is present in the eigenamplitude, however,

we can make some approximations to simplify the
solution in Eq. (3.7).

At this point, we should emphasize that our goal
is not to derivea particular model. Rather, we have
already assumed the A™ /D model given in Eq.

(1.4) for the reasons indicated in the Introduction.
Among those reasons was the statement that, for

a resonance, A™ /D is an approximate solution to
the Omnes equation. Now it is our aim to show
what approximations are needed to obtain an A™ /D
result from the Omneés solution in Eq. (3.7). Al-
though we present these approximations with some
arguments supporting their reasonability, the real
justification of a model must come from its com-
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parison with the data. Fortunately, there are
plentiful data on resonance electroproduction, and
such a comparison for a similar model has al-
ready been performed.'**? Below we shall review
some results from electroproduction to get an in-
dication of how well such a model can be expected
to work. The good agreement out to large values
of k? is particularly encouraging since approxima-
tions in A™, as well as the assumption of the
A'™ /D model, are being tested.

From an examination of Eq. (3.7), we see that the
A'™s /D model results if we can neglect the integral
relative to A™,

W—Wof‘” singW’) AW, k*) -A™ W, k%) W
w

7 IxXw)|  W-W)W'-w)
<A"™W, ),
(3.9)

when W is near Wy. Let us first analyze the func-
tion F(W') given by

o

povry= L W=V, sin&(W’)

T W—W, TXw)] * (3.10)

The eigenphase £ starts from zero at threshold,
goes rapidly through 37 at resonance, and then,
depending on one’s model, may go asymptotically
to 7 or may decrease to some other limit.** As a
result, sin¢ peaks in the region of the resonance.
On the other hand, |X(W’)|™ possesses a dip there
so that the product, sin&(W’)|X(W’)|™*, remains
roughly constant. An expansion for W’ about the
resonance value Wy helps support this assertion:

1
Xw)= D)
- 1
~ Re’D(W,)(W = Wy) +i ImD(Wg)
~ 1 1
" Re’'DW,) W-Wg +3iT ’
(3.11)
d
Re’D(W,) = [—- ReD W] ,
R Law ( )W:WR

'=2ImD(Wy)/Re'D(W,) .

Since the Breit-Wigner shape thus obtained is a
reasonable representation for a resonance (and
agrees nicely with the electroproduction data®),
we infer that ImD(W) varies only slightly from its
resonance value. As a result, we have

~ImDW) = ~Im[ [ D(W) | e~*]
=sing(W)|DW)|
= -ImD(Wg) = | DWg) |, (3.12)
showing indeed that sin&(W)|D(W)| is approximately

constant. In electroproduction we saw that | D(W)|
was typically in the vicinity of 0.2 for the promi-
nent resonances.

If the eigenphase shift approaches 7 asymptotical-
ly, then sin&(W)|D(W)| remains small in the high-
energy tail of the resonance. If, on the other hand,
£(W) reaches a maximum less than 7 and decreases
to a nonzero asymptotic value, sing does not go to
zero, and the behavior in the tail will be different.
In Refs. 11 and 46, models for the eigenphase
shifts are developed which have this latter be-
havior. Although | X(W)|-! then grows large asymp-
totically, the subtracted form of the Omnés equa-
tion*” guarantees the presence of a (W - W)~ fac-
tor which suppresses this growth. Using such a
model'! for £ as an example, we find that the factor
F(W) given in Eq. (3.10) has a value of about 0.2/7
in the resonance region, grows in the tail to about
0.6/7 near W+2T", and then decreases monotonical-
ly to zero. Although this numerical estimate is
based on a particular model for £(W), it does sup-
port the assertion that while F(W) may grow in the
tail region, it does not become large.*®

The remaining factor in the integrand of Eq. (3.9)
gives the variation of A™ over the region of inte-
gration. Since A™ does not have singularities near
the physical cut, we expect that it will vary slowly
in the physical region.* In particular, the varia-
tion across the resonance is approximated as
slight. For W near W, we take

Alhs (W, kz) —Albs (W&, kZ)E[ d

Y plhs 2
W —Wg dWA (W’k)]u':u'g

<AM™@W,r?)/T. (3.13)

When W is not near W, the (W — Wy)™! factor is
small and will dominate the growth of A" (W, #?)

- A" (W,, k*).5° When integrating over dW, the de-
creasing function F(W) is also present in the inte-
grand, with the result that the asymptotic region
gives a small contribution to the total value of the
integral. Combining all these observations and
approximations about the integral in Eq. (3.9), we
estimate that it is indeed much smaller than

A™ (W, £*) when W is near W;. In Eq. (3.7) we then
neglect the integral and obtain the approximate
Omnés solution for a resonance:

AW, B?) ~ X(W)A (W, ?)
=AM W, k) /DW). (3.14)

Of the many advantages possessed by this ap-
proximate Omnés solution, we emphasize its sim-
plicity, the separation of the k* dependence from
the hadronic physics, and the necessity of knowing
A'™(W, k) only in the region of the resonance. In
the Introduction we listed these and other reasons
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FIG. 3. Comparison for the N *(1236) of the electro-
production predictions from Ref. 12 with the most recent
6° data from SLAC (Ref. 51). For the photoproduction
point the analysis of Ref. 52 was used. The ratio of in-
elastic to elastic cross sections used as the ordinate is
given in Eq. (3.15). The arrow indicates the prediction
when £2=0.

why Eq. (3.14) is desirable as a model for the helic-
ity eigenamplitudes. Now, we have seen what as-
sumptions and approximations are required to ob-
tain it from the solution of the Omnes equation.

In order to exhibit some of the consequences of
the A™ /D model and to see some of its strengths
and weaknesses, we now present some results for
electroproduction taken from Ref. 12. Figures 3
and 4 contain the comparison of the model and the
most recent SLAC data’"52 for the N*(1236) and

doy _ (do/d)ge,
doe, (do/dQ)e

(Wg/m)] dW[2W, (W, B)getan®(30) + W, W, F)ge]

4
10 .
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~_ 107 N*(1520)
W=
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!I—»_E
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FIG. 4. Same as Fig. 3 but now for the N *(1520) region.
region. In addition, the pure threshold behavior [given
in Eq. (5.33) of Ref, 11] is indicated. The curves labeled
I and II are explained in the text.

N *(1520) resonance regions. Although comparisons
have also been made for the N*(1688) and N *(1950)
regions, their results and implications are very
similar to those for the N*(1520), and we there-
fore do not give the curves for these two levels
here.

On the ordinate is plotted the ratio of the reso-
nance cross section (at fixed incident electron en-
ergy and angle) to the elastic cross section eval-
uated at the same ¢,, 6, and k*. After cancella-
tion of some kinematic factors, we have

" (272m2)G 32 (1) tan® (5 6) +1[ G 5,2 (k%) + (2/4m)G 1,2 (kD) |/ (1 + B2/ 4m )}

The W, and W, occurring above are the structure
factors introduced by Drell and Walecka,?* while
Gy, and G, are the elastic form factors of the
proton. In Sec. IV we see how scaling relations
are used in our model for A™, with the result that
we calculate the ratio A" /G, directly. Since the
proton form factors obey a scaling relation, the
ratio in Eq. (3.15) depends on A™ /G, and is
therefore predicted by the electroproduction model
without any assumptions about Gg,(¥?). For the
data, the experimental Gg,(k?) and G,,(k?) were
used in finding this ratio. In contrast to the case
of electroproduction, we choose to plot do/dk?
rather than a corresponding ratio for the weak
predictions in Sec. V. The reason for this is that
we also present our predictions integrated over k2.
At that point, values for Gg,(k*) must be introduced
in order to perform the integration.

(3.15)

r

In the calculation of the electroproduction predic-
tions given in Figs. 3 and 4, we have again approxi-
mated A™ to be slowly varying across the reso-
nance:

S 14w, @) |2aw= | av @y, 12 |* [ | D) | 2aw

= |A™ (Wg, %) |29, (3.16)

Furthermore, we have assumed that each resonance
occurs in only one hadronic eigenchannel. Although
¢ can be determined, in principle, from the eigen-
phase shift, using Eq. (3.6), such a determination
is quite sensitive to assumptions about the asymp-
totic behavior of the eigenphase shift (as discussed
further in Sec. I and Appendix D). As a result, we
have chosen to determine 9 empirically for each
resonance. Thus the curves in Figs. 3 and 4 are
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normalized to the data. Having determined these
enhancement factors from electroproduction, we
use them as known inputs for our weak calcula-
tion. As a result, our weak calculation does not
have any parameters to be adjusted. Furthermore,
for the purposes of giving the area under a reso-
nance, Eq. (3.16) shows that knowledge of 9 is suf-
ficient information regarding the hadronic physics—
all other consequences of the eigenphase shift can
be ignored.

In the comparison for the N *(1236) given in Fig.
3, we see that the electroproduction predictions
agree very well with the SLAC data out to large
values of k°. Although there is some discrepancy
at photoproduction (the arrow indicates where the
curve starts), the abrupt rise and leveling off are
confirmed by the data. Even though the sharpness
of this rise depends to some extent on the kinema-
tics (being most pronounced at small values of 6),
the region of leveling and subsequent flatness out
to large k* are important, model-dependent re-
sults.®® By way of contrast, Adler’s'® calculation
gives predictions that fall below the data for k?
20.5 GeV?,

For the N *(1520) displayed in Fig. 4, we again
note the sharp rise followed by an abrupt leveling.
A threshold calculation'! (based on the kinematics
for small three-momentum of the virtual photon
in the c.m. frame) is included for comparison and
is normalized to photoproduction. Since the thresh-
old curve does not level off, we see that the loca-
tion at which and the abruptness with which our
curves turn over are not related to a special kine-
matic limit. (When £%=0, the three-momentum of
the virtual photon is already large.)

The curves labeled I and II refer to two different
calculations. For the eigenamplitude, a two-chan-
nel calculation'*? was performed using 7N and
7N *(1236) as the hadronic final states. In terms
of the physical channels, the excitation function is
given by

A" (W, )~ a3 (W, k?) cost (W) +anyx (W, k?) sing (W) ,

(3.17)
cos’t(Wp) =T, /T,

and we refer to this as model II. A particularly
interesting result learned from our experience with
electroproduction and displayed in Fig. 4 is that

a much simpler model,

AM(W, )=~ al"s, (W, B*)(T/T, 42, (3.18)

labeled as model I, gives similar predictions for
the electroproduction cross sections. For the
N*(1236) these models are clearly the same.
Although these two models give similar integrated
cross sections (in which the initial helicities are

VECTOR!

AXIAL: )( J_l . >,i

FIG. 5. Assumed excitation mechanism for the weak
production of a pion-nucleon channel. The heavy dot in-
dicates the current-current interaction.

summed incoherently), they do give different
predictions for the helicity eigenamplitudes indi-
vidually. Second, the enhancement factor deter-
mined using each of these models is different. In
addition to its simplicity, model I has the advan-
tage of being an approximation, although crude, to
a many-channel calculation.

Since our primary interest in calculating weak
production is to predict the integrated cross sec-
tion, we shall perform a model I calculation using
Eq. (3.18). Although our electroproduction experi-
ence justifies this approach for the vector current
(as a result of CVC), it is an assumption we make
for the axial-vector amplitudes. Until accurate
coincidence data at many values of ¥* and €, be-
come available, it is hoped that a simple model
like this for do/dk? will suffice to explain and pre-
dict the experimental results.

Since we are performing a calculation based on
the approximation of Eq. (3.18), we use the en-
hancement factors determined by comparing the
model I electroproduction predictions with the
SLAC data. The resulting values are given in
Table I. Although the statistical uncertainties in
these values for g are fairly small, there is the
possibility of a systematic error which is much
larger. In separating the resonant from nonreso-
nant events, the experimentalist is forced to as-
sume a parametrization of the resonance shape,
which is then fed into the computer. Different
choices can give variations up to 30 or 40%°* in
normalization, but do not affect the dependence on
E?. In contrast, we recall that a factor-of-four
uncertainty can be present when g is calculated
using models for the eigenphase shift.

Only five resonances are listed in Table I, since
we found that they were sufficient to give the peaks
observed in electroproduction. The spin-3 reso-
nances are observed to be small in photoproduc-
tion®® (implying small values for 9), and the model
(as discussed in Sec. IV) predicts that A™ (J=3)
will not grow relative to the higher-spin channels
as ¥? increases. As a result, we attempt to pre-
dict weak production using the same levels given
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TABLE I. Enhancement factors 4 obtained from com-
parison of electroproduction predictions (Refs. 11 and 12)
and the most recent data from SLAC (Ref. 51). The rela-
tive enhancement of the two spin-3 levels was determined
using photoproduction results from Ref. 52. Each reso-
nance is labeled by its spin, parity, isospin, and energy.

State (GZV)
37,3 (1236) 10.8
27,1 (1520 6.02
27,4 (1680) 0.20
37,1 (1688) 15.8
+7.2 (1950) 11.9

in Table L.

1IV. EXCITATION MECHANISM

The left-hand singularities of A(W, k?) are in
general quite complicated. Fortunately, our mod-
el has the great advantage of not requiring direct
knowledge of these singularities. Instead, all we
need to know is the value of A'™ (W, k%) for W near
Wg. To approximate this value we build a model
based on single-particle exchanges, which are
dynamical singularities known to be present in
A(W, k?). Other quantities (such as kinematic fac-
tors and the transformation coefficients® which
define the eigenchannel) have known values for W
near Wy. Interestingly, the reflection of the phys-
ical cut obtained when W= -V's can be handled ex-
actly and does not produce a resonant contribution
for positive W.%8

For the single-particle exchanges we obtain the
pole-term contributions by evaluating Feynman
diagrams with renormalized coupling constants,
observed elastic form factors, and on-shell ver-
tices. A partial-wave projection is then performed
to obtain their contribution to A™. In our previous
calculation of electroproduction'® we found that, in
addition to pion and nucleon exchange, the inclusion
of vector-meson exchange (a resonance treated as
a single-particle exchange) was important; it was
needed for the N*(1236) at large 22 (20.5 GeV?)and
for the higher resonances. Furthermore, we keep
one nonpole term for the vector and one for the
axial-vector current in order to explicitly guaran-
tee current conservation or pion-pole behavior at
small k257

Since we are dealing with helicity eigenampli-
tudes, this evaluation of Feynman graphs and sub-
sequent partial-wave projection must be performed
for each contributing physical hadronic state.
Fortunately, use of the approximation in Eq. (3.18),

AW, k) =~ al™ (W, B2)(T/T, y)*'?, (4.1)

reduces our task to a consideration of only the
pion-nucleon final state. Below, we discuss the
evaluation of the single-particle and vector-meson
exchange contributions to a%. [N*(1236) exchange
in the u# channel was investigated for electropro-
duction'! and found to be unimportant; we shall
therefore not include it here.]

For the vector amplitudes, we use the con-
served-vector-current theory of Feynman and
Gell-Mann® to relate the matrix elements of the
weak current to the electromagnetic. The isospin
rotation accomplishing this is given by

J (weak) = (7' +iJ ) cos6,, (4.2)
J (v, isovector) =J ", )

with the superscripts denoting components in iso-
space. The factor cos6,~0.975 is the cosine of the
Cabibbo angle,®® which accounts for the fact that
we are dealing with only the strangeness-conserv-
ing part of the weak current. (The Cabibbo angle
also appears with the weak axial-vector current.)
If we write this relation in terms of the isospin
amplitudes given in Eq. (2.27), we obtain

A™ (weak, vector) =2 cos6, A “'(electroproduction).
(4.3)

The factor of 2 results from the choice of the iso-
spin invariants'® which for electroproduction have
7, rather than 37, where 7, appears in Eq. (2.27).
After choosing our excitation model such that Eq.
(4.3) is satisfied by A™, we incorporate CVC by
taking D(W) to be the same as for electroproduc-
tion.

Figure 5 shows the particle exchanges used for
the vector part of A™. The nucleon and pion ex-
changes are needed together for current conserva-
tion, and the w° contribution is conserved by itself.
Since the w°® has odd G parity, it contributes here
while the p contributes to the axial-vector current.
[¢° exchange is expected to be unimportant since
SU(6) and vector-meson dominance give g4,,~0.%]

For the pion-nucleon coupling constant, we use

g.y/41=14.6 (4.4)

and describe the 7NN vertex by the usual y, cou-
pling. At the current-nucleon-nucleon vertices we
employ the known nucleon elastic, isovector form
factors. Experimentally, we have the scaling law®®

Gep(R?) =G 1y (B*)/ 11y = G () by s (4.5)

where p, and u, are total magnetic moments in
nuclear magnetons. For the neutron electric form
factor, a variety of scaling laws consistent with
the elastic data were investigated!* and found to
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predict identical electroproduction cross sections
for k*<1 GeV?. At larger k?, differences became
more pronounced, reaching 15% at k*=5 GeV? for
the N *(1236) and 25% for the N *(1520). In spite of
these differences, the experimental electroproduc-
tion data at such large values of k* are not accurate
enough to decide between the various scaling laws
proposed. As a result, we now pick a convenient
one,

Gpo(K?) = =BG, (K?)/4m?® , (4.6)

which corresponds to F7(k?) =0.

In order to assure current conservation regard-
less of the choice for the pion elastic form factor
F.(F?), we add the term

F  (k*)- F}(¥%)

7 k,u(p,) cosé,,

77(172)%[7(“ T+] i)/szgﬂN

(4.7)

to the contributions of the graphs in Fig. 5. Nu-
merically, this term is unimportant, since k, con-
tracts with the lepton operators to give a factor of
the lepton mass (a factor of zero when the lepton
masses are equal, as in electron scattering). In
spite of its small size, we incorporate this term
into our model to ensure a desired symmetry.
Having included this term, we are free to choose
F_(¥%), subject only to charge conservation or

F,(0)=1. (4.8)

Since there is scanty experimental evidence for
F.(F*), we make an assumption motivated by sim-
plicity and take

F, () = FY (§). (4.9)

In order to test our sensitivity to this assumption,
we examined a variety of choices for F, (£%). In
all cases where F,(k?) decreased asymptotically at
least as rapidly as Gg,(k*), we found that the cross
section was insensitive to the choice. This is not
surprising, since in this case the pion exchange is
important only at small values of k* where F, de-
creases smoothly from unity at 22=0. On the
other hand, if F, (k%) decreases more slowly than
Gg,(F?) at large k£, then the pion exchange be-
comes important at large 2% and gives cross sec-
tions inconsistent with the electroproduction data
(which show, as in Fig. 3, that the resonance de-
creases proportionately to the elastic). A similar
argument also applies to the w°form factor F, ,(%?).
For example, the difference between using F}(k2)/
FJ0) or G,,(k?)/u, is at most a few percent (k2 <5
GeV?) in the resonance cross section, but a choice
behaving like k2Gg,(k?) would give cross sections
in disagreement with the data. Following simplic-
ity, we have chosen

F oy (k%)= F; (B*)/F} (0). (4.10)

For the coupling of the w° to the nucleon, we
use an interaction Lagrangian of the form

L8Ny 9w, (4.11)

keeping only the charge coupling, since the nu-
cleon isoscalar magnetic moment is small. For
the wmy vertex we take® [and later use Eq. (4.3)]

way=igwﬂy6a3€uupnkueuwpqn’ (4'12)

where o is the isospin index of the emerging pion,
w, the polarization of the ° and e, the polariza-
tion of the current. The size of g,,, can be deter-
mined from the electromagnetic decay of the w,
while the magnitude of g,y is known only crudely.
As a measure for this coupling, we introduce the
quantity

g=— Suny8wNn
%ngFg(o)

~ _yT0 Swry Sery
gon | &unyl

For the electroproduction results, the value!°-!?

(4.14)

(4.13)

g=-6

gave the best over-all #* dependence and corre-
sponds to a g vy in rough agreement with other
determinations.'® Having ascertained g from elec-
troproduction, we no longer treat it as a param-
eter but as a predetermined quantity for use in
our weak production calculation.

In addition to affecting the #* dependence, the
sign of 8 has interesting consequences for the J =3
partial waves. In the 1520- and 1680-MeV regions
there are also spin-} resonances. At photopro-
duction,®® we know that their contributions are
small compared to the high-spin levels. As a re-
sult, we infer a small enhancement factor 9. If
B is negative (as above) the A "$(J =3) grow less
rapidly with k? than do the higher-spin levels, and
we can therefore consistently neglect the contri-
butions from these J =3 levels. For a positive g,
however, the A" (J=%) would grow so rapidly with
? that the spin-} levels would become prominent
for £*20.5 GeV? in spite of their small contribu-
tion at photoproduction. Although a direct mea-
surement of resonance spins for £*>0 is yet to
come from coincidence experiments,®® a negative
value of g gains support from the SLAC data,
whose peak locations and widths correspond nicely
to our predictions'! using only the higher-spin
resonances.

Since w° exchange only occurs in the vector am-
plitude (and since p exchange is unimportant in the
axial-vector amplitude), the ratio A ™ (axial vec-
tor)/A ™ (vector) is sensitive to the choice of g.
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Our predictions for weak production depend on this ratio, since®
AW, ¥?, weak) =A(W, k?, vector) + A(W, k?, axial vector)
A™S(W, k%, vector) A'™ (W, k2, axial vector)
o~ 1 . (4.15)
D(W) Alhs (W, k?, vector)

As a result, different models for electroproduction, all of which agree with the electroproduction data,
may not agree for weak production because of the term in brackets. In particular, the CERN data (dis-
cussed further in Sec. V) seem to support our model (with 8= -6 as fixed by electroproduction), while
Adler’s calculation'® (which does not contain w exchange) falls far below these data for weak production of
the N*(1236). For the small values of ¥* measured here, both calculations agree with electroproduction.
A more detailed comparison of these two approaches is given in Appendix D. Interestingly, a hypothetical
model based on positive g would do correspondingly worse for weak production.

For the axial-vector excitation function, we use the exchange graphs shown in the bottom part of Fig. 5.
In contrast to the vector case, p exchange is present and pion exchange is forbidden by parity. (Appendix
E gives the amplitude resulting from these graphs and the approximations discussed for both the vector
and axial-vector cases.)

The axial-vector elastic form factors are defined by

E,E,Q%\/? o 2 L a
=) ]I 0) | p) =P A (RF)ysy , +1Fp(R)ysky ]T, cosb ulp),

(4.16)
r
and we know from the neutron lifetime® that Thus at small % we have
=-1. .01, . 2 0)p?
F,(0)=-1.2310.01 (4.17) a () — B (17) = 22 Ea O (4.20)

Observations of the elastic neutrino process

vin—-p+1- (4.18)

include events at larger values of £* and indicate®
that the axial-vector form factor is similar to the
vector form factors. As a result, we choose

FA(kz) :FA(O)GEp(kZ)

as our scaling law.

The pseudoscalar form factor Fp(k%), on the
other hand, is very difficult to observe, since &,
contracted into the lepton current gives a result
proportional to the (small) lepton mass. From our
discussion of the kinematics in Sec. II and Appen-
dix C, we see that such terms are important only
when k® is small (events near the forward direc-
tion). Proportionality to k,, on the other hand, has
the particular asset of requiring the Fp(¥?) term
to be present in the divergence of the axial-vector
current. As a result, a theory for this interesting
current component will imply a choice for Fp(¥?).

We shall adopt such a theory for the elastic re-
action. It is commonly called the PCAC (partially
conserved axial-vector current)® hypothesis and
can be stated in several equivalent ways.® In one
approach the divergence of the axial-vector cur-
rent operator is equated with the pion interpolat-
ing field, assuming the extrapolation from %k*=0
to the pion mass shell is smooth. In the approach
described below, we approximate a dispersion re-
lation to be dominated by the pion pole (in %* as the
dispersed variable) at small g%

(4.19)

k2+‘~1-2 ’

where the residue has been evaluated by examin-
ing k*=0. [This residue can also be given in terms
of the pion-to-lepton-pair coupling constant. The
relation of the residue to F,(0) was first obtained
by Goldberger and Treiman® and has been con-
firmed to within 10%.] The term on the left-hand
side of Eq. (4.20) occurs when the divergence of
Eq. (4.16) is taken, and PCAC implies that the
dispersion integral (plus any subtraction constants,
usually assumed absent) occurring on the right-
hand side of Eq. (4.20) can be neglected for small
F%. A pion pole occurs in the dispersion relation
for 2mF, - k*Fp, since the pion has the same
quantum numbers as the divergence of the axial-
vector current. Since F,(k?) is present for the
other components of the axial-vector current, we
know that the pion pole appears only in Fp(k?).

At larger values of k*, a more general relation
is needed. [Eq. (4.20) is only applicable for small
¥?, meaning the order of p®] As a result, we
adopt Nambu’s version of PCAC® and take

Fp () =2mF %)/ (" + %),
2Y),,2
2mF 4 (k) = KF p(k?) = Erﬁk%%’—)“—,

as our scaling law and its immediate consequence.
Since F,(k?) is smoothly varying for k* near zero
(no nearby poles or cuts), this formulation con-
tains the results of Eq. (4.20) as a special case. A
further advantage of this approach is that when

(4.21)
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k?> u? (a relation satisfied for most ¥*’s of inter-
est in weak production, since the pion mass is
small in comparison to the other relevant ener-
gies), then 2mF , - k*Fp is much smaller than
2mF,, indicating that the divergence of the cur-
rent is insignificant in comparison with the other
components.

For the inelastic reaction of resonance produc-
tion, we are also interested in dominating the
divergence of the axial-vector current by a pion
pole. Unlike the elastic case discussed above,
this presents some additional difficulties. First
of all, PCAC has not been subjected to a conclu-
sive experimental test for inelastic processes.
Second, extrapolations or dispersion in k* may be
affected by what is done with W and k- q as ¥* is
varied. Third, the residue of the pion pole depends
on the enhancement factor 4 as well as on approxi-
mations in A", We shall return to a discussion
of the residue after showing how A ™ can be chosen
proportional to (£ + u?)~2,

Since the contribution to A™ (axial-vector di-
vergence) from the nucleon-exchange graphs is not
proportional to (¥* + u?)™!, an additional piece must
be added. Unfortunately, the p exchange cannot
solve this problem, since it has the wrong isospin
properties. Rather, we proceed somewhat anal-
ogously to the vector case and incorporate a non-
pole term into our model. We add

— ?ﬁ{ 2
ngcosecu(pz) Zm FP(k )(Tch+ +T+Toz)u(p1) (422)
J

(2w.,E1E29
2

m

to the contribution of the nucleon-exchange graphs.
Since this term is proportional to &, it is unim-
portant numerically but may be noticeable when

? is of the order of m,>.

Having included this extra piece, we see from
Appendix E that the nucleon-exchange contribution
to A™ for the divergence of the current becomes
explicitly proportional to 2mF, - k*Fp. The re-
maining factors in this proportionality, such as
(2k+ g +W?%—-m? ™!, depend on the other kinematic
variables. If W? and cos6,, are held fixed and if
F? is small but variable, then E,, k,, k*, and k- q
are all approximately constant. Therefore, we
take W and cos6,, as fixed while k? is dispersed or
extrapolated from the pion mass to zero. Then
for small #* we have

A" (divergence component) =C(2mF - k*Fp)
=2mF,(0)p*C/(k* + u?),

(4.23)
where C is a constant readily calculated from Ap-
pendix E and the partial-wave projection. Although
this expression is similar to Eq. (4.20), we cannot
yet make any conclusions about pion-pole domi-
nance of the axial-vector current since the full am-
plitude also contains D(W)~!. After discussing the
p-exchange contribution, we will return to analyze
the residue of this pion pole.

In evaluating the p-exchange contribution, we
used the p-7 axial-vector vertex given by Segré
and Walecka® to obtain

3\1/2
) (b2q W 15(0) | p) ™ =GEF )y o (k)& im )2 cos6, [ (ke — g)* +m 7]

Xﬁ(pz)%[‘ra’ T+]{6uv - b(kz)kuqu + c(kz)ku ku} [gleNyu - gZpNNOV)\(k - q))\]u(pl) *

We thus have three form factors to determine. As
in the case of w® exchange for the vector part, we
choose a particularly simple model:

F e (B) = F 4 (k3)/F 4 (0)
b(k*) =0,
c(k?) = =(k? + p)~*.
Since c¢(k?) occurs multiplied by k,, it contains
the pion-pole contribution, and we are careful not
to ignore it. The particular form for c(¥?) given in
Eq. (4.25) implies that the p-exchange contribu-

tion to the divergence of the current is proportion-
al to

FPﬂA(kz)ku[éuv —kyk, /(B + u®)]=k, Fy (B 2/ (K + u?) .
(4.26)

(4.25)

(4.24)

For small % and fixed W, C0S6,,, the other factors
in Eq. (4.24) are approximately constant. As a
result, the p-exchange contribution to the diver-
gence of the current behaves like the nucleon com-
ponent in that it equals a constant times (%% + p?)~*
at small k2.

The coupling constant G appearing in Eq. (4.24)
has been calculated by Segré and Walecka® using
quark-charge sum rules saturated by vector me-
sons. For a result, they obtain

(GEV=12m,/u (4.27)

if (k?) is zero. Using vector-meson dominance
for the p-nucleon coupling constants, we obtain

gxpNN =F¥(o)')/p’

(4.28)
82088 =F¥(0)’}’p ’
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where y, is the p-y coupling constant. Its value is
known approximately from measurements of me-
son production from nuclei®:

v2/47=0.5-0.8. (4.29)

In addition to knowledge of (Gf)? and (y,)?, Eq.
(4.24) requires knowledge of the sign of G{y, For-
tunately, PCAC implies a definite choice for this
sign, as a comparison with Adler’s evaluation of
the p-exchange contribution will show. In his cal-
culation,'® Adler considers a soft final pion (g, =0)
and uses PCAC to relate this final pion to the di-
vergence of the axial-vector current. After using
current commutation relations, he obtains a value
of the coupling which then gives, upon comparison
with Eq. (4.24), the relation

Em, 1) /2GEy, /m 2= —g y/mF4(0). (4.30)
From this we determine that
G‘;yp>0, (4.31)

since F,(0) is negative. Although we choose to
use Eqs. (4.27)-(4.29) for the magnitudes of the
coupling constants, we note that they are consis-
tent with Eq. (4.30). More particularly, the value
of GI from Eq. (4.27) combined with Eq. (4.30)
would imply

v, /4n=0.44, (4.32)

which is close to the lower limit in Eq. (4.29), the
latter of which we chose as our value.

In the preceding discussion (and also in Appen-
dix E) we have described our model for A" in
terms of particle exchanges, coupling constants,
and elastic form factors. Furthermore, we have
constructed A™ so that the vector current is ex-
plicitly conserved. For the divergence of the
axial-vector current, we have explicit propor-
tionality to (¥* + u®)~! at small k* (W and cosé,,
held fixed). PCAC has been used in determining
the elastic form factors and is yet to be discussed
for the residue of the pion pole in A™ .

The residue of the pion pole in our model can be
compared with the PCAC prediction by looking at
the cross section d%0/dWdk? for small ¥?. Using
the discussion in Appendix C, we see how this is
related to the divergence of the axial-vector cur-
rent. A partial-wave projection needs to be per-
formed, but our predictions given in Sec. V are
the results of such a projection. [We need the
residue of A(W, k*) and not the residue of A™ .]
Finally, the pion-nucleon scattering data at the
same W and in the same partial wave must be used
for the comparison. For the N*(1236), the case
of most immediate interest, our small #* ampli-
tude is then found to be approximately a factor of
2 higher than the PCAC predictions (comparison

made at €, =1 GeV).

There are several possible explanations for
such a discrepancy. First, there may be some
problems with the A ™ /D model at small %, In
electroproduction?®™*? such a model had its most
serious problems near #*=0, and some other cal-
culations*®~2° for the N *(1236) have gone so far as
to build more detailed models in the small k* re-
gion. Such problems could arise if A™ did not vary
slowly enough across the resonance for the ap-
proximations in Sec. III to apply. A direct exami-
nation of A™ does indicate a greater variation in
W for small k? compared to large k2. (We recall
that for large k%, A™ contains a cut intersecting
the real axis near W=m. At small %° this cut is
much shorter and is concentrated near the real
axis.)

Another possibility is that A™ is inaccurate.
Perhaps some of the approximations made for the
p-exchange couplings or form factors need revis-
ing. Perhaps additional particle exchanges are
needed for this current component. In comparing
to the PCAC values, we are sensitive to only one
current component. On the other hand, our model
is designed to predict cross sections at larger k?,
where all the current components contribute. In-
deed, it is possible to modify A™ so that the cross-
section predictions (except the small %? limit) are
scarcely altered while the divergence of the cur-
rent is substantially changed. For this present
calculation, we have refrained from adding such re-
finements to our model. When accurate experimen-
tal data at small k% become available, then it may
be feasible to attempt a more sophisticated treat-
ment of the small-k? region.

Yet another possibility is that D(W) and there-
fore the enhancement factor g need to be changed.
Since our present choice of g is supported by
numerous electroproduction data and since it gives
weak predictions in agreement with the CERN
data discussed in Sec. V, we have confidence in its
value. Thus, if the future neutrino data were to
support the PCAC prediction, we would attribute
the problem with our prediction to the possible
causes discussed in the preceding paragraphs, and
not to the value of 4.

V. NUMERICAL RESULTS

We now proceed to present our results for the
noncoincidence cross section. From Sec. II we
have the expression

d%o w G - - -
AWARE =t gy KMt KW+ K W),  (5.1)

and Appendix B gives the coincidence cross sec-
tion. The purely kinematic K, are given in Eq.
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(2.12). Although the properties of these K, are dis-
cussed in Sec. I and Appendix C, we note here that
when ¢, is large compared to k* and k§, then K,
and K, are small while K, is approximately con-
stant. For k2 near its minimum value, however,
the situation is different, since K, approaches zero
as k? decreases to its limit.

All the dependence upon €, is contained in the
K’s, since the structure factors W, depend only on
W and k2. By using Eq. (2.24) we can obtain these
structure factors from the helicity amplitudes.
Our model, of course, predicts the resonant parts
for the helicity eigenamplitudes, and therefore
gives us predictions for the resonant parts of the
W, .5 Conveniently, we may express these results
in terms of the “resonance structure functions”
w,(k?) defined by

url(k2)E—:;deW,(W,k2)Res. (5.2)

In Table II our numerical predictions for w,/Gg,*
are given for the resonances expected to be prom-
inent in weak production. Although these values
may increase slowly with k2, there is a tendency
for them to level off when k2 becomes large. As
a result, we predict that the resonance cross sec-
tion do/dk? will behave like the elastic cross sec-
tion at large k2. In Figs. 3 and 4 we have seen a
similar pattern for electroproduction.®®

At very small values of %%, on the other hand,

w, and wy contain a large contribution from a term
proportional to k*?m,?/k*. For the values of k?
given in the table, this factor will be small for the
electron-neutrino case but large for muon neutri-
nos. Since the final lepton has a finite rest mass,
k? cannot decrease to zero but has a limit (at fixed
W and €,) given by

L

Pmin® = m;° Tokl‘- +0(m*)
1™ Ro
W2 — 0
= m,? u (5.3)

2me, -W2+m? "~
Our discussion relating to Eqs. (2.13)-(2.17)
shows that the source of this peculiar kinematic
behavior is the nonconservation of the axial-vec-
tor current. Furthermore, it is the large size of
k**m,?/k* near the forward direction (%2 near its
minimum) which causes the cross section to be
dominated by the divergence of the axial-vector
current. Although w, and w; grow to a large finite
limit as %2 approaches its minimum, the cross
section does not grow since K, and K, are both of
order m,?, and K, is decreasing toward zero.
These same comments pertain to W, and W, at any
fixed W, and Appendix C investigates the behavior
of d%c/dWdk? at small k? with an emphasis on the
role played by the divergence of the axial-vector
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current.

Although the kinematic factors K, ; depend on W
through k% and k*, this dependence is often
quite weak. As a result, we may evaluate these
factors at W =W and obtain for each resonance

2
do Ve Q-(Klwl +Kw, + Kawg) .

(5.4)
When might K, and K, depend sensitively on W?
Clearly, this can occur when there is a cancella-
tion of the leading term in K, or K, by the one con-
taining kL. If €, is large, such cancellations occur
only very near the maximum and minimum values
for k%. For small €, (near the threshold for pro-
ducing the resonance), on the other hand, both
terms in K, and K, are important over a wide range
of k2.

Another way of viewing this situation is to realize
that this rapid variation in K, and K, occurs near
the edge of the physical region. When the boundary
of the physical region occurs in the region of the
resonance, only part of the resonance peak is kine-
matically accessible, and Eq. (5.4) must therefore
be modified.

Using Eq. (2.5) we find that the maximum W? pos-
sible at a fixed k2 and ¢, is given by

k% +m?®
2m,€,

2
Wmaxz=m2+2mel—k2—mm,< M€y )

k% +m,”
(5.5)

In terms of the lepton scattering angle (which we
treat as a dependent variable®”) this limit occurs
at 0° if k2 is smaller than m,(2¢, — m;) and at 180°
if 2 is larger than this amount. Equation (5.5) can
also be solved to give the maximum and minimum
values of k2 for which a specified energy “Wn.” is
in the physical region.

Integrating over energy then gives

Wmax
[ 1A, o) 2aw

%%

Wmﬂx
~ [ " aw|avow, 1%))2 | Dw)| 2.
L]

(5.6)

If W« is near W,, we cannot ignore the threshold
factors present in AM™. Rather than evaluate A

at all values of W, we approximate its threshold
factors as follows:

(q/qg ) *72A™ (We, B2), W <Wg

ANS(W, k2) =
’ AP (We, k2), W= Wy . (5.7)
Here [ is the orbital angular momentum of the final
pion and ¢, is the ¢c.m. three-momentum of the pion
when W=W,. For |D(W)|~* we follow the discus-
sion in Sec. III and choose a symmetric Breit-Wig-
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TABLE II. Resonance structure factors. Predictions for the integrated structure factors
(defined in the text) are given for the resonances expected to be prominent in production by
neutrinos incident on nucleons. For the isospin-3 levels (at 1520, 1680, and 1688 MeV) the
target nucleon is taken as a neutron while for the isospin-3 levels (1236 and 1950 MeV) it is a
proton. By using the expression in Eq. (2.28) and changing the sign of w; (except for those
parts of w; dependent upon the lepton mass), the predictions for antineutrinos can be obtained.
For all these levels the final state is a pure isospin state in the eigenchannel, with all decays
therefore included in the sum. Furthermore, the results for the two spin-5 levels near 1680
MeV have been combined. Results are given for both electron and muon neutrinos. The square
of the elastic proton form factor Gg,? is divided out since it is the resultant ratio which our mod-
el calculates directly (and without making any assumptions about Gg,, ).

k2
(GeV?) lepton w1 /Gg?  wy/Gpy? w3/G g w /Gt  w,/Gg?  wyGpg,?
N*(1236) N *(1520)
0.001  electron 7.62 4.34 8.89 1.59 0.249 —0.282
0.005 7.49 4.45 8.70 1.55 0.259 —0.352
0.01 7.48 4,55 8.77 1.54 0.271 —0.354
0.05 7.44 4.80 9.37 1.46 0.351 —0.354
0.1 7.41 4,52 10.11 1.38 0.419 —-0.357
0.3 7.32 4,53 12.03 1.49 0.587 —0.302
0.001 muon 5.50% 103 4.34 1.10x 104 1.56x 103 0.249 3.11x103
0.005 2.00%10? 4.45 3.86x10°? 55.6 0.259 1.05% 10?
0.01 50.8 4.55 89.4 13.57 0.271 21.8
0.05 8.75 4.80 10.94 1.86 0.351 +0.0567
0.1 7.66 4.52 10.34 1.49 0.419 -0.291
0.2 7.38 4.53 11.17 1.43 0.511 —-0.336
0.3 7.34 4.53 12.04 1.51 0.587 —0.298
0.4 7.41 4.55 12.84 1.63 0.660 —-0.223
0.5 7.53 4.59 13.52 1.76 0.730 —-0.125
0.7 7.85 4.72 14.50 2.01 0.850 +0.110
1.0 8.39 4.88 15.56 2.28 0.968 +0.470
2.0 9.71 4.96 15.93 2.57 1.039 1.266
3.0 10.25 4.58 14.84 2.49 0.944 1.551
4.0 10.38 4.12 13.43 2.32 0.829 1.601
5.0 10.34 3.69 12.19 2.13 0.724 1.554
N*(1680) + N*(1688) N*(1950)
0.001  electron 1.082 0.120 —1.102 0.740 0.188 ~0.142
0.005 1.040 0.124 -1.162 0.634 0.189 —-0.357
0.01 1.025 0.129 -1.159 0.637 0.190 —0.357
0.05 0.924 0.169 -1.126 0.683 0.201 ~0.312
0.1 0.814 0.213 -1.078 0.747 0.217 ~0.250
0.3 0.626 0.301 —-0.931 1.034 0.315 +0.0561
0.001 muon 1.40x 103 0.120 2.78%103 4,85%103 0.188 9.69x10°
0.005 49.3 0.124 92.9 1.68x 10?2 0.189 3.26x 102
0.01 11.8 0.129 18.6 37.6 0.190 67.7
0.05 1.30 0.169 —0.761 1.84 0.201 +0.903
0.1 0.927 0.213 —-1.019 1.040 0.217 —0.0622
0.2 0.724 0.269 -0.991 0.969 0.261 —-0.0783
0.3 0.647 0.301 -0.927 1.078 0.315 +0.0662
0.4 0.625 0.322 —0.863 1.218 0.377 +0.244
0.5 0.627 0.341 —0.795 1.369 0.442 0.448
0.7 0.668 0.371 —0.650 1.69 0.567 0.919
1.0 0.735 0.416 —0.401 2.19 0.733 1.76
2.0 0.906 0.502 +0.342 4.27 1.225 5.31
3.0 1.050 0.580 +0.888 6.74 1.75 8.93
4.0 1.183 0.647 1.237 9.22 2.24 12.02

5.0 1.268 0.690 1.435 11.08 2.54 14.09

| >
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ner shape normalized to correspond to the ob-
served electroproduction enhancement factor.®® Al-
though Eq. (5.7) contains additional numerical ap-
proximations introduced into our calculation, we
shall see that W,,,, is in the resonance region only
for very small (or large) k% or for small ¢, .

For K, and K, we choose an average value for
W< Wy By the mean-value theorem, this cor-
responds to evaluating these factors at some W,
below Wmax. The sharp drop near Wy, is then ac-
counted for by the fact that the integration region
ends there. If ¢, is large, K, and K, vary smoothly
until W is very near Wmax, and we are therefore
insensitive to the choice of W,. On the other hand,
when ¢, is near its threshold for producing the res-
onance, the choice of W, has a larger effect on the
results. In presenting our predictions for do/dk?,
we shall indicate where these considerations are
important and where Eq. (5.4) is suitable.

Rather than give the ratio to the elastic cross
section, we shall give the inelastic cross section
by itself. Later, we shall integrate over k2. At
this point we must therefore assume some form
for Gg,(k?). Our choice is the “dipole fit,”%

Gpp(k?)=(1+£%/0.71 GeV?)~2. (5.8)

In Fig. 6 we present our results for the N*(1236)
resonance at a variety of incident neutrino ener-
gies. Consider first the curve for 1000 GeV. At

do/dk? (109G ev™4)
2]
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this high energy, K, and K, are negligible com-
pared to K,, which in turn is approximately con-
stant. As a result, this curve depends only on our
predictions for w,(k?). From Table II our calcula-
tion gives w,/G.,? as approximately constant, ex-
plaining the proportionality of do/dk® to G;2.

Upon what aspects of our theory does the nearly
constant value of w,/G;,* depend? The A™ /D form
of our model implies the dependence on %? is iso-
lated from the hadronic scattering. Our particle-
exchange model for A shows that the dependence
on k? in the propagators is not important in this
region, while the dependence introduced through
the elastic form factors is important. If these
form factors scale with respect to G;,, our model
then predicts a slowly varying w,/G,,2. Dramati-
cally different behavior would result, however, if
such elastic form factors as F,, F,.,, or F, were
to behave asymptotically like 2%G, .

Of course, w,/Gg,’ is not exactly constant, and
the variations of this quantity with respect to k2
are more sensitive predictions of our model. Such
variations depend on the details of the scaling laws
assumed for the elastic form factors and upon the
propagators in the particle-exchange graphs of
Fig. 5. In order to test these predictions experi-
mentally, we should compare with the observed
do/dr? divided by the elastic cross section.

Fortunately, observations at large €, provide a

DIFFERENTIAL CROSS SECTION

—yt P — u+ N”?|236)

L3 N+w
(@) €,=1000 Gev
(b) € = 4 Gev
(c) €= | Gev
(d) €, = 05Gev

——=-vg+p—>e + N (1236), €= 1 Gev
LoN+n

k2 (GeV?)

1 1 1 1 1
9

FIG. 6. Predictions for the differential cross section do/dk? for production of the 3*,2 (1236) resonance by neutri-
nos of various initial laboratory energies € incident on a proton target. Only the events containing a subsequent decay
into a single pion plus a nucleon (pure isospin state) are included. All of these curves go to zero for small enough %2
since the resonance is then outside the physical region. (The kinematic constraints on 22 and W for fixed € are dis-

cussed in the text.) We recall that 1 GeV-1=1.973 x10~*¢ cm.
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convenient way of separating w, from w, and wj,.
The necessary energy is not unreasonably high,
either. From Fig. 6 we see that there is hardly
any difference between ¢, =4 and 1000 GeV for
k22 0.1 GeV2.

For smaller initial neutrino energies several
changes occur. On the one hand K, and K, are
larger, meaning that w, and w, have noticeable
contributions. Furthermore, K, starts to decrease
from its maximum value before %? is extremely
small. Again the dominant feature at large %2 is the
elastic dependence, and the more sensitive predic-
tions are given by the ratio of the cross section to
Ggy?.

Since w, contains the vector-axial-vector inter-
ference, its value is particularly model-dependent.
Unfortunately its direct observation is difficult.
Either low-¢, data must be subtracted from high-¢,
data (to cancel out the w, contribution) or neutrino
data must be subtracted from antineutrino data
(because w, changes sign, except at small k?).
Even if the variations of w,/G,,2 with k2 cannot be
observed, the average value of this function over
a large range of k2 is still a meaningful test of the
theory (which depends, among other things, on
which particle exchanges are present for the axial-
vector in relation to the vector amplitudes).

From the curves in Fig. 6, we notice that the re-
gion k%< 0.1 GeV? is quite interesting. Due to the
behavior of the elastic form factor, approximately
40% of the events are predicted to occur in this
small-%? region. In addition to the fact that the
curves turn over as a result of decreases in the
K’s, we note that 0.1 GeV? is only approximately
ten times the square of the muon mass. Therefore,
effects due to the nonzero mass of the lepton can
be observed and used to isolate the divergence of
the axial-vector current. The dashed curve in Fig.
6 shows the €, =1GeV result for electron neutrinos,
and its deviation from the muon curve illustrates
the contribution of the m,? terms in w, and w, and
also the dependence of K; upon m 2.

From Egs. (2.13)—(2.17) and the discussion in
Appendix C, we see that for k2 smaller than m, k*,
the values of w,, w,, and w, are related by

2w1 +Ws _ WRZ m;zk*z

™ e T [1+0(R)F . (5.9)
2

Since PCAC predicts a value for (2w, +w,)k* in the
forward direction, this prediction can be tested to
lowest order in k? either by measuring 2w, +w, for
small k% at small €, or by measuring w, for small
k? at large €,. (This is related to the idea that if
€, is large enough, the lepton mass must be insig-
nificant.)

In addition to predicting the residue of the pion
pole, PCAC also predicts that the k2 dependence

ZUCKER

4
is indeed that of a pion pole, namely, that in Eq.
(5.9):

ok?)=-L (5.10)
2R2+p? "

In order to test this prediction, it is necessary to
measure 2w, +w, rather than w, at small k%. Since
2w, +w, is proportional to m,? at low k2, a pos-
sible way to isolate it would be to compare produc-
tion by electron and muon neutrinos. As Fig. 6
shows, there is approximately a 20% effect present
for the N*(1236) at €, =1 GeV.

Of course, such measurements of small effects
in restricted regions of k2 can be quite difficult
experimentally, but the results would be very in-
teresting. Using a model like ours, however, can
provide some simplifications. For example, the
results in Table II suggest averaging values of
do/(dk?Gy,?) rather than do/dk?® in order to im-
prove statistics. [For each event seen in a bubble
chamber, %? and therefore G,,(k?) can be deter-
mined.] Since the w,/G.,? vary slowly, our model
can be used to suggest the kind of uncertainty to be
expected from averaging over large-k? regions.
Furthermore, we see the value of €, beyond which
the cross section is independent of ¢, (making a
large energy bin possible). For the N*(1236),
events with k2 0.1 GeV? can be binned for ¢€,24
GeV, while £*20.2 GeV? suggests binning the ¢,
=1 GeV events.

For testing PCAC we see from Table II that the
transverse parts of w, and w, are negligible for
k?<0.02 GeV?. For w, a similar statement holds,
although w, does not contain m, ; the transverse
contribution can be neglected only if £*?/k? is suf-
ficiently large. A larger bin (k%< 0.1 GeV?) may
be used if comparison with electron neutrinos is
possible, for then the transverse contribution is
made to cancel. A model like ours may also be
useful for inferring the electron-neutrino cross
section from the muon-neutrino data at larger k2.
Finally, the average value over a small k2 bin of
the term in Eq. (5.10) can be detected if €, is not
too large [as determined by Eq. (5.3)], but mea-
surement of its variation with %22 would be extreme-
ly difficult.

Returning to Fig. 6, we see that at very small
k2 the curves turn abruptly and decrease to zero.
It is in this region that part of the resonance is
kinematically excluded and Eq. (5.4) is no longer
valid. A few sample numbers for the N*(1236) are
given in Table III. For €,>1 GeV, substantial por-
tions of the resonance are outside the physical re-
gion only for a very small range in k%, meaning
that we are hardly sensitive to the approximations
of Eq. (5.7). For €,=0.5 GeV, on the other hand,
Wmnax is never far from the resonance region, and
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TABLE III. Fraction of the area under the N*(1236)
peak which is in the physical region.

k2
(GeV?) Lepton €,=0.5 GeV €,=1.0 GeV
0.01 electron 0.83 0.95
0.05 0.79 0.95
0.1 0.68 0.95
0.01 muon 0.02 0.81
0.05 0.53 0.94
0.1 0.48 0.94

our approximations in averaging K, and K; may in-
troduce errors up to 20-30% in this case. We note
further that the relation in Eq. (5.5) for W, de-
pends on the lepton mass, and that for electron
neutrinos W,, enters the resonance region at low-
er values of k2 than for muon neutrinos.

In Figs. 7, 8, and 9, we give similar predictions
for the other three resonances expected to be im-
portant. Indeed, at low k? there is a sharp thresh-
old rise, followed by an interesting region below
0.1 GeV?, and then by the large-%2 region, where
the elastic behavior is most apparent. Again, as
€, is increased, the curves approach an asymptotic
limit which is independent of €,. In comparison
with Fig. 6, higher values of ¢, are required for
the asymptotic limit since W is larger, and we
need €, > kL. In each figure the curve with lowest
€, shows a slower threshold rise and corresponds
to a Wmax present in the resonance region over a
large range of k2. For the higher neutrino ener-
gies, W, is only in the resonance region at very
small (or very large) values of k%, as the abrupt
rise indicates.

By integrating over k%, we wash out many of the
features predicted by our model, but are left with
one useful comparison with the experimental data.
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FIG. 7. Same as Fig. 6 except the 3~ (1520)
level produced from a neutron target is given.
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FIG. 8. Same as Fig. 6 except the sum for production
of the 37,4 (1680) and the §* } (1688) levels produced
from a neutron target is given.

In order to have this test, it is very important that
we have not adjusted any parameters in this calcu-
lation, but have used enhancement factors previ-
ously determined by electroproduction. Figure 10
shows the results obtained by integrating the curves
in Fig. 6. (Integrations were also performed at
values of €, not graphed in Fig. 6.) For this inte-
gration, cross sections at k? from 0.001 GeV? to

5 GeV? were considered, and we estimate the nu-
merical error from the integration procedure to
be less than 29%.

The shape of our predicted curve in Fig. 10 is
easily explained. At small values of €, the sharp
rise is due to the fact that as €, increases, the
range of k% for which W,,, is in the resonance re-
gion decreases. Also, K, is increasing toward its
limit. After about 1-GeV neutrino energy, the
asymptotic region is reached. Although do/dk?
then hardly changes with increasing €, (except for
the small-£? region), the integral over %2 could
still conceivably grow with €; since the range of
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FIG. 9. Same as Fig. 6 except the £, 2 (1950) level
is given.
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k? increases (k.= 2me€,). Such growth does not
occur, however, since the steep decrease of the
elastic form factor and the proportionality of
do/dk® to Gg,® render this large-k? region insig-
nificant. As a result, the predicted total cross
section is fairly flat for €, = 1 GeV and approaches
an asymptotic value of approximately 1.2x 10738
cm?. Even at large values of €,, most of the con-
tribution comes from the region where #2<0.5
GeV?2.

Figure 10 also shows the experimental measure-
ments from CERN.®> Although the error bars are
large, the data do offer support for our results.
[The distribution of the events in W is consistent
with attributing them to the N*(1236).| In contrast,
a fairly similar calculation by Adler'® for the
N*(1236), but not for the higher resonances, pre-
dicted a curve which rises monotonically to the
much lower asymptotic value of 0.44 x 10738 ¢m?
[calculated at €, =4 GeV using the same F,(k?) as
we did]. In Appendix D, we compare our calcula-
tion to Adler’s and point out how differences in A™,
such as inclusion of w exchange, and in enhance-
ment factors can account for these widely differing
predictions. (The two calculations agree for elec-
troproduction at small k%< 0.5 GeV?, but at larger
values of k% Adler’s predictions fall below ours
and below the SLAC data.)

It should be a simple task for the experimenta-
lists to bin their data for the N*(1236) region with
€,2 1 GeV and thereby obtain an accurate value to
serve as a stringent test of our predictions. Since
€, is large, it is the predictions for w, which would

be tested in this manner. Furthermore, since Gg,?

falls rapidly, it is the average of w,/Gg,? for

k%< 0.5 GeV? to which the total cross section is
sensitive. From Table II we notice that w,/G,,?
varies smoothly even for %< 0.02 GeV? where
terms related to the divergence of the axial-vector
current take over. As discussed above, measure-
ments in this small-%£? region can be used to test
PCAC. As our model stands now, the predicted
values of u;(0) are larger than the PCAC values by
a factor of nearly 4. If the data support PCAC,
we then interpret this as an indication that our
model needs refinements in the small-%2 region.
Possibilities for such refinements are discussed
at the end of Sec. IV. Since the data in Fig. 10 sup-
port our predictions, such refinements would have
to have little effect on w, for k%= 0.02 GeV2.

Total cross sections are similarly obtained for
the higher resonances, and our predictions are

TOTAL CROSS SECTIONS
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FIG. 11. Same as Fig. 10 except for the higher
mass levels. No experimental data are available.
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displayed in Fig. 11. As for the case of the
N*(1236), these curves rise and level off towards
an asymptotic value. The approach toward this
asymptote is slower because the resonance masses
are higher. Note that the isospin-; levels cannot
be excited by neutrinos from protons. Again, our
predictions are meaningful since our calculation is
an absolute calculation. Hopefully, experimental
data will soon become available for these levels.
In the meantime, our predictions are some indica-
tion as to what may be expected. By comparing
with Fig. 10, we see that the total cross section
for exciting these levels (at high €,) is approxi-
mately 15 orders of magnitude smaller than for
the N*(1236).

VI. SUMMARY AND CONCLUSIONS

Having presented our theory and its predictions,
we now take this opportunity to reexamine our
goals and summarize what we have learned. In the
process we shall review our important results and
the major assumptions on which they depend. Fi-
nally, some possible refinements and extensions
of our approach are suggested.

The nucleon resonances are of interest to us
since they are manifestations of the structure of
the nucleon. Our immediate goal is, then, to pro-
vide a calculation for the weak excitation of the
N*(1236) (and contrast it with other existing calcu-
lations) and also to predict the excitation of higher-
mass resonances (as yet unobserved and, to the
best of our knowledge, uncalculated). Since our
calculation does not include the adjusting of any
parameters, we can meaningfully integrate over
both W and %2 and compare with the existing CERN
data. As Fig 10 shows, this comparison is good,
especially when we realize that a model such as
Adler’s'® predicts a curve considerably below
ours. The better statistics and different observa-
tions which should result from the neutrino experi-
ments in progress or in planning!~® will provide
more stringent tests of our model. These new
data, however, are not expected to be able to test
the details of the coincidence cross section, and
we have accordingly designed our model to predict
and explain the simpler noncoincidence results.

There is a variety of ways in which weak pro-
duction provides us with more information than
electroproduction. As Eq. (4.15) indicates, two
models giving similar electroproduction predic-
tions can differ greatly in weak production. Such
is indeed the situation between our model and
Adler’s for the small-£2 (0.5 GeV 2) production
of the N*(1236). Even after integrating over k2,
the weak case neatly distinguishes these two mod-
els, provided the same F,(%k?) is used by both. At

the root of this difference is our inclusion of «°
exchange as part of the vector-amplitude excitation
mechanism. (Appendix D investigates these differ-
ences further.) Distinguishing the choices for the
sign of the w° coupling is also sensitively accom-
plished by the weak-production calculation, in con-
trast to the electroproduction calculation. So far,
at least, electroproduction has the advantage of
providing data on the N*(1236) at high .2 and data
on the higher resonances. These data do indeed
add support to inclusion of the w® with our choice
of sign.

Since only isospin-3 resonances can be produced
by neutrinos on proton targets, weak production
provides a simple way of separating the contribu-
tions from certain overlapping resonances. In
particular, by comparing proton and deuteron tar-
gets, we can check whether the 3, $ (1650) res-
onance is indeed unimportant compared to the two
spin-3 isospin-3 levels near 1688 MeV. Contribu-
tions from the recently discovered 3,2 (1670) res-
onance can also be identified in this manner.

In the near-forward directions, or in the very-
small-%.2 region, weak production allows us to ob-
serve the nonzero divergence of the axial-vector
current. Measurements in this region can also
check whether the vector current is conserved.

As illustrated in Sec. V and Appendix C, our mod-
el is useful in estimating the relative size of the
longitudinal and transverse amplitudes. Such
knowledge then allows a determination of the re-
gion in k2 over which the forward lepton theorem
can be expected to hold. The very-small-%? re-
gion is also seen to be of interest because of the
finite size of the muon mass.

Provided we choose a scaling law with asymptotic
behavior, as in Eq. (4.21), PCAC has a generally
negligible effect on our predictions. An exception
occurs when %22 is very small. In that case we can
easily incorporate proportionality to the pion pole,
but our absolute calculation cannot adjust the res-
idue of this pole. Refinements in our model, how-
ever, can affect this residue which depends only
on one helicity amplitude in one small kinematic
region, CVC, on the other hand, has been thor-
oughly incorporated into this calculation, and must
be considered as a possible source of discrepan-
cies, but our model does not provide an unambig-
uous test of it. As mentioned above, the conser-
vation of the vector current (one facet of the CVC
theory) has a noticeable influence on the forward
cross section.

Other special effects in weak production include
the behavior as €, becomes large (fixing %22 and W).
As shown in Sec. V, there exists an asymptotic
region in which do/dk? is independent of €,. Fur-
thermore, only the w, combination of helicity am-



3376 P. A. ZUCKER 4

plitudes is present in the cross section. In order
to observe the vector—axial-vector interference,
which is one of the interesting and sensitive fea-
tures in such a calculation, lower values of ¢,
must be used. Although the existence of this as-
ymptotic region follows from kinematic consider-
ations, its onset is model-dependent since K,w,

+ K, must be small compared to K,w,. When
integrating over k2, this asymptotic behavior for
a resonance implies that the total cross section
will rise and then flatten out as the asymptotic re-
gion is reached over most of the 22 range. The
proportionality of the resonance cross section to
the sharply falling elastic form factor is needed
here in order to guarantee that the high-%2 region
(which grows with increasing ¢,) is unimportant.
If the sharp dependence on the elastic form factor
is divided out, our predictions are the ones given
in Table II and are seen to be smoothly varying in
k2, They depend on the approximations discussed
in Sec. IV, being independent of the form assumed
for G,(k?).

Indeed, we have made many approximations in
developing this model, some of which have impor-
tant implications for our numerical results. Most
basically we have assumed the A™/D model of
Eq. (1.4) for resonance production in a hadronic
eigenstate. Although the justification of such a
model is its ability to predict experimental data,
there are some aesthetic and theoretical grounds
for its choice. First of all, we note its simplicity:
The k2% dependence is isolated from the final-state
enhancement function, the same model pertains
for each current component, there is no integral
over the physical cut, and it is linear in A™. In
Sec. III we support this model on the grounds that
it is an approximate solution to the Omnés equaticn
and thereby incorporates unitarity. Such a discus-
sion rests heavily on the fact that we are dealing
with a resonance which is narrow enough for us to
approximate A™(W, k%)~ A"™ (W, k2) as in
Eq. (3.13). In calculating the cross sections, such
an approximation is used again as illustrated in
Eq. (1.7).

Our results are also sensitive to the model for
A™ discussed in Sec. IV and based on pion, nu-
cleon, and vector-meson exchange. In particular,
the choice of exchange graphs, elastic form fac-
tors, and coupling constants have profound effects.
We have seen for example that inclusion of w° ex-
change with a coupling constant of particular sign
and magnitude is important. By choosing the elas-
tic form factors all proportional to Gg,(k2), we
produce the steep decrease with rising k2 seen in
Figs. 6-9. (The electroproduction data require
this type of choice, at least for the vector ampli-
tudes, within the framework of our model.) For

the higher resonances, approximating A™ by only
the pion-nucleon excitation function as in Eq. (3.18)
is a big assumption which was seen to be justified
in electroproduction.

CVC has been incorporated, since we have de-
signed our model for A!s(vector) in a manner
comparable to electroproduction and have then
chosen the same enhancement factors. By using
these electroproduction enhancement factors, we
are able to provide an absolute calculation which
does not require any assumptions about the behav-
ior of the hadronic phase shifts. We do assume,
however, that the resonance occurs in only one
hadronic eigenchannel. As discussed in Sec. III,
our approach may contain a systematic error in
the determination of the enhancement factors re-
sulting from the choice of the phenomenological
method used in separating the resonant events
from the background in electroproduction.

If we choose to integrate over the resonance en-
ergy, some additional approximations are needed
when k2 or €, is very small. These are discussed
in Sec. V.

In terms of experimental results, our previous
model did very well for electroproduction, and the
present agreement with the CERN data looks en-
couraging. With limited statistics, our model in-
dicates that large bins for o and do/(dk2Gg,?) are
possible, and Sec. V indicates how small the bins
in 22 must be when testing PCAC. Hopefully the
statistics will soon be good enough to compare high
and low €, at the same k%, v, and v, reactions, and
v and v reactions, thereby separating w, from w,
and w,. While many of our kinematic results are
quite general, the model-dependent predictions
pertain exclusively to the events containing a res-
onant final state.

Extensions and refinements of several kinds are
possible for this calculation. On the one hand, we
may refine our basic model of Eq. (1.4) by choos-
ing a model more closely related to the Omnés
solution in Egs. (3.6) and (3.7). In particular, we
may take advantage of the linearity of this solution
and choose a more detailed model for the part of
A™s which varies most rapidly across the reso-
nance while keeping the simpler form of Eq. (1.4)
for the remaining contributions. Such an approach
has been taken by Adler'® and others!?'?° for the
pion-exchange contribution to the N*(1236). Their
further assumptions then lead to a nonresonant en-
hancement of this contribution which helps the
agreement with electroproduction data at low val-
ues of £2. In a slightly different vein, by using
Eq. (3.6) as the formulation of our model and by
evaluating the energy integrals it contains, we
could extend our calculation to the nonresonant
amplitudes as well,
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We may, on the other hand, refine our calcula-
tion by including more exchanges in A™ or by in-
cluding more hadronic channels in the final state.
Such extensions, however, possess the drawback
of requiring the knowledge of more coupling con-
stants or elastic form factors. Once detailed in-
formation is obtained from coincidence and polar-
ization measurements, refinements of this type
might become feasible. Inclusion of nonpole terms
and off-shell vertices in A™ is also possible, and
this has a particularly large effect in the spin-3
partial waves. As described previously, the spin-
1 levels are not expected to be prominent,

In general, we are very encouraged that the sim-
ple model of Fig. 1, viewing resonance production
as the excitation of an intermediate hadronic eigen-
state which then rescatters to build up the reso-
nance, has so far been supported by the data. Such
a model incorporates unitarity above the maN
threshold and is readily used for predicting the
weak production of the N*(1236) and of the higher-
mass resonances,
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APPENDIX A: CROSS-SECTION RELATIONS

In this appendix we derive the coincidence cross
section for single-pion production by neutrinos.
Special cases of this result are given in Sec. II and
the partial-wave analysis of it is given in Appendix
B. This is an original derivation which we feel is
useful since the lepton mass is not ignored and the
divergence of the current is carefully isolated
from the other components.

The laboratory cross section for producing the
7N final state is given by

dic W2 g4
AWdk2dQ}/41 " m? 4me 2

L, JJ¥, (A1)

with J, related to the matrix elements of the had-
ronic current by Eq. (2.8). As previously, QF is
the solid angle of the emerging pion in the c.m.
frame. The lepton part L,, results from the V-A
current-current theory of weak interactions and is
given in Eq. (2.9). By summing the lepton spins,
we then obtain
Luu :402(k1uk2u + klllkzu — ke kzéuv + Eeaﬁuvkuzkz B) ’
(A2)

with £=+1 for neutrinos and -1 for antineutrinos.

There is no averaging of initial spins since the
neutrino has a definite helicity.

Since the partial-wave expansion will be per-
formed in the c.m. frame of the final hadrons (the
isobar rest frame), we shall expand L,,J,J}
in that frame. In order to accomplish this task,
we therefore need the c.nr. components of %, and
k,, expressed in terms of W, k2 and €,. Although
this procedure can be extremely intricate and com-
plicated, it is our purpose here to describe a
method which avoids such difficulties.

Half the problem has already been solved, since
we know the c.m. components of &, =k, , - &, .
Using the coordinate axes given in Fig, 2, we see
that k, =(|k*|é,s, ik,) in this frame. For the remain-
ing half of the problem we must analyze some in-
dependent linear combination of £, and k,. Our
choice,

vysk+ Ry —miPR,/R?, (A3)

is a particularly convenient one since
y-k=0. (A4)

The square of this four-vector is readily evaluated
from Eq. (A3) and is found to satisfy

2= (k% m 2R k. (A5)

Writing 7, = (¥, i7,) in the c.m. frame with 7,
=F-e,;, we readily see from Eq. (A3) and our
choice of coordinate axes that

7,=0. (A6)

Thus we already have three constraints which the
four c.m.-frame components of », must satisfy.
Although it is now possible to give an expression
for 7, in terms of the lepton scattering angle, it is
far more convenient to express the fourth con-
straint in terms of a parameter, e. Ultimately,
we will relate this parameter to the independent
kinematic variables.

As our definition, we choose

€=7,2/(r,% = 27?), (A7)
from which it follows that
¥,2=(-7?)2¢/(1-€). (A8)

From Eq. (A5) we see that 7* is always negative,
and we therefore have

O<se<l. (A9)
Using Eq. (A4), we find that the remaining com-
ponents satisfy

k2

— 2
¥z

2_,2_
Yo =%y =73

l+e€
:(_72)1—6,

(A10)

kRZ l+e
2’ =T
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Later, we shall see that 7, >0 and 7,>0, implying
that 7, has the same sign as k,.

Knowing the components of »,, we now return to
the evaluation of L, ,J,J}. In terms of r, and &,
the lepton tensor of Eq. (A2) becomes

m,t
L, =2G? 37’ v, + k2 (r kU+ku'rV)—kuk,,<1—k—;>

+(R2+mP)0,, + E€qp ks - (A11)

By working with the “C” and “D” components of the
current defined in Eq. (2.15), we not only simplify
the algebra but also isolate explicitly the diver-
gence of the axial-vector current. Analogously,

we define similar components for »,, and since
v+k =0, we obtain the simple result
rp=0, Yo=Y (A12)

J

d*o G? k2+m? W2

| W

The dot products present in L ,,J,J} are conve-

niently expressed in terms of these components:

Jok=—k2,/k*,

kz
k*z
Jed*=d, |2+ |J,|2+

Jr=d7, = 53¢, (A13)

k2
k_*z'lJclzy

where we have used the fact that both », and », are
zero. We may also use these components in the
antisymmetric tensor if we take

€50p=—tk2/R*2, (A14)
From here the expansion of Eq. (Al) in c.m.-
frame components is a straightforward and rela-
tively simple procedure. Using the spherical com-

ponents of Eq. (2.14) for the transverse part of the
current, we then obtain

WIJD'Z‘

dwartast/an 8r 0 Tez ZF;['JH'Z 'J-llz“‘k*z(”‘:lz IJ’"z)]

(=)

with £=+1 for neutrinos and -1 for antineutrinos.
If desired, J, and J, can be replaced by expres-
sions involving J,, and J, by using Eq. (2.15).
various types of dependence on € may now be la-
beled by separate kinematic variables such as
those given in Eq. (2.12). By integrating over the
pion c.m. angles as done in Appendix B, all the
interference terms except for J}J, drop out, and
we readily obtain Eq. (2.13).

Our remaining task is to express € in terms of
known kinematical quantities. For 7, we have

V=T -2,

€,8sing. (A16)

Since 7, and &,, are unchanged by the transform-
ation to the laboratory frame, we have expanded
the dot products in the lab frame using Eq. (2.5)
and (A3). Clearly, 7, is always positive except for
the extreme cases of forward and backward scat-
tering when it is zero. Combining with Eq. (A8)
then yields

€ k2+m,
—-€ k2

1
1/2
(22 ) (el gl 2 2 merg, )

2
(12 97217 2ReT = s 25 101%)

)1/2[2£IrnJ*(J' —-J1) + 2——ImJ*(J+1+J )]

R

r
(=)
2¢,%¢,2F sin*0
1 W2 2k*? (1 - Bcos)?
T m? k2 Fsin?9 -
In this form, we see that € reduces to Hand’ s
“virtual-photon polarization” parameter if the lep-
ton mass is ignored, which corresponds to taking
the velocity B equal to one.
On the other hand, we may drive out the depen-
dence on 6 by using Eq. (2.5) to express g%sin?9
in terms of k2, The results of this procedure are
shown in Eq. (2.12). For the dependence upon €
occurring in K, this method is somewhat cumber-
some. By transforming to the lab frame and using
Egs. (A3) and (A4) we see that

2
=142

(A17)

v, T
R* |kl
m
“WE* [(e,+€) —m2(€, - €,)/R?]. (A18)

Combination with Eq. (A10) then leads to an ex-
pression for (1+¢€)/(1 — €) which does not involve
6. From Eq. (A18) we can also infer that 7, is al-
ways positive.

Once we have suitable expressions for €/(1 - €)
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and (1+¢€)/(1-¢), as in Eq. (2.12), then Eq. (A15)
shows that we have achieved our goal.

APPENDIX B: PARTIAL-WAVE
DECOMPOSITION

We now give the result obtained by inserting the
partial-wave expansion of Eq. (2.18) into the cross
section in Eq. (A15). After summing over baryon
spins and forming states of definite parity, we ob-
tain an expression for the cross section in terms
of the helicity amplitudes, which are defined in
Sec. II. In the following, we restrict our attention
to the case of a pion-nucleon final state. By in-
tegrating this result over the pion c.m. angles
6., and ¢,, (shown in Fig. 2), we then determine
that the interference between the two longitudinal
helicity amplitudes does not disappear and obtain
the result used in Sec. II. In the following expres-

sion the dependence on 6,, is contained in the func-
J

d*o _Q_z_ w2 k2+m12 1
dekde*/41r

tions &, through kg, defined and discussed below.
Also appearing is the parameter €, which can be
evaluated using Eq. (A17). Alternatively, Eq.
(2.12) can be used to express the factors containing
€ in terms of W, k2 and ¢,.

A few simplifications in notation make the follow-
ing expression easier to read and help to reveal its
structure. First, we shall suppress the super-
scripts J" and replace J’™ by a prime. Further-
more, since the (final) helicity of the pion-nucle-
on state is always 3, we shall suppress it too.
Thus, for example, a helicity amplitude like
T o2(W, k?) will be denoted here by 7,,,, and
U {,;”,'c(w, k2) will become U%,. Also, our dummy
indices have been chosen in such a way that it is
unprimed amplitudes which are complex conju-
gated.

For the partial-wave decomposition we then ob-
tain

B2+m?
3 hy [-1275- 55— Re(TET% + USUL)

- .t 1+e \172 m 2 ,
k*zRe(TcT +UsU+ UBUL)+ | T=¢ ) 72 Re(U&UL + USUL)

k2+m?® ¢ . - 1+€ \2 N .
+hy| (1 YTTE 1-¢ Re(TH, 1+ UpUyp) = € Re(T,U1, + UfyaT1)5)

1-¢

k24 m’ € , 1 + € x 777 ’
k| (1 T 1-¢ Re(T3,2 T32+U$aUsjp) + € R""“(TS¢/2U3/2 +U32T55)

€(k?+m,?)
+2h,c082¢,, a-

2 2
+2h, sm2<¢>kqege )

/2
+2h cOS¢, (;k—li> [(
A k2 € 1/2
+2hssm¢“<zﬁ1—_-—€> [<

—-€

AYE Re(T, T3, + UpUs),)

——)kTI (T32Us2+ Ua T3,5)

A ’x € 1/2
+2h, 51n¢kq(-kf*_2 -1—_—2) [(

1+e€ \V2 my
T__€> <1 k2>Re(Té 11,5+ UEUY,,)

kz ReUgU{/z - ERe(TgU; ) + UéTf/z)]

l+€ m?
- e) <1+F> Im(TEU,,, + UAT!,,)

2

m
+ 7 ImUT], = §Im(TET] , + Ué‘U{/Z)]

1+e \M2
l—e) (1+ —>Re(TgT§/2+Uc vl

kz ReUBU:'V2 + ERe(TEU;, + Uchlz)]

kz € 1/2
—2h5 COS¢,M< W——l—€> l:(

1+€ \V2 m?
1_€> (1+ >1m(T*U3,2+UgT;,2)

m
k2 ImUATY,, + £ Im(T% T;,2+U3U;,2)]$. (B1)
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| o>

As always, £ is +1 for neutrinos and -1 for antineutrinos. The summation in Eq. (B7) is unconstrained.
A glance at the preceding expression shows that the dependence on ¢,, is quite simple. The cos2¢,, and

sin2¢,, terms come from the (J*)*(J~

1) interference while the cos¢,, and sin¢,, terms come from the

longitudinal- (either “C” or “D” combination) transverse interference.

The dependence on 6,,,
a sign function:

(+1 if an’ =(=1)7"
<

|-1 if an’=(=1)7*".

S=

Then we have

h = “+ él‘)(J/ + %)xE d{/zxzdi’/lz xz(éxz a2t Séxz ,-1/2) s
2
hz = (J + %)(J' + %)Z; dil/z)\zd{;/z)\z(a)\z ,1/2 + 55x2 ,-1/2) )

hy=(J + z)(JI + 2)2 ds/zxz 3/z>\2(6>\2.1/2 + SO)‘z —1/2)
(B3)
hy=(J + DU+ é); dix/zxzdg/'zxz((’xg a2t 56)\2 .—1/2)’
2
hy=(J + DU+ %)Z d{/z xzdill/z)\z(@\z 72+ S0 Ao .-1/2) ’
he=—=(J + DU+ 2)2 duzxz 3/z>\2(6>\2.1/2 +36)\2.-1/2)’

where d’ =d"(—9kq). From these expressions we
readily see that

1
! f (086, My 5 5= + 30,51+ 9)
-1

= +3)0, 05 pr . (B4)

Furthermore, from the properties of the rotation
matrices, we can easily ascertain that h,, h,, h,/
sin®6,,, h,/sin’6,,, hy/siné,,, and k,/sing,, are
polynomials in cosg,, with only even or odd powers
occurring. For S=+1 the degree of these polyno-
mials (the highest power of cosé,,) is

deg(hy, hy) =J +J' =1,

deg(—-——h3 ————hq ) =J+J' =3 B5
sin?0,,’ sin®6,, ’ (B5)

hs hG
deg| — Y =J+J' =2.
sing,, sing,,

When, on the other hand, S=-1, then the leading
term has one additional power of cosé,,. In order
to find the coefficients in these polynomials, we
can rewrite Eq. (B3) in terms of derivatives of
Legendre polynomials.

Since &, through %4 are finite for all values of
Ore» We know that when sing, =0, the functions /4,
through #; must vanish. Thus, the points 6,,=0

d?o G W
AWdk® 81 m?® € 1€

[(1+5>|J 2y (1 g2+ 22

on the other hand, is far more complicated. First, it is convenient to introduce

—

are very special, for the cross section greatly
simplifies. Such observations also apply to elec-
troproduction coincidence cross sections (where
the same #’s occur); the implications of this are
discussed by Pritchett and Zucker.??

APPENDIX C: FORWARD LEPTON THEOREM

When %2 is near its minimum value or, equiva-
lently, when the final lepton emerges near the for-
ward direction, the weak cross section is propor-
tional to the divergence of the axial-vector current.
Adler” was the first to point this out. In this
Appendix we show how this “forward lepton theo-
rem” is a consequence of the discussion in Sec. II.
As part of this derivation, we shall see where ap-
proximations are made and what kind of model-
dependent justifications are needed. After investi-
gating the exact forward limit, we shall turn our
attention to the more intricate behavior near the
forward direction and to the problem of determin-
ing the kinematic region in which the theorem
holds.

In the forward direction (6=0), we see from
Eq. (2.5) that £2 has its minimum value while
m2k*2/k* is large. Keeping the leading term in
powers of m,% we obtain the following forward
limits:

k2=2€,6,(1 -B)—m}?
~ 2., 2 ké‘
o =€1_k€m,,

2
€ €€, — €
[ 58s9)]
€, - €, m,
Ly2
&’ (e, = k)
m?2 om?
ki= (W2 -m?)/2m,
1
2K, = K,

=(k%+m,?)/€?

W2k*2m 2 /mPk* =~

’

(C1)

~m?/€ €, .
The limit for K, is exactly zero.

Employing these results in Egqs. (2.11) and (2.13)
then gives us the cross section in this limit:

k2 k2
k*ch +k*zJD

] . (C2)
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Had we taken the limit of the coincidence cross
section in Eq. (A15), we would have obtained the
same result but with the integral removed. The
components of J, are defined in Egs. (2.14) and
(2.15). From Eq. (C2) it is apparent that J~! con-
tributes to neutrino processes while J*! pertains to
antineutrino reactions, in accordance with angular
momentum conservation in the forward direction.

The expression in Eq. (C2) contains more than
the divergence of the axial-vector current, and we
make some approximations based on the fact that
m,? and k2% are small compared to €, and £*2. In
contrast to the approximations in Eq. (C1), which
are purely kinematic, neglecting the terms of high-
er order in k2 or m,? in Eq. (C2) makes an as-
sumption about the sizes of the matrix elements of
the hadronic current. For example, if J~! were
much larger than k2%J,/k*2 it would not be reason-
able to neglect the transverse contribution in

(C2). Away from the forward direction, k2 is
no longer of the order of m,% and the model-de-
pendent considerations become extremely impor-
tant in approximating the cross section. First, we
shall restrict our attention to the forward limit and
make the approximations corresponding to keeping
terms of the lowest order in m,? or k2.

From Eq. (2.15) we see that the combinations
k%J,/k*? and k2J,/k*? are indeed of order unity
when &2 is small. If the current is conserved,
however, then J, and J, tend to cancel, implying
that J, by itself is of order unity. As a result,
| k2J,/k*?|? is of order k* for a conserved current.
From Eq. (2.24) or Appendix B, we see there is no
interference between the longitudinal vector and
longitudinal axial-vector components. Thus, for a
conserved vector current, we have

kz kz 2

WJc+k—”-JD k*4‘Jc (vector)|?
k2 k2 2
k*chs 78*—2JDS
k2 k2
k*z'ICS+k*2Jos (C3)

The subscript 5 indicates the axial-vector piece.
If, on the other hand, the vector current were not
conserved, it would contribute as the axial-vector
in the forward direction.

Our next approximation is to neglect the trans-
verse contributions because m?¢,2/W?m,? is a
large number. Thus we take
1,2k*2

»
2|J 72« Ik"

2

k2 k2
WJ&, +WJDS

2

k2 2
k , (C4)

k*ZJCS k*2JD5

7}12 62
W2

using J-! for neutrinos and J*! for antineutrinos.

Let us now consider the small-%2 behavior of
k2J,5 and k2J,,. Since the latter contains a pion
pole, it is expected to vary noticeably between the
minimum value of 22 and the unphysical value of
k?=0. (For electron neutrinos, the minimum &2
is so much smaller than the pion mass squared
that this variation can be ignored.) Other contri-
butions to this component, as well as all the con-
tributions to the C component, are taken as ap-
proximately constant. Since k2J, and k2J, have the
same limit as k2 goes to zero [see Egs. (2.15) and
(2.17)], we then take

2 2
:_*EJCS :%JCS

k2=0
b2
Y/
p*2Ds 2o
1
:—%—;J'k . ,
k2=0 C5)
kz kz 2 (
*ZJDS —%3Yps 2M 2
k k =g RZ+ 1L
1 w2
= P o,
k* k k2=0k2+“'2,

2

k2 k2
k*zjcs+k*2JDS

2 2
~ gzl ke (1o )

We have also used PCAC by assuming J- k is pro-
portional to a pion pole rather than to a constant
plus a pion pole. Our model for these current
components will give an indication how much they
vary as they are extrapolated to #2=0.

Putting all these approximations together then
yields the forward cross section

d?c G2 €,
awar " 8r € (49
Aoy 4

1 kZ 2
ol kaes' (1= 3 )
(c6)

By inserting the minimum value of %2 and equating
W2k*2/m? with kF? (to lowest order in m,%), we ob-
tain Adler’s’ result. From here, it is possible to
use PCAC and relate J- k to observed pion-nucleon
cross sections.

Since the leading term in the forward cross sec-
tion is zeroth order in »:,%, it is possible to obtain
this same limit by setting /2, equal to zero at the
very beginning (as Adler did originally). Then &2,
K,, and K, would go to zero, with K, remaining
large. Since W, contains J, but not J,, taking
the limit in that fashion does not produce the
k2/(k%+ p?) term in Eq. (C6). In order to obtain
this term, which he called the “lepton mass cor-
rections,” Adler then had to go through a more
detailed derivation.
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Nevertheless, our derivation here has many ad-
vantages. First of all, it provides this “lepton
mass correction” term in an evident fashion. Sec-
ond, it shows in Eqs. (C1) and (C3)-(C5) the other
approximations implicit in taking only the leading
order in m,?. Furthermore, the results of our
model as given in Table II can be used to evaluate
the accuracy of each of these approximations (for
small k2 near, as well as in, the forward direc-
tion). For example, for the N*(1236) and ¢, equal

to 1 GeV, the muon-electron difference is a 20%
effect while approximations in the second line of
Eq. (C1) and in Eq. (C4) each ignore about 5% of
the cross section.

Since experiments measure events over finite
angular regions, a very interesting question is the
extent in 6 or k2 over which these approximations
are valid. In answering these questions we need to
know the exact kinematics and to have a model for
the matrix elements of the hadronic current. Our
calculation achieves both these goals. By referring
to Egs. (2.5) and (2.12), the kinematics can be ex-
actly evaluated. From Table II, the longitudinal
and transverse parts can be compared (by contrast-
ing the muon-neutrino and electron-neutrino cases)
and their variation with 22 can be seen. Although
conclusions about the size of the 22 region where
Egs. (C4)-(C6) hold depend on W and €,, some gen-
eral comments can be made, and some specific
examples are given in Sec. V.

In general, the k2 region is still small enough
for the variation in k%J; to be neglected, particu-
larly if we use the values of k%J, and Jyk2(k? + 1?)
at the middle of our bin rather than at %2 extrapo-
lated to zero. As k? increases, K, grows extreme-
ly rapidly while K,m 2k*2/k* decreases. As a re-
sult, we obtain important contributions from the
k%J, term present in W,. Thus we again compare
longitudinal to transverse and need to approximate

k*2 kz

k% | k*2
Since VVZ does not contain J,. the pion-pole term is
further suppressed. It therefore seems advisable
to consider the J, and J, terms separately (and
their interference separately, too) and integrate
each over the small-%2 region using the exact kine-
matics. The boundary of this region is determined
from Eqgs. (C4) and (C7), which contain model-de-
pendent approximations. Although the size of €, is
important in determining where the rapid growth of
K, occurs, we note that Eqs. (C4) and (C7) are in-
dependent of €, when they are viewed as depending
on k2 at fixed W.

APPENDIX D: COMPARISON WITH
ADLER’S APPROACH

In this Appendix we compare our approach to that

2 EFEIEMPEES )

JC 5

of Adler,!® who has also calculated the weak pro-
duction of the N*(1236) using a dynamical model
based on dispersion relations. Although these two
models agree for the low-£2 (0.5 GeV?) electro-
production of the N*(1236), they differ by over a
factor of 2 in weak production for the same k? re-
gion. In addition to explaining this difference, we
shall also compare the general approaches of the
two calculations and the reasons given to support
each model.

The calculations have different goals. Adler, on
the one hand, investigates the N*(1236) and the
nonresonant partial waves at low energies, thereby
attempting to avoid the difficulties present above
the 77N threshold. On the other hand, we are in-
terested in the higher resonances as well as the
N*(1236). As a result, we consider the hadronic
inelasticities and have built our model in terms of
the helicity eigenamplitudes discussed in Sec. III.
We do not, however, treat the nonresonant partial
waves. Even though the N*(1236) can be considered
as entirely in the pion-nucleon channel, considera-
tions about the hadronic physics at higher energies
do enter through the final-state enhancement func-
tion in Eq. (1.6), which contains an integral over
all values of W. In our examination of how the two
models treat the N*(1236), we shall see the role
played by the asymptotic behavior of the hadronic
scattering.

Using the definition of X(W) which is given in
Eq. (3.6), we can state Adler’s model for the
N*(1236) amplitudes as

X(W)

AW ED> Seom)

AB(W, kz)l:l-x- a(k®y ]

(W = m)(Wg = m)
(D1)
Here A® is Adler’s version for A", which differs
from ours. [We shall avoid using the notation
D(w) since Adler’s D is proportional to X(W) and
ours equals X~'.] The function a(k?) is given by
Adler in his paper and is small when k2 is small.
Although Adler chooses a different model for the
pion-exchange contribution to A2, the result given
above is used for the dominant contribution and is
therefore the one of interest to us here.
The similarities to our model,

AW, k)=~ X(W)A™ (W, k2), (D2)

are apparent. Since the a(k?) term is not impor-
tant for small 2%, the main difference in the form
of these two expressions is the presence of the fac-
tor X(m)~! in the former. [We recall that X(W,)™!
equals unity by definition.| Thus, even if we both
were to use the same models for X(W) and had

Al =AB the two calculations would have similar
k2 and W behaviors but different absolute normal-
izations. Since
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Xw) [W=W, [~ E(W)dW' _
X(m)_exr{ 7 fwo(W'—Wo)(W'-W—ie)

[ We=m (" &W)dw’
_eXp[ ™ _[wo(W’—m)(W’—W-—ie)]"

f"’ EWwdw'’
w, (W =W)W' =W —i€)

o]

(D3)

we see that the presence of X(m) results from the fact that Adler used a final-state enhancement function
subtracted at m rather than at W,. A rough estimate, using the model for the eigenphase shift discussed in
Ref. 11, indicates that X () has a value of less than ;. Since we intend to integrate over the resonance,
such factors affecting the normalization are extremely pertinent.

Any model for £(W) also influences the normalization. Suppose that the phase shift passes rapidly
through 37 at resonance and eventually reaches an asymptotic value £(o) when W’z U. Then we obtain

-W,

N W-W, (Y EWdwW'’
X(W)~exP[ T ’l;'o (W’—Wo)(W'—W

LV
—i€)

|, wiow=m)

(U= (=W (7 EW)dw’
_<U—W> e"p[ nOJ:vO(W'—WoxW'-W-fé)]' oy

Compared to the exponential, which varies rapidly
over the region of the resonance, the factor in
front is roughly constant in W. Thus we see that
the asymptotic behavior of £(W) has only slight in-
fluence on the resonance shape. The normalization,
however, is quite strongly affected. Even for U as
far past the resonance as Wy +2I', the factor in
front of the exponential is as large as 1.7 when
£(o0)=rmand W=1236 MeV. If we were to truncate
the integral at U, then this factor would not be
present at all. The variation of the exponential
with U is also measured by this factor, since the
product is roughly independent of U.

With regard to the evaluation of X(W), our ap-
proach is quite different from Adler’s. He chooses
a phenomenological phase shift, extrapolates it to
large W, and performs the integration. The as-
ymptotic region is handled in this fashion even
though Adler claims to build his model from trun-
cated dispersion integrals (Sec. 3C of Ref. 18).
Adler thus uses the Omnés equation to produce an
ansatz for his truncated fixed-momentum-transfer
dispersion relations, and he supports this proce-
dure by showing the equivalence of these equations
in the static limit. Truncating one and not the oth-
er would break this equivalence. Furthermore,
Eq. (D4) indicates that the exponential is sensitive
to the value chosen for U.

Rather than build uncertain models for the as-
ymptotic behavior of an eigenphase shift, we have
ascertained the integral of |X(W)|? (which we call
9) by a comparison with electroproduction data.
Numerically, our value for 4 is approximately four
times as great as 9,, where 9, is the corresponding
value in Adler’s calculation, given by

g,= fIX(W)/X(m)lde (D5)

r
using Adler’s model for X(W).

The calculations do agree, however, for low-k%?2
electroproduction, since our A™ differs from Ad-
ler’s A® mainly because of our inclusion of w°® ex-
change. Both the magnitude and the %2 dependence
of A are affected, but for 22< 0.5 GeV? the
change in %2 dependence produced by adding the w
is slight. (At larger values of k2, the electropro-
duction data do support our model in preference to
Adler’s.) Although it varies like the other contri-
butions at small k2, the w°term is large and inter-
feres with the others destructively. As a result,
our values for A™ (vector) are about half the size
of Adler’s A®B (vector) when %2 is small. Combined
with our larger norm, this produces similar pre-
dictions for N*(1236) electroproduction.

As neither A™ nor X (W) can be observed inde-
pendently, we look for other processes that can
further distinguish between the models. (Our ex-
perience with the higher resonances, for example,
also supports inclusion of w® exchange in Alhs.)
Since our model for weak production involves the
new function A™ (axial) used with the same X(W),
we can gain indirect information about the enhance-
ment factor by looking at the axial-vector contribu-
tion. In the axial-vector case, Adler’s excitation
function is quite similar to ours. As a result, our
larger enhancement factor leads to a prediction of
a larger axial-vector amplitude. Thus we explain
how two similar models which agree for small-£?
electroproduction give dissimilar predictions for
weak production. So far the CERN data seem to
support our prediction, as shown in Fig. 10.

Adler and we both include vector-meson ex-
change in the axial-vector excitation functions.
Since the p meson has smaller coupling constants
than the w, this contribution does not affect the
amplitude much. At extremely small %2 near the
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forward direction, however, the contribution of
the p exchange is more important. Data in this
region would be particularly valuable since PCAC
could thereby be tested.

Although Egs. (D1) and (D2) are rather similar,
Adler supports his model in a fashion different
from ours. Instead of writing partial-wave dis-
persion relations, Adler assumes fixed-momen-
tum -transfer dispersion relations, which are in
general not equivalent. Projecting out the spin-3
channel in the static limit, he obtains an Omnés
equation whose solution he uses as an ansatz away
from the static region. This Omnés equation is the
same as the one we obtained in Sec. ITI without re-
stricting ourselves to the static limit. Since both
models are approximate solutions to the same Om-
nés equation, it is not surprising that they have
similar forms.

Adler’s method of finding an approximate solu-
tion also differs. While we make approximations
based on the values of A" in the resonance region,
Adler approximates the singularities of A™ away
from the physical region. After dividing out some
kinematic factors, Adler writes the excitation
function in terms of its singularities:

RUASEEN I
mJL

where the integral is over the left-hand cuts. The
exact Omnés solution can then be transformed to
give

AW, k?) = XW[ fx WI(W,)dW' +lim 123:;))}

a%w', k2)dw’

wo-w (D6)

(D7)

and Adler assumes that the limit of A/X is zero.
The cut in A® nearest to the physical region cross-
es the real axis near W =m. Adler approximates
it by two poles:

aB(W, k?) =~ —3mC (k) 6(W -

| >

m+ia)+6(W = m—ia)],

(D8)
where C(k?) is a known function and a(k?) is small
when %2% is small. It is straightforward to check
and see that this approximation reproduces the
model for AW, £2) reasonably well in the region
of the resonance. The integral in (D7), however,
involves a different weighting, and it is therefore
a very strong assumption that this approximate o®
will work well in that equation. Inserting it results
in Eq. (D1). As an illustration of some of the dif-
ficulties inherent in this approach, we consider the
case when subtractions are performed in Eqs. (D6)
and (D7). Then we would still have a rigorous sol-
ution to the Omnés equation. Equation (D8) would
still give the same ABW, k£?) when used in Eq. (D6),
but it would yield a nonresonant result when com-
bined with Eq. (D7).

In spite of the disadvantages of depending on the
value of A%W, k?) away from the physical region,
this approach does have the advantage that the W
variation of A? is accounted for at least crudely.
Our approach, on the other hand, approximates
this variation as being unimportant. At large %2,
it may be unreasonable to approximate the cut in
AB by two poles, but at small »2 the cut is very
short and this approximation is more realistic.

Although his approach is quite different, Adler’s
resulting approximate Omnés solution is quite sim-
ilar to ours, except for the presence of X(m). This
factor is introduced by the approximation, since
the exact solution in Eq. (D7) is unchanged if X(W)
is replaced by X(W)/X(m). Since the approxima-
tion in Eq. (D8) implies that A® is zero when W =m,
Adler’s final-state enhancement function emerges
as being subtracted at m rather than at W,, the
place where we stated that A™ was zero. Thus the
two approaches support each other as regards the
isolation of the k2 dependence but differ on the
matter of normalizations.

APPENDIX E: LEFT-HAND SINGULARITIES

The contributions of the graphs in Fig. 5 are given by
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The form factors and coupling constants are described in Sec. IV.

In order to find A»s, we need to perform a partial-wave projection. There are two approaches. One is
to define invariant amplitudes and group the terms in Eq. (E1) accordingly. Then the partial-wave projec-
tion is performed on each of the invariants. This is the familiar procedure and is illustrated in Ref. 10.
Although Eq. (E1) has an exactly conserved vector current and no kinematic singularities, introducing con-
served invariants produces kinematic singularities which disappear only when the terms are combined to

give the (observable) helicity amplitudes.

On the other hand, we may do the partial-wave projection on Eq. (E1) term by term. By inverting Eq.

(2.18) we obtain

1
LT+ 17| XA = (4k*q)1/2_;_f dcos,D {1'>‘k' )\2<_¢p, -6,, d,),e,(0), (E2)
-1

with e,(),) the unit vector described after Eq. (2.18). The helicity amplitudes are then obtained using the
parity combinations given in Sec. II, and the angular integral is performed numerically.

We have developed routines based on both these approaches and have compared the results of the two
computer programs as a check on our numerical predictions. The second method is particularly suited

for handling more complicated final hadronic states.
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