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amplitude as defined in Eq. (1) is indicated by an Il pre-
ceding the parentheses. Thus the process is designated
by a schematic rapidity plot, [For a discussion of rap-
idity variables, see R. P. Feynman, in High Energy
Collisions, Third International Conference held at State
University of New York, Stony Brook, 1969, edited by

C. N. Yang, J. A. Cole, M. Good, R. Hwa, and J. Lee-
Franzini (Gordon and Breach, New York, 1969).] Each
vertical line represents a large spacing in rapidity.
Inessential labels can be dropped without confusion. Thus
(a:c|b) becomes (a:c) when particle b is understood to
remain fixed. For the sake of brevity, the I will often be
deleted in various relations, but the relations are always
for the amplitudes or the asymptotic amplitudes.

"The terminology stems from the analog in atomic
physics to ionization. It would perhaps be better to call
it hadronization. It is awkward to speak of the pionization
of the proton, but even more so to talk about the anti-
omega-minus-ization,

81t is common practice to define the pionization limit as
s— o for fixed p, and fixed p, . This corresponds to
|t|/Vs and |u| Vs fixed. The beauty of Mueller’s analysis
is that the result, Eq. (9), is valid more generally, that
is, no matter how E, /s tends to zero. Moreover, to the
extent the Regge-pole description is valid, the dependence
onp, is determined explicitly by the secondary trajector-
ies in Eq. (3). See H.D. I. Abarbanel, Phys, Rev.D 3,
2227 (1971).

9M. Holder & al., Phys. Letters 35B, 355 (1971).

10M.-S. Chen et al., Phys. Rev. Letters 26, 1585 (1971).

U This decomposition can easily be generalized to in-
volve a sum over isospins in the bb channel. Since most
of the interesting applications have already been dealt
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with in Sec III, we have omitted this generalization,

2The precise statement is as follows: As s —«, the
mean multiplicity of pions of charge ¢ can be written as
(n.) =A, Ins + B,. The statement is that 2(ng) = (n,)

+ (n_). In fact, the coefficient A, of the logarithm is
determined entirely by the pionization region. Consequent-
ly, as discussed in Sec. VI, 43=A, =A_.

13gee, for example, L. Caneschi and A, Schwimmer,
Phys. Rev. D 3, 1588 (1971).

lsee the sum_mary in P. Carruthers, Introduction to
Unitary Symmetry (Interscience, New York, 1966).

15¢, Michael, in Springer Tracts in Modern Physics,
edited by G. Hohler (Springer, Berlin, 1970), Vol. 55;
B. Kayser (unpublished).

163, V. Allaby et al., Phys. Letters 30B, 500 (1969).

1"Our notation and conventions for SU, Clebsch- Gordan
coefficients are as in J. J, DeSwart, Rev. Mod, Phys.
35, 916 (1963). For a summary, see Chap. 4 of Carruth-
ers, Ref, 14.

18This follows from time-reversal invariance applied
to the nondiagonal processes ach — déf .

193, Stone etal., Phys. Rev. D (to be published).

20This is not to say that most of the pions produced
asymptotically are pionization products, since, as
Mueller (Ref. 2) showed, to obtain Ins growth one must
include fragmentation products. The interpretation of the
growth of multiplicity depends sensitively on the border
between fragmentation and pionization,

A The relation for the meson case is likely to be broken
more than for the baryon case, but perhaps improved
agreement will be obtained if the squares of the differ-
ential inclusive cross sections are used.
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At present, nothing is known experimentally about the slope of the dominant form factor in
the decay T — Ae*e~. However, it is probably so small that radiative corrections to the de-
cay are an essential complication. We calculate the soft-photon radiative corrections to the
Dalitz plot and the spectrum in the mass of the electron-positron pair. The correction to the
total decay rate involving hard photons is also evaluated.

1. INTRODUCTION

The decay Z — Ae*e” has been the subject of sev-
eral theoretical and experimental papers. Until
recently the main interest in this decay was to
check the relative parity of the £ and A particles.
Theoretical analysis was given for both even and
odd relative parities, and the details can be found
in the papers of Feldman and Fulton,! Gatto,? Fein-
berg,® Byers and Burkhardt,* Michel and Rouha-
ninejad,® and Evans.® Experiments by Courant et

al.” and by Alff et al.® established the relative par-
ity to be even. However, there has been no attempt
to obtain detailed information on the form factors
involved in the decay.

In 1965 Bernstein, Feinberg, and Lee® suggested
that this decay is particularly suited to testing
time-reversal invariance of the electromagnetic
interactions. The average value of the A polariza-
tion along the normal to the decay plane should be
zero if the interaction conserves time-reversal in-
variance. Experiments reported by Glasser et al.'®



4 RADIATIVE CORRECTIONS TO THE Z-~Ae*e” DECAY

FIG. 1. The basic diagram
for the differential decay rate.
The wavy line denotes the pho-
ton while the solid lines denote
hadrons and leptons.

and by Baggett et al.'! have been consistent with no
time-reversal violation and give polarizations of
0.020 +0.020 and 0.03 + 0.06, respectively.

Future work to measure the slope of the form
factors or to measure the polarization more accu-
rately clearly requires a detailed knowledge of the
radiative corrections to this decay. Such second-
order effects have not been calculated for this par-
ticular decay and that is the reason for reporting
them here. The general problem of radiative cor-
rections to decays A~ Be*e™, where A and B are
hadrons, has been examined by Lautrup and Smith,!?
so we can make this paper relatively brief. We do,
however, outline the general assumptions and give
some details regarding the matrix element.

Our calculation is based upon a set of one-photon-
exchange diagrams. The basic process, depicted
in Fig. 1, depends only upon the transition T~ Ay
with an off-mass-shell photon. Radiative correc-
tions to this diagram are drawn in Fig. 2. The
graphs which involve corrections to the electron
and photon lines, namely, (1), (2), (5), and (6),
can be calculated exactly. However, graph (4) in-
volves two-photon-exchange contributions which
bring in additional complications. Such graphs
have been examined by Brown'? for the case of
electron-proton scattering. He showed that they
do not lead to mass singularities as the mass of
the electron is set equal to zero, and we are there-
fore justified in dropping the contribution of (4) rel-
ative to that of (1), (2), (5), and (6). Graph (7) is
dominated by bremsstrahlung from the £ or A mag-
netic moments and, because the masses of these
particles are large, will be much smaller than the
corresponding bremsstrahlung contributions from
(5) and (6). Graph (3) is a radiative correction to
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FIG. 2. The radiative corrections to the differential
decay rate.

the form factors at the ZAy vertex and will there-
fore not influence a determination of the slope of
the form factors. Thus, the calculation reported
in Ref. 12 can be directly applied to the decay =

—~ Ae*e” after we have defined the vertex with an
off -mass-shell photon.

In Sec. II we set up some preliminary notation
and discuss the general form of the matrix ele-
ments for Z—~ Ay and X~ Ae*e”. The radiative cor-
rections to the total decay rate for T~ Ae*e” are
given in Sec. III. This calculation is valid for hard
photons. The general expression for the differen-
tial radiative correction is very complicated but
has a particularly simple form in the region where
the emitted photon is soft and the mass of the ex-
changed photon is large compared to the electron
mass. Fortunately these conditions are valid in
the region of experimental interest, so we are able
to give the correction to almost all of the Dalitz
plot. However, in view of our approximation we
have no check that the total integrated corrections
correspond to the value given in Sec. III. These
points are discussed in Sec. IV.

II. THE DECAYS £~ Ayand Z —>~ye'e”

For convenience the kinematics of the general process Z—~Ae*e” is given in Fig. 1. We use the notation
myg, m,, and m to denote the masses of the =, A, and electron, respectively. We take the case of positive
relative parity between the Z and A hyperons. It is also convenient to introduce the following combinations

of masses:

ms +m
A=my-m,, M=3(my+m,), and p=,;2—-‘\>1.

T —My

Our notation for dimensionless parameters used in the text is summarized in Table I. The most general
form of the hadronic vertex satisfying gauge invariance is
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(AP T Z(P)) =eM, = eﬁA(P')[<'y“g§ - kpA%) F,(F) +i‘1151£kVF2(k2)]u,;(p) , (2.1)

where the dimensionless form factors are denoted by F,(¥?) and F,(¥?), and k=p —p’. These form factors
are relatively real, as we assume time-reversal invariance to be valid. If we form the tensor

M“U([)',p)= Z <A|J“|Z><A[JV|E>*,

spins of A,Z
then, in terms of kinematic singularity-free amplitudes M, and M,,

M, (p', D)= (k by = K22, )My(R?) = [, (D * kY = (kyuby + D, k)P« k+ Db k2| My(R?) . (2.2)

M, and M, are functions of the squared photon momentum k?. It is more convenient however, to decompose
M, into transverse and longitudinal parts, defined by

MT(kz) = kle(kz) + ( p- k)zMz(kz) )
M,(2) = ROM, (k) + KPmg My () .

After some algebra, using the projection operators in Ref. 12, we find

M(k?)= —%[4mzm,\ +2(3my? =my? + BP)]F,2 (%) + ESII/I-};-BZ’;;[m):k2 — Almy? + k2 —mp2)|F (F)F,(R?)
2
2R my +m A+ mg? —mPIFA0R) + s lom? + B2 ~myFLF 280 = (62/ MO FRG)), (2.3)
2
M (k?)= _I\kTZZH memy +2(3ms? —m,2 + k?)|F,2(K?) +%I}%[mzk2 — A(mz? + B2 =m)2)|F (R?)F,(k?)
2k2 2 2 2)2 2 2 8k2 2 2 kz k2 2 2(p2 2
+W[k (Bmyg +mp)A + (mz® — m p%) ]F1 (R%) + —M—zmz [F2(k?) = (B /M?)F 2(k?)]. (2.4)

The decay rates for Z—~ Ay and Z—~ Ae*e” are now simple functions of M, and M;. For a massive photon
we have

To(*) = gopsL O+ = K12 0mg —mn = K122 M (k2) M (1))

or, using the notation x =k%/A?
an® 2 1/2
Fo(x)=w[(1 =x)(p* =) V3[2Mp(x) + M (x)] . (2.5)
When the photon is on its mass shell, then M,(¥*)=0 and we find
T'(0)=4aM(a/my)°F,2(0). (2.6)

The differential decay rate for =~ Ae*e”, in terms of x and the energy partition between the electrons in
the T rest system,

y= E1 - Ez
ql —512 ’
is given by the well-known expression™ (» =2m/A)

d’I(Z-Ae’e”) o A% [(1-x)(* -x)]"2[ 2, 7" 2
dedy  32amy x L<1*y *7)“”“ -y )ML]~ (2.7)

The expressions (2.3) and (2.4), when substituted into (2.7), can be checked against the expression given
by Baggett.!! In the limit where we drop all terms proportional to the electron mass and neglect all terms

of order (A/M)?, we reproduce the result of Evans.® [Note that Eq. (4) of this reference contains misprints.
The correct formula is given in Ref. 8.]

[II. RADIATIVE CORRECTION TO THE TOTAL DECAY RATE FOR Z - Ae*e”

In Ref. 12 we showed that the radiative correction to the total decay rate for A -~ Be*e™ can be simply ob-
tained from the properties of the vacuum-polarization tensor. The general formula, through terms in o?,
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is given by

e aftu( ) Seba] (33

where £(3)=1.2020569 is the Riemann ¢ function,

Ydx

11=L T[K(") -1], (3.2)
ldx 1

12=L 71n<;> [K(x)-1], (3.3)

and K(x)=T,(x)/T,(0). Hence, from Egs. (2.5),
(2.6), (2.3), and (2.4) we can determine the inte-
grals J; and I,, and thereby the expression (3.1).

In deriving (3.1) we neglected terms a(m/A)? rela-
tive to @, and o?(m/A) relative to o?. In our case
m/A =14, so the approximation should be very good.
To proceed further we must parametrize the form
factors F,(k?) and F,(k*) so that we can carry out
the integrations.

Theoretical arguments have been given by Feld-
man and Fulton® and by Evans® to justify neglecting
F, relative to F, in the expression for the matrix
element. We expect that the size of F, is probably
of the same order of magnitude as the size of the
slope of F,. Hence, in a Taylor-series expansion
we retain only the terms

F,(x)=F,(0)(1 +ax), (3.4)
F (x)=bF,(0). (3.5)

The quantity F,(0) therefore cancels when we form

4. 13\, (A i 65 13 2
>+(51‘—5—4>ln(r;)+§(3)—27+648_10811—512}’

(3.1)

the branching ratio I'(Z -~ Ae*e”)/T(Z~Ay). The
small quantities a and b are now regarded as pa-
rameters to be obtained from experiment. In the
expression for the branching ratio we retain only
the first-order terms in a and . Clearly, to dis-
tinguish a from b experimentally we need measure-
ments of the differential decay rate. Having cho-
sen this parametrization of the form factors, we
can go ahead and calculate the integrals /, and I,
First we find new expressions for M; and M as
functions of x, i.e.,

My(x)= 8A2F22(0)[(1 —x)(1 +2ax) +4b§<x - g _2>],

(3.6)
M, (x)= 8A2F;(0)L%(1-x)(1 +2ax)+4b[%<x -’é - 2)]

(3.7)

Remembering that p~2=4A2/M?, we see that M, is
in general very small. Similarly the term propor-
tional to b in M, will be very small. To a very
good approximation we could retain only the first
term on the right-hand side of Eq. (3.6). However,
to have more accurate results we have retained all
terms in the subsequent calculations. The expres-
sion for K(x) is now

K(x)=£(—M [(1-x)<1 + —x-)+2ax(1—x)<1+ 5;%) + SSﬂ(;c _i‘--zﬂ. (3.8)

[ 2p?

The integrals I, and I, can now be integrated analyt-
ically, but the algebra became so tedious that we
resorted to computer evaluation, finding

I,=-1.2804 +0.8000a - 0.0072b , (3.9)

TABLE I. Dimensionless parameters used in the text.

A=mgy—my M =3(mg+my)

metma ym
L —— N
(g1+4q9)% p? E-E,
x= ==z =T= =
Az N T
p+x 72

T=la=x)(pt=-01"

p? p

r

I,=-1.3967 +1.3439a - 0.0102b . (3.10)

Hence, if we retain the terms in (3.1) proportional
to @, aa, ab, and of, the branching ratio becomes
T(T-Ae*e")

FZ-Ae'e) ~ .
TEo ) - (6:532+0.6272 - 0.0065)x 107*.

(3.11)

Without any radiative correction this expression
would have the value
F'E~Ae'e” _3
TC-Ay) - (5.486 +0.620a - 0.006b)x 102
(3.12)

so the radiative correction is approximately 1%.
To a very good approximation we are therefore
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justified in neglecting b completely. In fact, high-
er terms in the Taylor-series expansion for F,(x)
will probably be of the same order of magnitude.
When a =5 =0 the basic branching ratio in (3.12) is
in agreement with the value ¢ obtained by Evans.®
For comparison we also list here the value of the
branching ratio obtained by numerical double inte-
gration over the Dalitz plot with no radiative cor-
rection:

r(-Ae*e) _3
e T T (5. . -0. x10
(== Ay) (5.494 +0.619a - 0.006b) y
(3.13)
which agrees almost identically with (3.12).

1V. RADIATIVE CORRECTIONS TO THE DALITZ
PLOT AND THE PHOTON SPECTRUM

The T~ Ae*e”™ Dalitz plot in terms of the vari-
ables x and y is bounded by

A
333’2—3,
where
2

To order o the expression for the matrix element
is given by Eq. (2.7). We now assume, as in Ref.
12, that the soft-photon higher-order corrections
are given by the graphs (1), (2), (5), and (6) of
Fig. 2. The radiative correction to the Dalitz plot
is thus defined by

dzrrad dzr
dxdy _G(Xsy)dxdyv (4'1)
X
0.0 0.2 0.4 0.6 0.8 I;O
-0.01 =
AE=I0MeV
-0.021- E
3(x,y) N
AN
AN

~ NN

-003f- ~ \§\ .
S \\\ y=0.0
SN
\\§\-<\-—>y=0 5
R .
004k y=0.9 \\\AE 5MeV
1 ) ! Lo~

FIG. 3. 6(x,y) as a function of x for fixed values of y.
The solid lines are for AE=10 MeV and the dashed ones
for AE =5 MeV.
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FIG. 4. 6(x,y) as a function of y for fixed values of x.
The solid lines are for AE =10 MeV and the dashed ones
for AE =5 MeV.

where, from Ref. 12,

a A% AYe? -y)x 13
G(x,y)—;[- <1‘1 e “1><1“4AE2(02—1)— 6>

17, ofo+y 1=y ﬁ
_18_21n<0—y>+L12<02—y2 -5l
(4.2)

The quantity AE is the photon cutoff energy, and ¢
is defined by the expression

o=(p+x)[(1-x)(p* - x)] "2 (4.3)

The function denoted by Li,(x) is the dilogarithmic
function as defined by Lewin.!®* We have plotted
5(x, y) for two values of the photon cutoff energy,
AE=5 MeV and 10 MeV, in Fig. 3. The curves are
drawn for various values of y. Because Eq. (4.2)
is only valid for x>>7%, we cannot extrapolate the

X
Q 0%2 0;4 Olﬁ O.B 10
oo AE=10 Mev 1
r 1
-o02 AE=8MeV 1
3} i
-003 E
- 1

AE=5MeV
-004} -
1 -l 1 1 1

FIG. 5. 6(x) as a function of x for values of AE.
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curves to small values of x. Figure 4 gives the re-
sults for various values of x.

In a similar fashion we can obtain the radiative
corrections to the virtual-photon spectrum. Inte-
gration of Eq. (2.7) over the variable y yields

ar _ a B re
ozl (1 +2x> r(x), (4.4)

and we now define the radiative corrections to the
spectrum by

dread dr

—an = oW (4.5)

where

fo)=1=-30%+3(c? —l)crlngJrl

1

In Fig. 5 we plot 8(x) for various values of AE.
The sign of the soft-photon corrections is always
negative for the ranges of AE considered here.
This does not contradict the fact that the total cor-
rection to the decay rate is positive, because we
have omitted both the hard-photon corrections to
the Dalitz plot and the soft-photon corrections for

From Ref. 12 we have immediately an expression
for 6(x), namely,

Bx) =/1() + gy o)

A+ <§p2‘—x>fz(x) , (4.6)
because M, (x) and M,(x) are given by (3.6) and (3.7)
with a=b=0. [However, the full expressions for
M, (x) and M(x) should be inserted in (4.4) to give
the a and b dependence of the spectrum in x.] The
functions f,(x) and f,(x) are defined by

r

very small x. Hard photons must be detected ex-
perimentally before a value of AE can be ascer -
tained. They may come from diagrams which do
not contain the simple ¥ - Ay coupling. We close
by making the obvious comment that experiments
which do not measure photons but only detect
charged particles need a different radiative cor-
rection from the one reported here. Such experi-
ments need hard-photon corrections as well as
soft-photon corrections.
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