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scattering amplitude increases the falloff rate.
J. D. Bjorken and S. D. Drell, Relativistic Quantum

Mechanics (McQraw-Hill, New York, 1964), pp. 162,
167, 172, 176, or other standard texts on relativistic

quantum mechanics.
For this reason we limit our discussion of/ 2Q, )

to the region b, ~SF
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The differential meson multiplicity as a function of the six invariant variables that deter-
mine the process pp ppX is derived in a bremsstrahlung model, and contrasted with the
corresponding prediction of the multiperipheral model.

Recent experiments' indicate a logarithmic de-
pendence of charged-particle multiplicity on in-
cident energy, and are consistent with a Poisson
distribution for the number of events considered
as a function of pairs of charged tracks produced
in inelastic, high-energy PP scattering. These
features emerge from an approximate treatment
of a soft-vector-meson (SVM) model previously
introduced to provide qualitative descriptions of
the nucleon electromagnetic form factors', elastic
p-p' and n-p' scattering, and deep-inelastic e-p'
scattering at high energies. It is the purpose of
this note to sketch the derivation of these proper-
ties, while exhibiting a prediction for the differen-
tial multiplicity of charged pions as a function of
the (six) invariants defined when both final protons
are measured, as in a proposed NAL experiment. '

The essential idea of the model is that low-ener-
gy (relative to the nucleons) neutral vector mesons
are copiously produced by a mechanism analogous
to simple bremsstrahlung of soft photons. The
model is thus a realization of the bremsstrahlung
aspect of Feynman's view of inelastic hadron col-

lisions at high energies. This picture of inelas-
ticity differs from that of the multiperipheral mod-
el' in that mesons are here supposed to be emitted
from the legs of any graph, rather than from its
interior. The observed s-independent transverse
momentum cutoff of emitted pions arises in the
bremsstrahlung model because the pions are de-
cay products of soft vector mesons, whereas in
the multiperipheral model it arises from the pe-
ripheral nature of each of the two-particle ampli-
tudes along the multiperipheral chain. While the
lns dependence of the total multiplicity is a feature
of both models, the particular angular and energy
dependence of the differential multiplicity pre-
dicted below may serve to distinguish between
them.

A theory of nucleons (g, g) and massive neutral
vector mesons (A„) possesses an S matrix given,
in terms of the time-ordered generating functional

by the Wick-ordered relation'

6 — 6 6S=:exp AK —.+$;„D———Dg;„:8 jgg S .

From E|l. (l) there easily follows an exact expression for the production probability of n vector mesons in
a p-p collision,
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i'=i =0

where, in the notation of Ref. 2, K= p, —8 and
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When the c-number source j(x) vanishes, M(P„P„P„P„O)represents the S-matrix element for elastic p-p
scattering. It should be emphasized that (2) is an exact expression, with energy-momentum conservation
enforced by integration over the configuration-space variables of (3). One now observes that all the SVM
dependence is contained in the factors exp(i+4(, ff(A}, extracted from the product of the G(A) of (3);
here, the / index denotes each of the four proton legs in the process

P, +P, -P, +Pd+ g k,. ;
s=1

d, (*)=-f a.(*-X)j,(X)d X;'
1.[A] denotes the closed-fermion-loop functional while N represents the normalizing vacuum-to-vacuum
amplitude; Q, k, denotes the total four-momentum of the vector mesons; G(7, y ~A) is the nucleon propagator
amputated on the nucleon coordinates; and

f ", (Nj) =gP", d&5(w - xj + &P,},
0

with the + (-) sign associated with the in- (out-) going proton momenta. Carrying through all the functional
operations of (3), but displaying only those due to the soft linkages explicitly,

)d(p " p, j) eep(. f')=ad) f-'d*, e'"""f dx, e "(*a„d.-'. . , ,)e eIpf d+,-' Q f aJj,l, m

(4)

where Mjj(x„. . . , x,) denotes that function (of coordinate differences} which contams all structure except
that due to the exchange of SVM's. By dropping all source dependence inside M~, we shall henceforth be
considering the effects of SVM's only, and assume that —as in the elastic case -this is a reasonable ap-
proximation at asymptotic energies.

The indicated functional operations of (2) may now be performed, and yield

P1"1 ~ ~ ~ dg g ~ 4"4 ~ ~ . . . g dg' e P1"1 ~ ~ ~ d+I es P4r4

n

x '(*e,'d, . . . , ,') —, 'I f a&&f eep —,''Q '„f a,f„——,
' P f, a'f'), '

l, m l, m 1,m
(5)

where the primes denote dependence on the x& coordinates. Aside from the restriction to the special soft
exponential structure, Eq. (5) is still exact, with four-momentum conservation maintained.

In the elastic scattering case of Ref. 2, a most convenient approximation (which provides a simple, qual-
itative description' of the p-p data for all large s and essentially all t) was obtained by decoupling the soft
exponential factors [which remain in (4) after setting j= 0] from the nonsoft M„; this was accomplished by a
"dipole" approximation, neglecting the x, dependence contained in fj(N)). Since the xj coordinate differences
provide the virtual-momentum cutoff in the integrals" over f, (k}, neglect of the x, dependence requires the
insertion of a momentum cutoff, as in Ref, 2. In the present inelastic case, adoption of the same dipole ap-
proximation will ruin the energy-momentum conservation, since it is precisely the x„x' dependence in-
side (i+, Jf(a(,)f')" which, together with the explicit P,x„.. . , P,x,' dependence of (5}, provides the nec-
essary factors of 5(P, +P, -P, -P, —Pk)

To surmount this difficulty, while retaining the simple dipole approximation (and hoping for the same
sort of accuracy in the reproduction of the experimental data as that of Refs 3and 4), .we introduce the
following artifice: Neglect all x„x' dependence in every f„f'; but replace the 5(P, +P, -P, -P,) which
then occurs by 6(P, +P, -P, P, -(pk)), whe-re (pk) denotes an average four-momentum carried off by the
SVM's. In this approximate way of handling soft production, we now write

(6)

where
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M„(P„.. . , P; ( Q k)) —= 5 (P, +P —P P——(g k)) 3g„(P„P,P, P ),

with SR„defined by

The great advantage of this approximation, in
which ( Qk) depends on (n) rather than n, is that
all further manipulations are essentially the same
as those of soft-photon physics. The probability
for emitting all possible SVM's becomes

I )', =i(i) I'exp —,''E Jf,ie—e,' ,)e(")f
n=0 l, m

(7)

while the differential multiplicity" (v) (the SVM
multiplicity given as a function of the four proton
momenta) is simply

(8)

Q J f, a((f = ——,
' I , f„ie —e)f, . ,

l, m l, m

Thus in the sum Q„P„=
~
M„~' all the damping of

every partial cross section is removed upon sum-
ming over all cross sections, as in the canonical
infrared manner.

The distribution (6) is now Poisson,

P„=—,(v)" e &"&~M„~',
1

(10)

while the evaluation of the integrals on the right-
hand side of Eq. (9) may be performed exactly as
in Ref. 2, with the result

"= Z Jfe"f
l, m

A glance at the exponential factor of Eq. (7) shows
that all the soft dependence cancels exactly, since

(v) =-2y[F(t„)+F(t„)+F(u,4)+F(u„)
-F(4m' —s„)-F(4m'- s„)],

where

t„=-(P, -P,)',
u„= -(P, -P,)',

34 3 4

t24= -(P~ -P4}')

u 3 = -(P2 —Ps)')

s» ——-(P, +P,)' =- s,

y = (g'/«' )In(I+ t,'/u'),

with g, p, , and p. , the coupling constant of SVM to
proton, SVM mass, and momentum cutoff, respec-
tively. m is the proton mass; and F(z) is a func-
tion which for negative z may be reasonably ap-
proximated by -ln(1+ 0.4 ~z ~), with z in units of
GeV'. Equation (11) represents the differential
multiplicity of this bremsstrahlung model, given
in terms of the six invariants formed from the ex-
perimentally measured proton momenta. It should
be noted that this prediction is independent of the
model used to relate (Pk) to (n); but this will not
be true of the over-all multiplicity (n), which does
depend (weakly, as shown below) on (Qk).

It may be somewhat more convenient to express
(11) in terms of a different set of independent

= -(Qk)'; with the latter two quantities represent-
ing the measured lab energy and effective (mass)'
of emitted SVM's. One finds

(v) = -2y [F(t») +F(t,4) +F (4m' —s,4 + M' —t„—2 m Q k"'b~)

+F(4m' —s» + 2m+k'o" ~ —t24) F(4m2 —s-„)-F (4m' —s, }]

(v) —-2y[F(t„)+ F (t„)],
where

(13)

with the help of the relation t,3+ f24+ +3+ Qy4+ sy2
+ s34= 8m +M . To simplify Eq. (12}further it is
necessary to assume that most of the events mea-
sured correspond to the assumptions of the model,
and to replace gk by its average value (Qk). In
particular, we assume that (QkI™)=0 and that
M = M =(Qk,' '). Under these conditions we
have, for the differential multiplicity for those
events in which the momentum transfers remain
fixed as s-~,

f24 tJ 3 2m' —2E,E3 + 2P,P, cos 0„
Particle 3 is the fast outgoing proton and particle
4 the slow outgoing proton; particle 1 is the in-
coming proton; and all quantities refer to the lab
coordinate system.

This relation is easier to compare with experi-
ment than Eq. (11) and it also displays in a clear
way the difference between a bremsstrahlung mod-
el and multiperipheral models' for the differential
multiplicity. Equation (13) shows rapid variation
of (v) [like s(1 —cos6»)] near 8» =0 and is inde-
pendent of s as s —~ with t» and t,4 fixed. On the
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other hand, in both the Amati-Fubini-Stanghellini
model and the Chew-Pignotti Regge multiperipheral
model the differential multiplicity has the asymp-
totic form

alns+ b,

where a is the same coefficient that multiplies the
lns growth of the total multiplicity.

The nature of the prediction for the differential
multiplicity in the simplified form of Eq. (13) is
illustrated by Fig. 1, in which we plot (r ) as a
function of (913"' ' and 0»~' ' for various fixed
values of incident lab energy Ez. We have taken
r) =E,/E, = —,

' in plotting (I), although the curves are
rather insensitive to the value used. Note that the
simplified form (13) applies to events (presumably
a significant fraction of the total) for which p,' ~ )

--p, ' ' and tz3 f24«s», s„. In other cases
the general form (11)or (12) must be used. We
also note that, as a consequence of the rapid mo-
tion of the c.m. at high energies, it may be some-
what easier to see the effect in a colliding-beam ex-
periment than in a stationary-target experiment.

We now show how the lns growth of total multi-
plicity comes about in the bremsstrahlung model

despite the lack of explicit s dependence in Eq.
(13). The total multiplicity, obtained by summing
over all proton coordinates, is defined by

f (dp, )f (rp, )rm
(n) = (14)

dP, 4'4 P„

where J(dP, ) f (rfP, ) denotes integration over the
phase space of the final protons. With the approxi-
mations leading to Eq. (6), this becomes

dP3 44 V MH P1, . . ~, P4; k

(n) =

dP dp M„, . . . , P;
(ls)

with (v) given by Eq. (11). Because of the symme-
try of the final protons, the numerator of Eq. (15)
may be replaced by

-2y dP3 dP4 2I' ~13 +2I' u„-E 4m' —s12

-Z(4m' - s„)]~SS„~'. (16)

If Pk is again replaced by its average value, as
after Eq. (12), then in the limit s -~ Eq. (16) may
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FIG. 1. Differential multiplicity (v) as a function of angle for various values of incident lab energy E& for the
simplified kinematics of Kq. (13).
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be written as

-4y dP, dP~ F t» +F 4m'-gs —t»

—F(-s)+Inq)(M„~', (l7}

where q
=- (s„/s)' ' is the average elasticity.

To go further, an assumption is required about

the behavior of M~. There are indications" that
the primary continues to carry off a sizeable
fraction of the energy as s-~ (perhaps q -0.5).
This suggests that in the c.m. computation of the
integrals of Eq. (1'I), the (Qk) dependence inside
M„may be dropped in the large-s limit. We now

assume this is true and find

(n) =

'QS

-4y d~ t~[F (t) +F( qs -—t) F( -s) +-In@]do„/dt
0

d tdcr dt
0

where da„/dt denotes a fictitious differential cross
section for elastic p-p scattering soithout the lat-
ter's experimentally observed damping at large
momentum transfer (or, at least, without that por-
tion of it ascribable to soft, virtual, neutral vector
mesons). No assumptions are needed for do„/dt
except the reasonable requirement that it varies
sufficiently slowly and does not fall off too rapidly
with increasing !t!„ in order to extract the leading
s-dependence

(n)-4y lns+ (19)

where use has been made of the property F( s}-
--lns+ . Equation (19) would be trivially true
if do„/dt were represented by the Born approxima-
tion corresponding to single m' exchange between
two protons, which is independent of t. The addi-
tive constant to the lns term of (19) cannot be de-
termined without specifying der„/dt.

It is interesting to relate the constant y in Eq.
(19) to the coefficient of the lns term in the experi-
mentally observed charged-pion multiplicity. '
Since (n) is the SVM multiplicity, we must multiply
by two to get the charged-pion multiplicity. With
g'/4v—= 1 and p,,'-=p', one finds Sy-=0.9, which is
to be compared with the experimental value of 0.7.
It must be noted that the value of y required here
is an order of magnitude smaller than the value

y = 2.3 used to fit the elastic pp data. Difficulties
of this kind, in which effective elastic couplings
are much stronger than inelastic ones, have ap-
peared in other calculations. " It is possible to
understand this effect qualitatively within the con-
text of the SVM model, although the arguments are
somewhat involved and are not necessary for the
present computation. As in the elastic situa-
tions, ' 4 it is wisest to treat y as a parameter to
be determined from the data.

The probability for producing n SVM's when the
final protons are not measured may be written,
from (10), as

dP3 dP 1 n! v "g ~'~ M
6' =

dP3 dP4 MH

(20)

and it is natural to ask what form (20) takes when
the same neglect of (Qk) is made as s —~. For
dos/dt independent of t, Eq. (20) reduces to

!P„=(I/n!)(4y lns+ )"s '~ C(y), (21)

with C(y) = (5/2q)'&B(1 —4y, 1 —4y), assuming 4y
& 1. Thus one finds an effective Poisson distribu-
tion for the probability of events considered as a
function of pairs of charged tracks, in agreement
with the data.

One final comment concerning a detail of the
model may be appropriate. There is no a priori
reason why the cutoff p., of these inelastic reactions
need be chosen the same as that of the elastic re-
action of Ref. 2, and, in fact, the smaller y value
required in the present inelastic calculation sug-
gests that a smaller p, should be used. (The only
firm requirement is the precise cancellation of
terms which would become infrared-divergent,
were p, allowed to vanish. ) If y;„„&y„, there re-
mains a residual soft damping in Q„P„, and the
computation of (n) must be reexamined. It turns
out that if 4(y„- y;„,I) & 1, these approximate forms
produce the desired lns dependence of (n) only if
the s -~ limit is taken before the value of y,&- y;„,&
is allowed to exceed —,'. While such an approxima-
tion-dependent, sequential limiting procedure is
then crucial in obtaining certain properties of
these inclusive reactions, we expect that it should
not be significant for the differential multiplicity,
with kinematical dependence given by (11)or (13).
It is this aspect of the bremsstrahlung model which
we hope will be tested shortly.

It is a pleasure to acknowledge useful conversa, -
tions with K. Kang and Chung-I Tan.
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This is true for those soft terms corresponding to

linkages between different proton legs; the self-linkage
terms are related to (but differ from) the wave-function
renormalization constants of the model, and require a
separate discussion.
'lDirect summation of the SVM diagrams by neglecting

all k 2 dependence in nucleon propagators makes explicit

the relation between the exact energy-momentum-con-
serving 5 function and the coordinate dependence in

(ig& ff, 6(+)f~)". Explicitly summing over all emitted
SVM's gives

1 g " " "

disci

P3ii P&iL I4~ Psii
Pn +t2)', -, a 2 i P, k; P', l; P;k; P;k;)

n

IMMI' 6'(Jf Q —P, —J', —Q kq,
/=i

where M, i is the amplitude for+++ Ps+P4, including
all soft exchanges, and the 5 function comes from the
phase-space factors for the emitted SVM's. Writing an
exponential representation for the 6 function puts the
expression in a factorized form in which an e~~g ~" is
associated with each k& factor. The replacement e@~' "
—1 required to decouple the SVM emission thus ruins the
ene re-momentum conservation. The subsequent
(molecular-field type of) approximation may be simply
defined starting from this explicit form for P„.

Let i represent the six independent variables in

p&p2 p3p4X. P„~&) is the probability of producing n vector
mesons when p3 and p4 go into the ith phase-space bin.

P(;& = g„"0P„(;) is the total(inclusive) probability for p3 and

p4 to go into the ith phase-space bin. Thus the average
differential multiplicity has the experimental meaning
(v;) = (n&)/P~&~, where (n;) is the observed average
vector-meson multiplicity in the ith phase-space bin and
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The Z term in the ~N scattering amplitude is commonly evaluated at squared nucleon mo-
mentum transfer t =2p, where p is the pion mass. Because of the nonanalytic nature of per-
turbations about the chiral SU(2) ~ SU(2) limit, Z(2p, ) differs from Z(0) by a term linear in p.
We calculate the difference term exactly to O(p) and find

Z(2 p2) Z(0) + 0(+2 In~2)
87r 2F ~

5'

This represents a 14-MeV correction to the value of p, P„Z(2p ).

It was recently observed by Li and Pagels' that,
as a consequence of long-range forces introduced
as the pion mass p, vanishes in the chiral limit,
many amplitudes are not analytic about zero in

g' and naive expansion in the symmetry-breaking
parameter fails. We find this occurs for the nu-
cleon matrix element of the current-algebra Z
term, which we define (crossing one nucleon) by


